跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙彣
研究生(外文):Wen Chao
論文名稱:以紫外光吸收光譜法測量小型克里奇中間體的反應動力學
論文名稱(外文):Kinetic Studies of Small Criegee Intermediates by UV Absorption Spectroscopy
指導教授:林志民林志民引用關係
指導教授(外文):Jim Jr-Min Lin
口試委員:劉國平李遠鵬鄭原忠
口試日期:2017-06-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:65
中文關鍵詞:氣態反應動力學臭氧化反應紫外光吸收光譜克里奇中間體 (羰基氧化物)反應性的結構效應單分子分解反應
外文關鍵詞:gas phase reaction kineticsozonolysis reactionUV absorption spectroscopyCriegee intermediate (carbonyl oxide)structure effect in reactivityunimolecular decomposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臭氧化反應是消耗大氣中不飽和碳氫化合物的主要反應之一。克里奇中間體 (羰基氧化物) 會在臭氧化反應中生成,進一步可能產生氫氧自由基或與大氣中其它分子反應。我們團隊利用克里奇中間體在紫外光波段的強烈吸收,對最簡單的克里奇中間體CH2OO和二甲基取代克里奇中間體 (CH3)2COO做動力學探討;包含(CH3)2COO的單分子分解反應和兩者對水蒸氣、C2H4和(CH3)2C=C(CH3)2的雙分子反應。我們控制反應管中的溼度並發現CH2OO的衰減速率對[H2O]呈平方關係,指出與水二聚體之反應為主要發生的過程(k(H2O)2 = (7.4±0.6)x1012 cm3s1),但(CH3)2COO與水蒸氣的反應慢到無法測量(kH2O < 1.5x1016 cm3s1)。另一方面,由於氫原子的穿隧效應,(CH3)2COO在一般的大氣條件下會進行分子內氫原子轉移而分解。我們測量並分析可能的副反應的反應物濃度效應並決定(CH3)2COO在298K的熱分解速率為kth,H(298K) = (361±49) s1。此穿隧效應也藉由對(CD3)2COO做相同的測量與分析而確認(kth,D(298K) < 100 s1)。我們也探討了克里奇中間體與烯類分子[C2H4、(CH3)2C=C(CH3)2]之間的反應行為。CH2OO和C2H4 的反應速率係數被測量為(6.8±0.7)x1016 cm3s1,且在50  760 Torr 之間沒有壓力效應。另外(CH3)2COO的衰減速率對C2H4的濃度呈現一奇特的現象,當C2H4的濃度大於1x1016 cm3時,(CH3)2COO的衰減速率會上升至一定值。我們目前還無法解釋這個現象。
Ozonolysis reaction is one of the main removal channels of unsaturated hydrocarbons in the atmosphere. Carbonyl oxide, also known as Criegee intermediate, is produced in ozonolysis reaction and thought to play a role in OH radical formation and react with atmospheric gases. Our group have probed CH2OO and (CH3)2COO by utilizing their strong UV absorption. The unimolecular decomposition of (CH3)2COO and their bimolecular reactions with water vapor, C2H4 and (CH3)2C=C(CH3)2 have been studied. We controlled the humidity in the reactor and found that the observed decay rate of CH2OO showed a quadratic dependence on [H2O], and thus assigned water dimer reaction to be the main pathway in the CH2OO decay, k(H2O)2 = (7.4±0.6)x1012 cm3s1, while (CH3)2COO reaction with water vapor was too slow to measure (kH2O < 1.5x1016 cm3s1). On the other hand, (CH3)2COO will isomerize and decompose under ambient conditions via fast tunneling of hydrogen atom. We measured and analyzed the concentration dependences for the reactants of possible side reactions to extract the thermal decomposition rate coefficients of (CH3)2COO to be (361±49) s1 at 298 K. The tunneling mechanism was confirmed by the small decomposition rate of (CD3)2COO, kth(298K)< 100 s1. For the reactions of Criegee intermediates with alkenes, the rate coefficient of CH2OO + C2H4 has been measured to be (6.8±0.7)x1016 cm3s1 with negligible pressure dependence (50  760 Torr). Furthermore, a strange kinetic behavior was observed in the decay rate of (CH3)2COO when adding C2H4; the (CH3)2COO decay rate increases to a saturation level for [C2H4] ≥ 1x1016 cm3. We have no good explanation for this observation yet.
