跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉威新
研究生(外文):Wei-Xin Liu
論文名稱:以化學氣相沉積法合成二硫化鉬薄膜並應用於可撓式壓電感測元件
論文名稱(外文):Growth of Crystalline MoS2 by Chemical Vapor Deposition for a Flexible Piezoelectric Device Application
指導教授:陳逸聰陳逸聰引用關係
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:65
中文關鍵詞:二硫化鉬化學氣相沉積拉曼光譜儀光致螢光光譜壓電效應可撓式元件彎折半徑
外文關鍵詞:molybdenum disulfidechemical vapor depositionRaman spectroscopyphotoluminescencepiezoelectricityflexible transistorbending radius
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二硫化鉬與石墨烯同為研究熱門的二維材料,但在單層結構上卻有著截然不同的性質,在量子侷限效應下,單層二硫化鉬具有1.8電子伏特的直接能隙。此特性除了能展現良好的發光性質,在場效電晶體之應用上則提供了高開關電流比,基於這些特性,高品質二硫化鉬的合成受到了關注及重視。
以機械剝離法製備薄層二硫化鉬難以控制尺寸、層數,也難以大量產出。利用化學氣相沉積的合成方式,則能夠生產大面積單層二硫化鉬。我們以三氧化鉬(MoO3)及硫粉作為前驅物,成功地以化學氣相沉積方式合成二硫化鉬於矽基板上,並使用光學顯微鏡、拉曼光譜、光致螢光光譜、原子力顯微鏡及高解析穿透式電子顯微鏡進行鑑定。
隨著科技進步,人們對於高性能之電子產品的需求日益提高,如可撓曲、輕薄化之電子基板等,也因此具壓電、壓阻、高機械強度的二維半導體材料成了熱門研究主題。本研究以二硫化鉬在聚二甲基矽氧烷(polydimethylsiloxane, PDMS)薄膜上製成可撓式電子元件,並架設一個壓電感測平台,以量測二硫化鉬電晶體上下彎折時,拉伸與擠壓產生的電流的起伏變化。未來可以進一步應用在可撓曲的電子產品,人體脈動感測,或是其他新穎二維材料壓電鑑定上。
Molybdenum sulfide (MoS2) is one of the most common transition metal dichalcogenides (TMDCs), which have been studied for catalytic and electronic applications. Monolayer MoS2 is a two-dimensional material with a direct bandgap of 1.8 eV. The monolayer MoS2-based field-effect transistors have high on/off ratio and are suitable for fabrication of advanced high-performance electronics. Therefore, high-quality monolayer MoS2 holds great potential for future electronic applications.
Using a mechanical exfoliation method to prepare MoS2 is difficult to control the number of layers and the size of flakes. However, a chemical vapor deposition (CVD) method can be used to synthesize high-quality monolayer MoS2 with lower cost and mass production. In this study, we successfully used molybdenum trioxide and sulfur powder as precursors to synthesize MoS2 films on a silicon wafer with the CVD method. Subsequently, we used an optical microscope (OM), Raman spectroscopy, photoluminescence (PL), atomic-force microscopy (AFM), and high-resolution transmission electron microscope (HRTEM) to characterize the as-synthesized MoS2 films.
In future, smart electronic systems are expected to afford arbitrary form factors, robust elasticity, high-speed charge transport, and low-power consumption. With these characteristics, 2D layered semiconductors with high mechanical and piezo-trionic properties have attracted much attention in research. In this work, we fabricated a device with the CVD-grown MoS2 on a bendable, flexible PDMS thin film to examine the change of the electric transport in the device as the film was subject to tensile and compressive strains. With the capability of detecting these strain changes, this MoS2-based device can be employed as a vessel pulsation sensor. Accordingly, other novel 2D materials-based piezotronic devices can be characterized by the same way as this thesis demonstrated.
