(3.235.108.188) 您好!臺灣時間:2021/03/07 21:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:湯安慈
研究生(外文):An-Cih Tang
論文名稱:應用於發光二極體之全無機鈣鈦礦量子點
論文名稱(外文):All-Inorganic Perovskite Quantum Dots for Light-Emitting Diodes
指導教授:劉如熹劉如熹引用關係
口試委員:張煥宗刁維光汪建民蔡宗良
口試日期:2017-05-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:發光二極體鈣鈦礦量子點
外文關鍵詞:PerovskiteQuantum DotsLight-Emitting Diodes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1169
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白光發光二極體應用於液晶顯示器之背光源為當代趨勢,而色純度與色域面積為高品質背光源之重點指標,其影響顯示器之色彩表現。綠色CsPbBr3鈣鈦礦量子點,因其具半高寬約20 nm之窄譜帶與高量子效率之優勢,而被視為應用於廣色域背光顯示最具希望之窄譜帶綠色螢光材料。然因量子點存在表面缺陷、熱穩定性差與液態不易封裝之缺點,使其於白光發光二極體之應用受限。本研究乃提出三步驟合成鈣鈦礦量子點之複合材料以獲得高量子效率且穩定之窄譜帶綠色螢光材料。所得聚合物包覆之多孔性鈣鈦礦量子點粉末具高達63%之絕對量子效率、較佳之熱穩定性與耐水性,且其由溶液態轉變為如同螢光粉之固體粉末,其可應用於背光顯示之晶片型白光發光二極體,色座標為(0.271,0.232),此白光發光二極體通過彩色濾光片後,色域面積約為NTSC標準之102%。
此外,量子點式有機發光二極體因具更廣之色域面積而獲得更佳之顯示品質,近年亦愈來愈受重視,其可應用於液晶顯示器之背光源,或具有機發光二極體之主動發光顯示原理之顯示器,後者被視為下一世代之顯示器。CsPbBr3鈣鈦礦量子點亦具應用於此電致發光元件之潛力,然難以兼顧元件表現與環境保護。為達此平衡,本研究亦以簡單之熱注射方式合成Cs(Pb1-xSnx)Br3,以較穩定之Sn4+部分取代有毒之Pb2+。其中Cs(Pb0.67Sn0.33)Br3樣品之絕對量子效率從CsPbBr3樣品之45%提高至83%。並由飛秒瞬態吸收、時間解析螢光光譜與單粒子光譜之分析鑑定,獲得量子效率提升之原因為Sn4+之取代使鈣鈦礦量子點中帶電激子(trion)之形成減少。此高量子效率之Cs(Pb0.67Sn0.33)Br3製成之量子點式有機發光二極體之元件表現明顯提升,此元件放光波長為517 nm,電流效率為11.63 cd/A,外部量子效率為4.13%,此元件表現為目前含錫鈣鈦礦量子點式有機發光二極體中表現最優異者。
White light-emitting diodes (LEDs) is widely used as backlighting components in the modern liquid-crystal display (LCD). For high-quality backlight, color saturation and color gamut are the key indicators, which affect the color performance display devices. Perovskite CsPbBr3 quantum dots (QDs) are regarded as the most promising narrow-band green-emitting material for wide-color-gamut backlight displays because of their high photoluminescence quantum yield (PLQY) and the narrow-band emission with a full width at half maximum (FWHM) of ∼20 nm. Despite their growing popularity, CsPbBr3 QDs have several shortcomings such as the existence of surface trap states, poor thermal and aqueous stability, and the solution QDs are unsuitable for direct use in on-chip white LEDs. Here, a three-step treatment of perovskite CsPbBr3 QDs toward high brightness and stable narrow-band green emission was investigated. After the treatment, a robust and stable narrow-band perovskite mesoporous-CsPbBr3/SDDA@ PMMA powder was obtained. The powder exhibited several advantages, including high absolute PLQY of 63%, improved thermal stability, and water resistance. A white LED used in backlight display was successfully fabricated with color coordinates of (0.271, 0.232) that passed through RGB color filters with an NTSC value of 102%.