摘要 i
Abstract ii
Chapter 1 Introduction 1
Chapter 2 Experimental Section 8
2.1 Optical Setup 9
2.2 Baseline Stability 13
2.3 Water Vapor in the Reactor 15
2.4 Precursor in the Reactor 17
2.5 Synthesis of 2,2-diiodopropane 18
2.6 Photolysis system of CH2I2 and (CH3)2CI2 21
Chapter 3 Reaction with Water Vapor 24
Chapter 4 Unimolecular Decomposition 38
Chapter 5 Reaction with Small Alkenes 51
Chapter 6 Future Outlooks 57
Summary 59
Reference 61
1A. M. Thompson, Science, 1992, 256,1157-1165.
2J. Lelieveld, T. M. Butler, J. N. Crowley, T. J. Dillon, H. Fisher, L. Ganzeveld, H. Harder, M. G. Lawrence, M. Martinez, D. Taraborrelli, and J. Williams, Nature, 2008, 452, 737-740.
3D. Johnson, and G. Marton, Chem. Soc. Rev., 2008, 37, 699-716.
4R.M. Harrison, J. Yin, R.M. Tilling, X. Cai, P.W. Seakins, J.R. Hopkins, D.L. Lansley, A.C. Lewis, M.C. Hunter, D.E. Heard, L.J. Carpenter, D.J. Creasey, J.D. Lee, M.J. Pilling, N. Carslaw, K.M. Emmerson, A. Redington, R.G. Derwent, D. Ryall, G. Mills, S.A. Penkett, Sci. Total. Environ., 2006, 360, 5-25.
5T. W. G. Solomons, C. B. Fryhle, Organic Chemistry 10th, John Wiley & Sons, INC, Hoboken, 2011, 8, 366-368.
6M. Olzmann, E. Kraka, D. Cremer, R. Gutbrod, and S. Andersson, J. Phys. Chem. A, 1997, 101, 9421-9429.
7R. Criegee and G. Wenner, Liebigs Ann. Chem., 1949, 564, 9-15.
8R. Criegee, Angew. Chem., Int. Ed., 1975, 14, 745–752.
9L. Vereecken, D. R. Glowacki, and M. J. Pilling, Chem. Rev., 2015,115, 4063-4114.
10H. Akimoto, Atmospheric Reaction Chemistry, Springer, Tokyo, 2016, 7, 299-300, DOI: 10.1007/978-4-431-55870-5.
11R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, Atmos, Chem. Phys., 2006, 6, 3625-4055.
12J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian, J. Phys. Chem. A, 2001, 105, 1554-1560.
13J. H. Kroll, S. R. Sahay, J. G. Anderson, K. L. Demerjian, and N. M. Donahue, J. Phys. Chem. A, 2001, 105, 4446-4457.
14R. L. Mauldin, T. Berndt, M. Sipilä, P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V.-M. Kerminen1and M. Kulmala1, Nature, 2012, 488, 193-197.
15Craig A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival, and D. E. Shallcross, J. Am. Chem. Soc., 2008, 130, 11883-11885.
16O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science, 2012, 335, 204.
17W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee, J. J.-M. Lin, J. Chem. Phys., 2014, 141, 104308.
18C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, Science, 2013, 340, 177.