口試委員會審定書 #
中文摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
簡稱用語對照表 xiv
Chapter 1 前言 1
Chapter 2 文獻回顧 2
2.1 二硫化鉬簡介 2
2.1.1 二維層狀材料 2
2.1.2 過渡金屬硫族化物 3
2.1.3 二硫化鉬之結構與特性 4
2.2 二硫化鉬之製備 7
2.2.1 機械剝離法 8
2.2.2 液相剝離法 8
2.2.3 物理氣相沉積法 9
2.2.4 化學氣相沉積法 9
2.3 化學氣相沉積法製備二硫化鉬 10
2.3.1 二階段反應 10
2.3.2 一階段反應 11
2.3.3 三角晶域的成長機制 12
2.3.4 容器高度的影響 14
2.4 二硫化鉬薄膜檢測方法 15
2.4.1 光學散射 15
2.4.2 拉曼光譜(Raman spectroscopy) 16
2.4.3 光致螢光光譜(photoluminescence, PL) 19
2.4.4 原子力顯微鏡(atomic force microscope, AFM) 20
2.4.5 電子顯微鏡 21
2.5 場效電晶體(field effect transistor, FET) 23
2.6 二硫化鉬壓電效應 25
Chapter 3 材料合成與實驗方法 30
3.1 以化學氣相沉積合成二硫化鉬 30
3.1.1 基板前處理 30
3.1.2 化學氣相沉積系統架構 30
3.2 檢測儀器 32
3.2.1 光學金相顯微鏡 32
3.2.2 共軛焦拉曼顯微鏡 32
3.2.3 電子顯微鏡 33
3.3 可撓式電晶體元件製作 34
3.3.1 可撓式電晶體的製備 34
3.3.2 聚合物支撐層轉置法 35
3.3.3 熱蒸鍍金屬電極 36
3.4 電性量測系統 37
3.4.1 場效電晶體量測 37
3.4.2 應力感測系統 37
Chapter 4 結果與討論 40
4.1 二硫化鉬的合成 40
4.1.1 成長基板的位置選擇 40
4.1.2 攜帶氣體流量之影響 41
4.1.3 前驅物MoO3使用量之影響 42
4.2 二硫化鉬的鑑定 43
4.2.1 Raman與PL光譜鑑定 43
4.2.2 MoS2薄膜厚度鑑定 46
4.2.3 MoS2薄膜晶形鑑定 47
4.3 場效電晶體電性量測 50
4.4 應力感測 52
Chapter 5 結論 58
參考文獻 59
參考文獻
(1) Duerloo, K. N.; Ong, M. T.; Reed, E. J. Intrinsic Piezoelectricity in 2D Materials. J. Phys. Chem. Lett. 2012, 3 (19), 2871–2876.
(2) Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nat. Nanotechnol. 2014, 9 (10), 768–779.
(3) Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano 2015, 9 (10), 9451–9469.
(4) Akinwande, D.; Petrone, N.; Hone, J. Two-Dimensional Flexible Nanoelectronics. Nat. Commun. 2014, 5, 5678.
(5) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105 (13), 2–5.
(6) Zhao, L.; Levendorf, M. P.; Goncher, S.; Schiros, T.; Pálová, L.; Zabet-khosousi, A. Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene Supporting Information. Nano Lett. 2013, 13, 4659–4665.
(7) Zhao, L.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou, H.; Gutierrez, C.; Chockalingam, S. P.; Arguello, C. J.; Palova, L.; et al. Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science 2011, 333 (6045), 999–1003.
(8) Butler, S.; Hollen, S.; Cao, L.; Cui, Y.; Gupta, J.; Gutiérrez, H.; Heinz, T.; Hong, S.; Huang, J.; Ismach, A.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials beyond Graphene. ACS Nano 2013, 7 (4), 2898–2926.
(9) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5 (4), 263–275.
(10) Song, I.; Park, C.; Choi, H. C. Synthesis and Properties of Molybdenum Disulphide: From Bulk to Atomic Layers. RSC Adv. 2015, 5 (10), 7495–7514.
(11) Kuc, A. Low-Dimensional Transition-Metal Dichalcogenides. Chem. Model. 2014, 1–29.
(12) Kuc, A.; Heine, T. The Electronic Structure Calculations of Two-Dimensional Transition-Metal Dichalcogenides in the Presence of External Electric and Magnetic Fields. Chem. Soc. Rev. 2015, 44 (9), 2603–2614.
