|
1A. M. Thompson, Science, 1992, 256,1157-1165. 2J. Lelieveld, T. M. Butler, J. N. Crowley, T. J. Dillon, H. Fisher, L. Ganzeveld, H. Harder, M. G. Lawrence, M. Martinez, D. Taraborrelli, and J. Williams, Nature, 2008, 452, 737-740. 3D. Johnson, and G. Marton, Chem. Soc. Rev., 2008, 37, 699-716. 4R.M. Harrison, J. Yin, R.M. Tilling, X. Cai, P.W. Seakins, J.R. Hopkins, D.L. Lansley, A.C. Lewis, M.C. Hunter, D.E. Heard, L.J. Carpenter, D.J. Creasey, J.D. Lee, M.J. Pilling, N. Carslaw, K.M. Emmerson, A. Redington, R.G. Derwent, D. Ryall, G. Mills, S.A. Penkett, Sci. Total. Environ., 2006, 360, 5-25. 5T. W. G. Solomons, C. B. Fryhle, Organic Chemistry 10th, John Wiley & Sons, INC, Hoboken, 2011, 8, 366-368. 6M. Olzmann, E. Kraka, D. Cremer, R. Gutbrod, and S. Andersson, J. Phys. Chem. A, 1997, 101, 9421-9429. 7R. Criegee and G. Wenner, Liebigs Ann. Chem., 1949, 564, 9-15. 8R. Criegee, Angew. Chem., Int. Ed., 1975, 14, 745–752. 9L. Vereecken, D. R. Glowacki, and M. J. Pilling, Chem. Rev., 2015,115, 4063-4114. 10H. Akimoto, Atmospheric Reaction Chemistry, Springer, Tokyo, 2016, 7, 299-300, DOI: 10.1007/978-4-431-55870-5. 11R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, Atmos, Chem. Phys., 2006, 6, 3625-4055. 12J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian, J. Phys. Chem. A, 2001, 105, 1554-1560. 13J. H. Kroll, S. R. Sahay, J. G. Anderson, K. L. Demerjian, and N. M. Donahue, J. Phys. Chem. A, 2001, 105, 4446-4457. 14R. L. Mauldin, T. Berndt, M. Sipilä, P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V.-M. Kerminen1and M. Kulmala1, Nature, 2012, 488, 193-197. 15Craig A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival, and D. E. Shallcross, J. Am. Chem. Soc., 2008, 130, 11883-11885. 16O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science, 2012, 335, 204. 17W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee, J. J.-M. Lin, J. Chem. Phys., 2014, 141, 104308. 18C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, Science, 2013, 340, 177. 19R. Chhantyal-Pun, O. Welz, J. D. Savee, A. J. Eskola, E. P. E. Lee, L. Blacker, H. R. Hill, M. Aschcroft, M. A. H. Khan, G. C. Lloyd-Jones, L. Evans, B. Rotavera, H. Huang, D. L. Osborn, D. K. W. Mok, J. M. Dyke, D. E. Shallcross, C. J. Percival, A. J. Orr-Ewing, and C. A. Taatjes, J. Phys. Chem. A, 2017,121, 4-15. 20L. Sheps, J. Phys. Chem. Lett., 2013, 4, 4201. 21L. Sheps, A. M. Scully, and K. Au, Phys. Chem. Chem. Phys., 2014, 16, 26701-26706. 22W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys., 2014, 16, 10438. 23M. C. Smith, W.-L. Ting, C.-H. Chang, K. Takahashi, K. A. Boering, and J. J.-M. Lin, J. Chem. Phys., 2014, 141, 074302. 24Y.-P. Chang, C.-H. Chang, K. Takahashi, and J. J.-M. Lin, Chem. Phys. Lett., 2016, 653, 155-160. 25J. M. Beams, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc., 2012, 134, 20045. 26J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys., 2013, 138, 244307. 27F. Liu, J. M. Beams, A. M. Green, M. I. Lester, J. Phys. Chem. A, 2014, 118, 2298-2306. 28M. F. Vansco, H. Li, and M. I. Lester, J. Chem. Phys., 2017, 147, 013907. 29Y.-T. Su,Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science, 2013, 340, 174. 30Y.-H. Huang, J. Li, H. Guo, and Y.-P. Lee, J. Chem. Phys., 2015, 142, 214301. 31H.-Y. Lin, Y.-H. Huang, X. Wang, J. M. Bowman, Y. Nishimura, H. A. Witek, and Y.-P. Lee, Nat. Commun., 2015, 6, 7012. 32Y.-Y. Wang, C.-Y- Chung, and Y.-P. Lee, J. Chem. Phys., 2016, 145, 154303. 