19R. Chhantyal-Pun, O. Welz, J. D. Savee, A. J. Eskola, E. P. E. Lee, L. Blacker, H. R. Hill, M. Aschcroft, M. A. H. Khan, G. C. Lloyd-Jones, L. Evans, B. Rotavera, H. Huang, D. L. Osborn, D. K. W. Mok, J. M. Dyke, D. E. Shallcross, C. J. Percival, A. J. Orr-Ewing, and C. A. Taatjes, J. Phys. Chem. A, 2017,121, 4-15.
20L. Sheps, J. Phys. Chem. Lett., 2013, 4, 4201.
21L. Sheps, A. M. Scully, and K. Au, Phys. Chem. Chem. Phys., 2014, 16, 26701-26706.
22W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys., 2014, 16, 10438.
23M. C. Smith, W.-L. Ting, C.-H. Chang, K. Takahashi, K. A. Boering, and J. J.-M. Lin, J. Chem. Phys., 2014, 141, 074302.
24Y.-P. Chang, C.-H. Chang, K. Takahashi, and J. J.-M. Lin, Chem. Phys. Lett., 2016, 653, 155-160.
25J. M. Beams, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc., 2012, 134, 20045.
26J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys., 2013, 138, 244307.
27F. Liu, J. M. Beams, A. M. Green, M. I. Lester, J. Phys. Chem. A, 2014, 118, 2298-2306.
28M. F. Vansco, H. Li, and M. I. Lester, J. Chem. Phys., 2017, 147, 013907.
29Y.-T. Su,Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science, 2013, 340, 174.
30Y.-H. Huang, J. Li, H. Guo, and Y.-P. Lee, J. Chem. Phys., 2015, 142, 214301.
31H.-Y. Lin, Y.-H. Huang, X. Wang, J. M. Bowman, Y. Nishimura, H. A. Witek, and Y.-P. Lee, Nat. Commun., 2015, 6, 7012.
32Y.-Y. Wang, C.-Y- Chung, and Y.-P. Lee, J. Chem. Phys., 2016, 145, 154303.
33F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science, 2014, 345, 1596.
34Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2016, 144, 061102.
35Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2016, 145, 234308.
36Y. Fang, F. Liu, S. J. Klippenstein, and M. I. Lester, J. Chem. Phys., 2016, 145, 044312.
37Y. Fang, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2017, 146, 134307.
38M. Nakajima and Y. Endo, J. Chem. Phys., 2013, 139, 101103.
39M. Nakajima and Y. Endo, J. Chem. Phys., 2014, 140, 011101.
40M. Nakajima, Q. Yue, and Y. Endo, J. Mol. Spectrosc., 2015, 310, 109.
41M. Nakajima, and Y. Endo, J. Chem. Phys., 2016, 145, 244307.
42M. C. Smith, W. Chao, K. Takahashi, K. A. Boering, and J. J. Lin, J. Phys. Chem. A, 2016,120, 4789–4798.
43R. Chhantyal-Pun, A. Davey, D. E. Shallcross, C. J. Percivalb and A. J. Orr-Ewing, Phys. Chem. Chem. Phys., 2015, 17, 3617-3626.
44W. Chao, J.-T. Hsieh, C.-H. Chang, and J. J.-M. Lin, Science, 2015, 347, 751-754.
45M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering, and J. J.-M. Lin, J. Phys. Chem. Lett., 2015, 6, 2708-2713.
46L.-C. Lin, H.-T. Chang, C.-H. Chang, W. Chao, M. C. Smith, C.-H. Chang, J. J.-M. Lin, and K. Takahashi, Phys. Chem. Chem. Phys., 2016, 18, 4557-4568.
47L.-C. Lin, W. Chao, C.-H. Chang, K. Takahashi, and J. J.-M. Lin, Phys. Chem. Chem. Phys., 2016, 18, 28189-28197.
48H.-L. Huang, W. Chao, and J. J.-M. Lin, PNAS, 2015,112, 10857-10862.