(13) Xiao, D.; Liu, G.Bin; Feng, W.; Xu, X.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108 (19).
(14) Liu, G.-B.; Xiao, D.; Yao, Y.; Xu, X.; Yao, W. Electronic Structures and Theoretical Modelling of Two-Dimensional Group-VIB Transition Metal Dichalcogenides. Chem. Soc. Rev. 2015, 44 (9), 2643–2663.
(15) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10 (4), 1271–1275.
(16) Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley Polarization in MoS2 Monolayers by Optical Pumping. Nat. Nanotechnol. 2012, 7 (8), 490–493.
(17) Qi, J.; Li, X.; Niu, Q.; Feng, J. Giant and Tunable Valley Degeneracy Splitting in MoTe2. Phys. Rev. B - Condens. Matter Mater. Phys. 2015, 92 (12), 1–8.
(18) Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N. Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds. ACS Nano 2012, 6 (4), 3468–3480.
(19) Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331 (6017), 568–571.
(20) Diaz, H. C.; Chaghi, R.; Ma, Y.; Batzill, M. Molecular Beam Epitaxy of the Van Der Waals Heterostructure MoTe2 on MoS2 Phase, Thermal, and Chemical Stability. 2D Mater. 2015, 2 (4), 1–5.
(21) Yue, R.; Barton, A.; Zhu, H.; Azcatl, A.; Pena, L.; Wang, J.; Peng, X.; Lu, N.; Cheng, L.; Addou, R.; et al. HfSe2 Thin Films: 2D Transition Metal Dichalcogenides Grown by Molecular Beam Epitaxy. ACS Nano 2015, 9 (1), 474–480.
(22) Loh, T. A. J.; Chua, D. H. C. Growth Mechanism of Pulsed Laser Fabricated Few-Layer MoS2 on Metal Substrates. ACS Appl. Mater. Interfaces 2014, 6 (18), 15966–15971.
(23) Serna, M. I.; Yoo, S. H.; Moreno, S.; Xi, Y.; Oviedo, J. P.; Choi, H.; Alshareef, H. N.; Kim, M. J.; Minary-Jolandan, M.; Quevedo-Lopez, M. A. Large-Area Deposition of MoS2 by Pulsed Laser Deposition with in Situ Thickness Control. ACS Nano 2016, 10 (6), 6054–6061.
(24) Wang, X.; Gong, Y.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E.; et al. Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2. ACS Nano 2014, 8 (5), 5125–5131.
(25) Liu, B.; Fathi, M.; Chen, L.; Abbas, A.; Zhou, C. Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth. ACS Nano 2015, 9 (6), 6119–6127.
(26) Keyshar, K.; Gong, Y.; Ye, G.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y.; Machado, L.; Kabbani, M.; et al. Chemical Vapor Deposition of Monolayer Rhenium Disulfide. Adv. Mater. 2015, 27 (31), 4640–4648.
(27) Liu, K.; Zhang, W.; Lee, Y.; Lin, Y. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett. 2012, 2, 1–9.
(28) Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small 2012, 8 (7), 966–971.
(29) Lin, Y.-C.; Zhang, W.; Huang, J.-K.; Liu, K.-K.; Lee, Y.-H.; Liang, C.-T.; Chu, C.-W.; Li, L.-J. Wafer-Scale MoS2 Thin Layers Prepared by MoO3 Sulfurization. Nanoscale 2012, 4 (20), 6637.
(30) Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L. J.; et al. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv Mater 2012, 24 (17), 2320–2325.
(31) Yu, Y.; Li, C.; Liu, Y.; Su, L.; Zhang, Y.; Cao, L. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-Layer MoS2 Films. Sci. Rep. 2013, 3, 1–6.
(32) Zafar, A.; Nan, H.; Zafar, Z.; Wu, Z.; Jiang, J.; You, Y.; Ni, Z. Probing the Intrinsic Optical Quality of CVD Grown MoS2. Nano Res. 2016, 2, 1–10.