Moreover, CsPbBr3 perovskite QDs are potential emitters for QLED electroluminescent displays. However, balancing their performance and their environmentally friendly property is challenging. To achieve such balance, we demonstrated an easy hot-injection method to synthesize Cs(Pb1-xSnx)Br3 QDs by partially replacing the toxic Pb2+ with the highly stable Sn4+. Meanwhile, the absolute PLQY of Cs(Pb0.67Sn0.33)Br3 QDs increased from 45% to 83% compared with CsPbBr3. Based on a femtosecond transient absorption, time-resolved PL, and single-dot spectroscopies, we conclude that the PLQY enhancement is due to the reduction of trion formation in perovskite QDs with Sn4+ substitution. This trion-formation suppression by Sn4+ substitution consequently increased the performance of QLED devices based on these highly luminescent Cs(Pb0.67Sn0.33)Br3 QDs, exhibiting a central emission wavelength of 517 nm, a current efficiency of 11.63 cd/A, and an external quantum efficiency of 4.13%, which to date are the highest values among the reported Sn-based perovskite QLED devices.
口試委員會審訂書 i
誌謝 ii
摘要 iii
Abstract iv
總目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 奈米材料之簡介 1
1.1.1 量子尺寸效應與量子侷限效應 2
1.1.2小尺寸效應 5
1.1.3 表面效應 6
1.2 量子點之簡介 6
1.2.1 量子點種類介紹 8
1.2.2 發光特性 8
1.2.3 量子效率 9
1.3鈣鈦礦量子點簡介 10
1.3.1 鈣鈦礦量子點之結構 12
1.3.2 鈣鈦礦奈米粒子之合成 13
1.3.3 鈣鈦礦量子點之穩定性 14
1.3.4 鈣鈦礦量子點之表面特性 16
1.3.5 鈣鈦礦量子點之環境毒性 17
1.4 鈣鈦礦量子點之應用 17
1.4.1 發光二極體背光顯示 18
1.4.1.1 CIE1931色度座標 20
1.4.1.2 色域面積(color gamut) 21
1.4.1.3 顏色純度 22
1.4.2 量子點式發光二極體 24
1.4.2.1 光致發光 24
1.4.2.2 電致發光 26
1.5 研究動機與目的 30
第二章 實驗步驟與儀器分析原理 32
2.1 化學藥品 33
2.2 實驗步驟 34
2.2.1 油酸銫前驅物之配製 34
2.2.2 鈣鈦礦CsPbBr3量子點之合成 34
2.2.3 Cs(Pb1-xSnx)Br3量子點之合成 35
2.2.4鈣鈦礦量子點複合材料(mesoporous-CsPbBr3/SDDA@PMMA)之合成 35
2.2.4.1 硫化物表面修飾CsPbBr3量子點 36
2.2.4.2 Mesoporous-CsPbBr3/SDDA複合材料之合成 36
2.2.4.3 Mesoporous-CsPbBr3/SDDA@PMMA複合材料之合成 36
2.2.5 白光發光二極體之封裝 37
2.2.6 鈣鈦礦量子點式有機發光二極體之元件製備 38
2.3 儀器分析原理 39
2.3.1紫外光/可見光吸收光譜儀(UV/Vis absorption spectroscopy) 39
2.3.2螢光光譜儀(photoluminescence spectrometer; PL) 40
2.3.3瞬態吸收光譜(transient absorption spectra; TA)與時間解析螢光光譜(time-resolved photoluminescence; TRPL) 40
2.3.4 單粒子光譜(single dot spectroscopy) 41
2.3.5 量子效率(photoluminescence quantum yield; PLQY) 42
2.3.6 粉末X光繞射儀(powder X-ray diffraction microscopy; XRD) 44
2.3.7 穿透式電子顯微鏡(transmission electron microscopy; TEM) 46