49T. R. Lewis, M. A. Blitz, D. E. Heard, and P. W. Seakins, Phys. Chem. Chem. Phys., 2014, 17, 4859-4863.
50C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok,and D. E. Shallcrossd and C. J. Percival, Phys. Chem. Chem. Phys., 2012, 14, 10391–10400.
51O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. M. Booth, P. Xiao, M. A. H. Khan, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Angew. Chem. Int. Ed., 2014, 53, 4547-4550.
52E. S. Foreman, K. M. Kapnas, and C. Murray, Angew. Chem. Int. Ed., 2016, 55, 10419-10422.
53Z.J. Buras, R. M. I. Elsamra, A. Jalan, J. E. Middaugh, and W. H. Green, J. Phys. Chem. A, 2014,118, 1997-2006.
54Z. C. J. Decker, K. Au, L. Vereecken, and L. Sheps, Phys. Chem. Chem. Phys., 2017, 19, 8541-8551.
55Z. J. Buras, R. M. I. Elsamra, and W. H. Green, J. Phys. Chem. Lett., 2014, 5, 2224−2228
56K. T. Kuwata, L. C. Valin, and A. D. Converse, J. Phys. Chem. A, 2005, 109, 10710-10725.
57J. D. Fenske, A. S. Hasson, A. W. Ho, and S. E. Paulson, J. Phys. Chem. A, 2000, 104, 9921-9932
58NIST Chemical Kinetics Database, http://kinetics.nist.gov, (accessed May 2017).
59N. M. Dohanue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys., 2011, 13, 10848-10857.
60J. Li, Q. Ying, B. Yi, P. Yang, Atmos. Environ., 2013, 79, 442-447.
61C. J. Percival, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, D. O. Topping, D. Lowe, S. R. Utembe, A. Bacak, G. McFiggans, M. C. Cooke, P. Xiao, A. T. Archibald, M. E. Jenkin, R. G. Derwent, I. Riipinen, D. W. K. Mok, E. P. F. Lee, J. M. Dyke, C. A. Taatjes and D. E. Shallcross, Faraday Discuss., 2013, 165, 45.
62B. Ruscic, J. Phys. Chem. A, 2013, 117, 11940-11953.
63A. Pross, S. Sternhell, Aust. J. Chem., 1970, 23(5), 989-1003.
64The MPI-Mainz UV/Vis Spectral Atlas of Gaseous Molecules of Atmospheric Interest, http://satellite.mpic.de/spectral_atlas, (accessed May 2017)
65S. Aloisio, and J. S. Francisco, Acc. Chem. Res., 2000, 33, 825-830.
66E. Vöhringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel1, Science, 2007, 315 (5811), 497-501
67R. Atskinson, A. C. Lloyd, J. Phys. Chem. Ref. Data, 1984, 13, 315-444.
68P. Neeb, F. Sauer, O. Horie,and G. K. Moortgat, Atmos. Environ., 1997, 31(10), 1417-1423.
69A. S. Hasson, G. Orzechowska, and S. E. Paulson, J. Geophys. Res.,2001, 106, 34131-34142.
70E. G. Jean, and D. Grosjean, Environ. Sci. Technol. 1996, 30, 2036-2044.
71A. R. Rickard, D. Johnson, C. D. McGill, and G. Marston, J. Phys. Chem. A, 1999, 103, 7656-7664.
72K. H. Becker, J. Bechara, K. J. Brockmann, Atmos. Environ., 1993, 27A, 1993, 57-61.
73M. Suto, E. R. Manzanares, L. C. Lee, Environ. Sci. Technol., 1985, 19, 815-820.
74T. Berndt, T. Jokinen, M. Sipilä, R. L. Mauldin, H. Herrmann, F. Stratmann, H. Junninen, M. and Kulmala, Atmos. Enviro., 2014, 89, 603-612.
75T. Berndt, J. Voigtländer, F. Stratmann, H. Junninen, R. L. Mauldin , M. Sipilä, M. Kulmala, H. Herrmann, Phys. Chem. Chem. Phys., 2014, 16, 19130-19136.