(33) Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chem. Mater. 2014, 26, 6371–6379.
(34) Lin, Z.; Zhao, Y.; Zhou, C.; Zhong, R.; Wang, X.; Tsang, Y. H.; Chai, Y. Controllable Growth of Large–Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film. Sci. Rep. 2016, 5 (1), 18596.
(35) Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making Graphene Visible. Appl. Phys. Lett. 2007, 91 (6).
(36) Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X.; About, M.; Article, T. Reflection and Contrast Spectroscopy Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett. 2007, 7 (9), 2758–2763.
(37) Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of Dichalcogenide Nanolayers. Nanotechnology 2011, 22 (12), 125706.
(38) Lee, C.; Yan, H.; Brus, L.; Heinz, T.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single-and Few-Layer MoS2. ACS Nano 2010, 4 (5), 2695–2700.
(39) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22 (7), 1385–1390.
(40) Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-Scattering Measurements and First-Principles Calculations of Strain-Induced Phonon Shifts in Monolayer MoS2. Phys. Rev. B - Condens. Matter Mater. Phys. 2013, 87 (8), 1–5.
(41) Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M,; Kloc, C.; Gordan, O.; Zahn, D. R. T.; Michaelis de Vasconcellos, S.; Bratschitsch, R. Photoluminescence Emission and Raman Response of Monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21 (4), 4908–4916.
(42) Hui, Y. Y.; Liu, X.; Jie, W.; Chan, N. Y.; Hao, J.; Hsu, Y.Te; Li, L. J.; Guo, W.; Lau, S. P. Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS2 Sheet. ACS Nano 2013, 7 (8), 7126–7131.
(43) Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T.; et al. Strain Tuning of Optical Emission Energy and Polarization in Monolayer and Bilayer MoS2. Phys. Rev. B - Condens. Matter Mater. Phys. 2013, 88 (12), 1–5.
(44) Steffens, C.; Manzoli, A.; Oliveira, J. E.; Leite, F. L.; Correa, D. S.; Herrmann, P. S. P. Bio-Inspired Sensor for Insect Pheromone Analysis Based on Polyaniline Functionalized AFM Cantilever Sensor. Sensors Actuators, B Chem. 2014, 191, 643–649.
(45) Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.; Shi, G.; Lei, S.; Yakobson, B. I.; Idrobo, J.-C.; Ajayan, P. M.; Lou, J. Vapour Phase Growth and Grain Boundary Structure of Molybdenum Disulphide Atomic Layers. Nat. Mater. 2013, 12 (8), 754–759.
(46) Li, H.-M.; Lee, D.-Y.; Choi, M. S.; Qu, D.; Liu, X.; Ra, C.-H.; Yoo, W. J. Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors. Sci. Rep. 2015, 4 (1), 4041.
(47) Zhang, Z.; Yates, J. T. Band Bending in Semiconductor Chemical and Physical Consequences at Surfaces and Interfaces.pdf. Chem. Rev. 2012, 112, 5520–5551.
(48) Kang, J.; Liu, W.; Banerjee, K. High-Performance MoS2 Transistors with Low-Resistance Molybdenum Contacts. Appl. Phys. Lett. 2014, 104 (9), 2–7.
(49) Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, T. F.; et al. Piezoelectricity of Single-Atomic-Layer MoS2 for Energy Conversion and Piezotronics. Nature 2014, 514 (7523), 470–474.
(50) Qi, J.; Lan, Y.-W.; Stieg, A. Z.; Chen, J.-H.; Zhong, Y.-L.; Li, L.-J.; Chen, C.-D.; Zhang, Y.; Wang, K. L. Piezoelectric Effect in Chemical Vapour Deposition-Grown Atomic-Monolayer Triangular Molybdenum Disulfide Piezotronics. Nat. Commun. 2015, 6 (May), 7430.
(51) Lee, J.; Lee, N.; Lansac, Y.; Jang, Y. H. Charge Inhomogeneity of Graphene on SiO2: Dispersion-Corrected Density Functional Theory Study on the Effect of Reactive Surface Sites. RSC Adv. 2014, 4 (70), 37236.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