2.3.8 X射線吸收光譜(X-ray absorption spectroscopy; XAS) 47
2.3.9感應耦合電漿發射光譜儀(inductively coupled plasma optical emission spectroscopy; ICP-OES) 49
2.3.10 積分球(integrating sphere) 50
2.3.11分光輝度計(spectroradiometer) 50
第三章 結果與討論 51
3.1鈣鈦礦量子點複合材料應用於廣色域發光二極體背光顯示 51
3.1.1 CsPbBr3鈣鈦礦量子點之晶體結構與光學鑑定 51
3.1.2鈣鈦礦量子點複合材料(mesoporous-CsPbBr3/SDDA@PMMA)之合成 54
3.1.3 鈣鈦礦量子點複合材料之光學鑑定 55
3.1.4 鈣鈦礦量子點複合材料之穩定性測試 56
3.1.5 鈣鈦礦量子點複合材料應用於白光發光二極體 58
3.2 四價錫離子取代之Cs(Pb1-xSnx)Br3鈣鈦礦量子點應用於發光二極體 59
3.2.1 Cs(Pb1-xSnx)Br3之合成 60
3.2.2 Cs(Pb1-xSnx)Br3之結構鑑定與元素分析 60
3.2.3 Cs(Pb1-xSnx)Br3之光學鑑定 65
3.2.4 Cs(Pb0.67Sn0.33)Br3之高量子效率機制探討 67
3.2.5 Cs(Pb1-xSnx)Br3應用於量子點式有機發光二極體 72
3.2.6 Cs(Pb0.67Sn0.33)Br3應用於白光發光二極體 76
第四章 結論 77
參考文獻 78
[1] Chen, H. M.; Liu, R. S. Architecture of Metallic Nanostructures: Synthesis Strategy and Specific Applications. J. Phys. Chem. C 2011, 115, 3513–3527.
[2] Kubo, R. Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 17, 975–986.
[3] Lippens, P. E.; Lannoo, M. Calculation of the Band Gap for Small CdS and ZnS Crystallites. Phys. Rev. B 1989, 39, 10935–10942.
[4] Roduner, E. Size Matters: Why Nanomaterials Are Different. Chem. Soc. Rev. 2006, 35, 583–592.
[5] Chansin, G.; He, X. Quantum Dots 2016-2026: Applications, Markets, Manufacturers. 2015.
[6] Nan, W.; Niu, Y.; Qin, H.; Cui, F.; Yang, Y.; Lai, R.; Lin, W.; Peng, X. Crystal Structure Control of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Synthesis and Structure-Dependent Optical Properties. J. Am. Chem. Soc. 2012, 134, 19685–19693.
[7] Anc, M. J.; Pickett, N. L.; Gresty, N. C.; Harris, J. A.; Mishra, K. C. Progress in Non-Cd Quantum Dot Development for Lighting Applications. ECS J. Solid State Sci. Technol. 2013, 2, 3071–3082.
[8] Roth, L. M., CHAPTER 10 - Dynamics and Classical Transport of Carriers in Semiconductors A2 - LANDSBERG, P.T. In Basic Properties of Semiconductors, Elsevier: 1992; pp 489–581.
[9] Bera, D.; Qian, L.; Sabui, S.; Santra, S.; Holloway, P. H. Photoluminescence of ZnO Quantum Dots Produced by a Sol-Gel Process. Opt. Mater. 2008, 30, 1233–1239.
[10] Yang, H.; Holloway, P. H. Efficient and Photostable ZnS-Passivated CdS:Mn Luminescent Nanocrystals. Adv. Funct. Mater. 2004, 14, 152–156.
[11] Grabolle, M.; Spieles, M.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Resch-Genger, U. Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Anal. Chem. 2009, 81, 6285–6294.