33F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science, 2014, 345, 1596. 34Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2016, 144, 061102. 35Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2016, 145, 234308. 36Y. Fang, F. Liu, S. J. Klippenstein, and M. I. Lester, J. Chem. Phys., 2016, 145, 044312. 37Y. Fang, V. P. Barber, S. J. Klippenstein, A. B. McCoy, and M. I. Lester, J. Chem. Phys., 2017, 146, 134307. 38M. Nakajima and Y. Endo, J. Chem. Phys., 2013, 139, 101103. 39M. Nakajima and Y. Endo, J. Chem. Phys., 2014, 140, 011101. 40M. Nakajima, Q. Yue, and Y. Endo, J. Mol. Spectrosc., 2015, 310, 109. 41M. Nakajima, and Y. Endo, J. Chem. Phys., 2016, 145, 244307. 42M. C. Smith, W. Chao, K. Takahashi, K. A. Boering, and J. J. Lin, J. Phys. Chem. A, 2016,120, 4789–4798. 43R. Chhantyal-Pun, A. Davey, D. E. Shallcross, C. J. Percivalb and A. J. Orr-Ewing, Phys. Chem. Chem. Phys., 2015, 17, 3617-3626. 44W. Chao, J.-T. Hsieh, C.-H. Chang, and J. J.-M. Lin, Science, 2015, 347, 751-754. 45M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering, and J. J.-M. Lin, J. Phys. Chem. Lett., 2015, 6, 2708-2713. 46L.-C. Lin, H.-T. Chang, C.-H. Chang, W. Chao, M. C. Smith, C.-H. Chang, J. J.-M. Lin, and K. Takahashi, Phys. Chem. Chem. Phys., 2016, 18, 4557-4568. 47L.-C. Lin, W. Chao, C.-H. Chang, K. Takahashi, and J. J.-M. Lin, Phys. Chem. Chem. Phys., 2016, 18, 28189-28197. 48H.-L. Huang, W. Chao, and J. J.-M. Lin, PNAS, 2015,112, 10857-10862. 49T. R. Lewis, M. A. Blitz, D. E. Heard, and P. W. Seakins, Phys. Chem. Chem. Phys., 2014, 17, 4859-4863. 50C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok,and D. E. Shallcrossd and C. J. Percival, Phys. Chem. Chem. Phys., 2012, 14, 10391–10400. 51O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. M. Booth, P. Xiao, M. A. H. Khan, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Angew. Chem. Int. Ed., 2014, 53, 4547-4550. 52E. S. Foreman, K. M. Kapnas, and C. Murray, Angew. Chem. Int. Ed., 2016, 55, 10419-10422. 53Z.J. Buras, R. M. I. Elsamra, A. Jalan, J. E. Middaugh, and W. H. Green, J. Phys. Chem. A, 2014,118, 1997-2006. 54Z. C. J. Decker, K. Au, L. Vereecken, and L. Sheps, Phys. Chem. Chem. Phys., 2017, 19, 8541-8551. 55Z. J. Buras, R. M. I. Elsamra, and W. H. Green, J. Phys. Chem. Lett., 2014, 5, 2224−2228 56K. T. Kuwata, L. C. Valin, and A. D. Converse, J. Phys. Chem. A, 2005, 109, 10710-10725. 57J. D. Fenske, A. S. Hasson, A. W. Ho, and S. E. Paulson, J. Phys. Chem. A, 2000, 104, 9921-9932 58NIST Chemical Kinetics Database, http://kinetics.nist.gov, (accessed May 2017). 59N. M. Dohanue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys., 2011, 13, 10848-10857. 60J. Li, Q. Ying, B. Yi, P. Yang, Atmos. Environ., 2013, 79, 442-447. 61C. J. Percival, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, D. O. Topping, D. Lowe, S. R. Utembe, A. Bacak, G. McFiggans, M. C. Cooke, P. Xiao, A. T. Archibald, M. E. Jenkin, R. G. Derwent, I. Riipinen, D. W. K. Mok, E. P. F. Lee, J. M. Dyke, C. A. Taatjes and D. E. Shallcross, Faraday Discuss., 2013, 165, 45. 62B. Ruscic, J. Phys. Chem. A, 2013, 117, 11940-11953. 63A. Pross, S. Sternhell, Aust. J. Chem., 1970, 23(5), 989-1003. 64The MPI-Mainz UV/Vis Spectral Atlas of Gaseous Molecules of Atmospheric Interest, http://satellite.mpic.de/spectral_atlas, (accessed May 2017) 65S. Aloisio, and J. S. Francisco, Acc. Chem. Res., 2000, 33, 825-830. 