76D. Stone, M. Blitz, L. Daubney, N. M. Howes, and P. Seakins, Phys. Chem. Chem. Phys., 2014, 16, 1139-1149.
77B. Ouyang, M. W. McLeod, R. L. Jones, and W. J. Bloss, Phys. Chem. Chem. Phys., 2013, 15, 17070-17075.
78A. B. Ryzhkov, P. A. Ariya, Phys. Chem. Chem. Phys., 2004, 6, 5042-5050.
79A. B. Ryzhkov, P. A. Ariya, Chem. Phys. Lett., 2006, 419, 479-485.
80T. Berndt, R. Kaethner, J. Voigtlander, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipila, M. Kulmala, M. Olzmann, Phys. Chem. Chem. Phys., 2016, 17, 19862-19873.
81D. L. Osborn, C. A. Taatjes, Int. Rev. Phys. Chem., 2015, 34, 309-360
82M. Nakajima, and Y. Endo, J. Chem. Phys., 2014, 140, 134302.
83E. R. Lovejoy, D. R. Hanson, and L. G. Huey, J. Phys. Chem., 1996, 100, 19911-19916.
84T. Loerting, and K. R. Kiedl, PNAS, 2000, 97, 8874-8878
85M. Kumar, A. Sinha, and J. S. Francisco, Acc. Chem. Res., 2016, 49, 877-883.
86C. Zhu, M. Kumar, J. Zhong, L. Li, J. S. Francisco, and X. C. Zeng, J. Am. Chem. Soc., 2016, 138, 11164-11169.
87M. Nakajima, and Y. Endo, J. Chem. Phys., 2015, 143, 164307.
88R. Crehuet, J. M. Anglada, and J. M. Bofill, Chem. Eur. J., 2001, 7(10), 2227-2235.
89R. L. Caravan, M. A. H. Khan, B. Rotavera, E. Papajak, I. O. Antonov, M.-W. Chen, K. Au, W. Chao, D. L. Osborn, J. J.-M. Lin, C. J. Percival, D. E. Shallcross, C. A. Taatjesa, Faraday Discuss., 2017, submitted.
90L.-C. Lin, K. Takahashi, J. Chin. Chem. Soc., 2016, 63, 472-479.
91T. Hoffmann, J. R. Odum, F. Bpwman, D. Collins, D. Klockow, R. C. Flagan and J. H. Seinfeld,J. Atmos. Chem., 1997, 26, 189–222.
92N. M. Dohanue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys., 2011, 13, 10848-10857.
93G. T. Drozd, J. Kroll, and N. M. Donahue, J. Phys. Chem. A 2011, 115, 161–166.
94K. T. Kuwata, M. R. Hermes, M. J. Carlson, and C. K. Zogg, J. Phys. Chem. A, 2010, 114, 9192.
95C. Yin, and K. Takahash, Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/c7cp01091e.
96J. J.-M. Lin, W. Chao. Chem. Soc. Rev., 2017, submitted.
97T. Kurtén, and N. M. Donahue, J. Phys. Chem. A, 2012, 116, 6823−6830.
98C. C. Womack, M.-A. Martin-Drumel, G. G. Brown, R. W. Field and M. C. McCarthy, Sci. Adv., 2015, 1, e1400105.
99L. Vereecken, H. Harder and A. Novelli, Phys. Chem. Chem. Phys., 2014, 16, 4039-4049.
100T.J. Blasing, Technical Report. US Carbon Dioxide Information Analysis Center, Oak Ridge, TN., 2011., DOI: 10.3334/CDIAC/atg.032.
101H. G. Kjaergaard, T. Kurtén, L. B. Nielsen, S. Jørgensen, and P. O. Wennberg, J. Phys. Chem. Lett., 2013, 4, 2525-2529.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top