[12] Laverdant, J.; de Marcillac, W. D.; Barthou, C.; Chinh, V. D.; Schwob, C.; Coolen, L.; Benalloul, P.; Nga, P. T.; Maitre, A. Experimental Determination of the Fluorescence Quantum Yield of Semiconductor Nanocrystals. Materials 2011, 4, 1182–1193.
[13] Kuçur, E.; Bücking, W.; Giernoth, R.; Nann, T. Determination of Defect States in Semiconductor Nanocrystals by Cyclic Voltammetry. J. Phys. Chem. B 2005, 109, 20355–20360.
[14] Forrester, W. F.; Hinde, R. M. Crystal Structure of Barium Titanate. Nature 1945, 156, 177–177.
[15] Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science 1999, 286, 945–947.
[16] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
[17] Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gratzel, M. Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energ. Environ. Sci. 2016, 9, 1989–1997.
[18] Moller, C. K. Crystal Structure and Photoconductivity of Caesium Plumbohalides. Nature 1958, 182, 1436–1436.
[19] Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696.
[20] Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Angew. Chem. Int. Edit. 2015, 54, 15424–15428.
[21] Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477–485.
[22] Zhang, D.; Eaton, S. W.; Yu, Y.; Dou, L.; Yang, P. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.
[23] Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.
[24] Lignos, I.; Stavrakis, S.; Nedelcu, G.; Protesescu, L.; Demello, A. J.; Kovalenko, M. V. Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Lett. 2016, 16, 1869–1877.
[25] Li, X.; Cao, F.; Yu, D.; Chen, J.; Sun, Z.; Shen, Y.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y.; Zeng, H. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small 2017, 1603996.
[26] Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X. W.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H. Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Appl. Mater. Inter. 2015, 7, 25007–25013.
[27] Huang, H.; Chen, B. K.; Wang, Z. G.; Hung, T. F.; Susha, A. S.; Zhong, H. Z.; Rogach, A. L. Water Resistant CsPbX3 Nanocrystals Coated with Polyhedral Oligomeric Silsesquioxane and their Use as Solid State Luminophores in All-Perovskite White Light-Emitting Devices. Chem. Sci. 2016, 7, 5699–5703.
[28] Palazon, F.; Akkerman, Q. A.; Prato, M.; Manna, L. X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water. ACS Nano 2016, 10, 1224–1230.
[29] Chen, J.; Liu, D.; Al-Marri, M. J.; Nuuttila, L.; Lehtivuori, H.; Zheng, K. Photo-Stability of CsPbBr3 Perovskite Quantum Dots for Optoelectronic Application. Sci. China Mater. 2016, 59, 719–727.
[30] Wang, H.-C.; Lin, S.-Y.; Tang, A.-C.; Singh, B. P.; Tong, H.-C.; Chen, C.-Y.; Lee, Y.-C.; Tsai, T.-L.; Liu, R.-S. Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. Angew. Chem. Int. Edit. 2016, 55, 7924–7929.
[31] Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano 2016, 10, 7943–7954.
[32] Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes. Nano Lett. 2016, 16, 5866–5874.
[33] Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J.; Sinatra, L.; Alyami, N.; Zhao, C.; Alarousu, E.; Ng, T. K.; Ooi, B. S.; Bakr, O. M.; Mohammed, O. F. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. J. Phys. Chem. Lett. 2015, 6, 5027–5033.
[34] Chen, Z.; Wang, J. J.; Ren, Y. H.; Yu, C. L.; Shum, K. Schottky Solar Cells Based on CsSnI3 Thin-Films. Appl. Phys. Lett. 2012, 101.
[35] Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; Böhm, M. L. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.
[36] Wang, A.; Yan, X.; Zhang, M.; Sun, S.; Yang, M.; Shen, W.; Pan, X.; Wang, P.; Deng, Z. Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process. Chem. Mater. 2016, 28, 8132–8140.