66E. Vöhringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel1, Science, 2007, 315 (5811), 497-501 67R. Atskinson, A. C. Lloyd, J. Phys. Chem. Ref. Data, 1984, 13, 315-444. 68P. Neeb, F. Sauer, O. Horie,and G. K. Moortgat, Atmos. Environ., 1997, 31(10), 1417-1423. 69A. S. Hasson, G. Orzechowska, and S. E. Paulson, J. Geophys. Res.,2001, 106, 34131-34142. 70E. G. Jean, and D. Grosjean, Environ. Sci. Technol. 1996, 30, 2036-2044. 71A. R. Rickard, D. Johnson, C. D. McGill, and G. Marston, J. Phys. Chem. A, 1999, 103, 7656-7664. 72K. H. Becker, J. Bechara, K. J. Brockmann, Atmos. Environ., 1993, 27A, 1993, 57-61. 73M. Suto, E. R. Manzanares, L. C. Lee, Environ. Sci. Technol., 1985, 19, 815-820. 74T. Berndt, T. Jokinen, M. Sipilä, R. L. Mauldin, H. Herrmann, F. Stratmann, H. Junninen, M. and Kulmala, Atmos. Enviro., 2014, 89, 603-612. 75T. Berndt, J. Voigtländer, F. Stratmann, H. Junninen, R. L. Mauldin , M. Sipilä, M. Kulmala, H. Herrmann, Phys. Chem. Chem. Phys., 2014, 16, 19130-19136. 76D. Stone, M. Blitz, L. Daubney, N. M. Howes, and P. Seakins, Phys. Chem. Chem. Phys., 2014, 16, 1139-1149. 77B. Ouyang, M. W. McLeod, R. L. Jones, and W. J. Bloss, Phys. Chem. Chem. Phys., 2013, 15, 17070-17075. 78A. B. Ryzhkov, P. A. Ariya, Phys. Chem. Chem. Phys., 2004, 6, 5042-5050. 79A. B. Ryzhkov, P. A. Ariya, Chem. Phys. Lett., 2006, 419, 479-485. 80T. Berndt, R. Kaethner, J. Voigtlander, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipila, M. Kulmala, M. Olzmann, Phys. Chem. Chem. Phys., 2016, 17, 19862-19873. 81D. L. Osborn, C. A. Taatjes, Int. Rev. Phys. Chem., 2015, 34, 309-360 82M. Nakajima, and Y. Endo, J. Chem. Phys., 2014, 140, 134302. 83E. R. Lovejoy, D. R. Hanson, and L. G. Huey, J. Phys. Chem., 1996, 100, 19911-19916. 84T. Loerting, and K. R. Kiedl, PNAS, 2000, 97, 8874-8878 85M. Kumar, A. Sinha, and J. S. Francisco, Acc. Chem. Res., 2016, 49, 877-883. 86C. Zhu, M. Kumar, J. Zhong, L. Li, J. S. Francisco, and X. C. Zeng, J. Am. Chem. Soc., 2016, 138, 11164-11169. 87M. Nakajima, and Y. Endo, J. Chem. Phys., 2015, 143, 164307. 88R. Crehuet, J. M. Anglada, and J. M. Bofill, Chem. Eur. J., 2001, 7(10), 2227-2235. 89R. L. Caravan, M. A. H. Khan, B. Rotavera, E. Papajak, I. O. Antonov, M.-W. Chen, K. Au, W. Chao, D. L. Osborn, J. J.-M. Lin, C. J. Percival, D. E. Shallcross, C. A. Taatjesa, Faraday Discuss., 2017, submitted. 90L.-C. Lin, K. Takahashi, J. Chin. Chem. Soc., 2016, 63, 472-479. 91T. Hoffmann, J. R. Odum, F. Bpwman, D. Collins, D. Klockow, R. C. Flagan and J. H. Seinfeld,J. Atmos. Chem., 1997, 26, 189–222. 92N. M. Dohanue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys., 2011, 13, 10848-10857. 93G. T. Drozd, J. Kroll, and N. M. Donahue, J. Phys. Chem. A 2011, 115, 161–166. 94K. T. Kuwata, M. R. Hermes, M. J. Carlson, and C. K. Zogg, J. Phys. Chem. A, 2010, 114, 9192. 95C. Yin, and K. Takahash, Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/c7cp01091e. 96J. J.-M. Lin, W. Chao. Chem. Soc. Rev., 2017, submitted. 97T. Kurtén, and N. M. Donahue, J. Phys. Chem. A, 2012, 116, 6823−6830. 98C. C. Womack, M.-A. Martin-Drumel, G. G. Brown, R. W. Field and M. C. McCarthy, Sci. Adv., 2015, 1, e1400105. 99L. Vereecken, H. Harder and A. Novelli, Phys. Chem. Chem. Phys., 2014, 16, 4039-4049. 100T.J. Blasing, Technical Report. US Carbon Dioxide Information Analysis Center, Oak Ridge, TN., 2011., DOI: 10.3334/CDIAC/atg.032. 101H. G. Kjaergaard, T. Kurtén, L. B. Nielsen, S. Jørgensen, and P. O. Wennberg, J. Phys. Chem. Lett., 2013, 4, 2525-2529.
|