[37] Zhang, X.; Cao, W.; Wang, W.; Xu, B.; Liu, S.; Dai, H.; Chen, S.; Wang, K.; Sun, X. W. Efficient Light-Emitting Diodes Based on Green Perovskite Nanocrystals with Mixed-Metal Cations. Nano Energy 2016, 30, 511–516.
[38] Xie, R.-J.; Naoto, H.; Takashi, T. Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-Band Phosphor-Converted White Light-Emitting Diodes. Appl. Phys. Express 2009, 2, 022401.
[39] Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nat. Mater. 2015, 14, 454–458.
[40] Fairman, H. S.; Brill, M. H.; Hemmendinger, H. How the CIE 1931 Color-Matching Functions Were Derived from Wright-Guild Data. Color Res. Appl. 1997, 22, 11–23.
[41] Palazon, F.; Di Stasio, F.; Akkerman, Q. A.; Krahne, R.; Prato, M.; Manna, L. Polymer-Free Films of Inorganic Halide Perovskite Nanocrystals as UV-to-White Color-Conversion Layers in LEDs. Chem. Mater. 2016, 28, 2902–2906.
[42] Yoon, H. C.; Kang, H.; Lee, S.; Oh, J. H.; Yang, H.; Do, Y. R. Study of Perovskite QD Down-Converted LEDs and Six-Color White LEDs for Future Displays with Excellent Color Performance. ACS Appl. Mater. Inter. 2016, 8, 18189–18200.
[43] Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.
[44] Zhang, X. Y.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W. C. H.; Rogach, A. L. Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Lett. 2016, 16, 1415–1420.
[45] Zhang, X.; Xu, B.; Zhang, J.; Gao, Y.; Zheng, Y.; Wang, K.; Sun, X. W. All-Inorganic Perovskite Nanocrystals for High-Efficiency Light Emitting Diodes: Dual-Phase CsPbBr3-CsPb2Br5 Composites. Adv. Funct. Mater. 2016, 26, 4595–4600.
[46] Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.; Alyami, N. M.; Liu, J.; Yassitepe, E.; Yang, Z.; Voznyy, O.; Comin, R.; Hedhili, M. N.; Mohammed, O. F.; Lu, Z. H.; Kim, D. H.; Sargent, E. H.; Bakr, O. M. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. Adv. Mater. 2016, 28, 8718–8725.
[47] Yantara, N.; Bhaumik, S.; Yan, F.; Sabba, D.; Dewi, H. A.; Mathews, N.; Boix, P. P.; Demir, H. V.; Mhaisalkar, S. Inorganic Halide Perovskites for Efficient Light-Emitting Diodes. J. Phys. Chem. Lett. 2015, 6, 4360–4364.
[48] Ling, Y.; Tian, Y.; Wang, X.; Wang, J. C.; Knox, J. M.; Perez-Orive, F.; Du, Y.; Tan, L.; Hanson, K.; Ma, B.; Gao, H. Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes. Adv. Mater. 2016, 28, 8983–8989.
[49] Li, J.; Shan, X.; Bade, S. G. R.; Geske, T.; Jiang, Q.; Yang, X.; Yu, Z. Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness. J. Phys. Chem. Lett. 2016, 7, 4059–4066.
[50] Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; Zeng, H. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv. Mater. 2017, 29, 1603885.
[51] Li, G. R.; Rivarola, F. W. R.; Davis, N.; Bai, S.; Jellicoe, T. C.; de la Pena, F.; Hou, S. C.; Ducati, C.; Gao, F.; Friend, R. H.; Greenham, N. C.; Tan, Z. K. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method. Adv. Mater. 2016, 28, 3528.
[52] Wei, Z. H.; Perumal, A.; Su, R.; Sushant, S.; Xing, J.; Zhang, Q.; Tan, S. T.; Demir, H. V.; Xiong, Q. H. Solution-Processed Highly Bright and Durable Cesium Lead Halide Perovskite Light-Emitting Diodes. Nanoscale 2016, 8, 18021–18026.
[53] Zhang, X.; Sun, C.; Zhang, Y.; Wu, H.; Ji, C.; Chuai, Y.; Wang, P.; Wen, S.; Zhang, C.; Yu, W. W. Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. J. Phys. Chem. Lett. 2016, 7, 4602–4610.
[54] Yassitepe, E.; Yang, Z. Y.; Voznyy, O.; Kim, Y.; Walters, G.; Castaeda, J. A.; Kanjanaboos, P.; Yuan, M. J.; Gong, X. W.; Fan, F. J.; Pan, J.; Hoogland, S.; Comin, R.; Bakr, O. M.; Padilha, L. A.; Nogueira, A. F.; Sargent, E. H. Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 8757–8763.
[55] Huang, H.; Lin, H.; Kershaw, S. V.; Susha, A. S.; Choy, W. C. H.; Rogach, A. L. Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. J. Phys. Chem. Lett. 2016, 7, 4398–4404.
[56] Hong, W.-L.; Huang, Y.-C.; Chang, C.-Y.; Zhang, Z.-C.; Tsai, H.-R.; Chang, N.-Y.; Chao, Y.-C. Efficient Low-Temperature Solution-Processed Lead-Free Perovskite Infrared Light-Emitting Diodes. Adv. Mater. 2016, 28, 8029–8036.
[57] Harris, D. C., Quantitative Chemical Analysis. W. H. Freeman: 2010.
[58] 維基百科編者 穿透式電子顯微鏡.
[59] Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of Analytical Chemistry. Cengage Learning: 2013.
[60] Mittal, M.; Jana, A.; Sarkar, S.; Mahadevan, P.; Sapra, S. Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals. J. Phys. Chem. Lett. 2016, 7, 3270–3277.
[61] Yarita, N.; Tahara, H.; Ihara, T.; Kawawaki, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Dynamics of Charged Excitons and Biexcitons in CsPbBr3 Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy. J. Phys. Chem. Lett. 2017, 1413–1418.
[62] Klimov, V. I. Multicarrier Interactions in Semiconductor Nanocrystals in Relation to the Phenomena of Auger Recombination and Carrier Multiplication. Annu. Rev. Condens. Matter Phys. 2014, 5, 285–316.
[63] Hu, F.; Yin, C.; Zhang, H.; Sun, C.; Yu, W. W.; Zhang, C.; Wang, X.; Zhang, Y.; Xiao, M. Slow Auger Recombination of Charged Excitons in Nonblinking Perovskite Nanocrystals without Spectral Diffusion. Nano Lett. 2016, 16, 6425–6430.
[64] Makarov, N. S.; Guo, S.; Isaienko, O.; Liu, W.; Robel, I.; Klimov, V. I. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots. Nano Lett. 2016, 16, 2349–2362.
[65] Park, Y.-S.; Bae, W. K.; Pietryga, J. M.; Klimov, V. I. Auger Recombination of Biexcitons and Negative and Positive Trions in Individual Quantum Dots. ACS Nano 2014, 8, 7288–7296.
[66] Vaxenburg, R.; Rodina, A.; Lifshitz, E.; Efros, A. L. Biexciton Auger Recombination in CdSe/CdS Core/Shell Semiconductor Nanocrystals. Nano Lett. 2016, 16, 2503–2511.
[67] Kagan, C. R.; Murray, C. B.; Bawendi, M. G. Long-Range Resonance Transfer of Electronic Excitations in Close-Packed CdSe Quantum-Dot Solids. Phys. Rev. B 1996, 54, 8633–8643.
[68] Caruge, J.-M.; Halpert, J. E.; Bulović, V.; Bawendi, M. G. NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices. Nano Lett. 2006, 6, 2991–2994.
[69] Lai, M. L.; Tay, T. Y. S.; Sadhanala, A.; Dutton, S. E.; Li, G.; Friend, R. H.; Tan, Z.-K. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices. J. Phys. Chem. Lett. 2016, 7, 2653–2658.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