跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/09 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱士芸
研究生(外文):Shih-Yun Chiu
論文名稱:循環電化學應用於高選擇性之二氧化碳還原反應
論文名稱(外文):High selectivity of CO2 reduction through electrochemical redox shuttle
指導教授:陳浩銘陳浩銘引用關係
指導教授(外文):Hao-Ming Chen
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:112
中文關鍵詞:二氧化碳還原選擇性氧化銅循環電化學
外文關鍵詞:CO2 reductionselectivitycopper oxideelectrochemical redox shuttle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來二氧化碳排放量急遽上升,造成溫室效應且對地球產生危害,因此如何有效率的轉換二氧化碳至能源原料為十分重要的議題。而根據論文回顧,電化學法已經被證實為一有效率還原二氧化碳之方式,然而此領域最大的問題為產物選擇性低,必須耗費能源進行純化。此時催化劑的選擇便十分重要,本研究選用可以在較低電位時產生乙醇的氧化銅為催化劑,並且合成出中空結構而增加反應表面積,此外,為了提升此催化劑的選擇率,本研究創新將循環電化學方法應用於二氧化碳還原反應,利用此獨特的電化學方法來穩定氧化態之中空奈米氧化銅催化劑,並且藉由穩定催化材料的方式,在低電壓時能夠高效率的轉換二氧化碳至乙醇。
透過氣相層析–質譜法聯用量測,可得知還原主要產物為乙醇,然而氫氣為其次要的副產物。此研究中發現,相較定電壓之量測,循環電化學法可更有效率的抑制氫氣產生,提高產物的選擇性,因此本研究更進一步利用臨場X光繞射以及臨場X光吸收技術確認循環電化學法對於催化劑之影響,發現相較於一般定電壓法,使用循環電化學法時,催化劑的氧化價數以及其組成可以維持穩定,不會還原成零價銅,由此可證明循環電化學技術不僅能夠幫助穩定催化劑,還能藉此提高其產物選擇性。最後,本篇研究利用量測結果,推論氧化銅催化劑之所以可以在較低電位下得到高選擇性的產物乙醇,是因為氧化銅上的氧參與催化反應,使得乙醇的形成更加容易。
本研究預期此循環式電化學方式可以運用在各種不同的氧化材料上,幫助未來二氧化碳還原之研究,提高其產物選擇性。
The amount of CO2 emissions has increased dramatically in the past few decades. Finding a method which can effectively reduce CO2 to fuel can be a promising solution to this huge emission of CO2. Nowadays, electrochemistry has been proven to be a powerful way to reduce CO2. However, the selectivity of CO2 reduction products is low. Extra energy is needed to purify different products. Therefore, choosing the suitable catalyst for CO2 reduction is the priority in this field. In this work, copper oxide (CuOx) was used as our catalyst due to its high production of ethanol at low potential. Along with the morphology of the cage, the active surface area of CO2 reduction increases dramatically. Then, we came up with an electrochemical redox shuttle method to stabilize the oxidation state of our CuOx material. By using this method, high conversion of CO2 into ethanol at low potential was achieved.
With gas chromatography–mass spectrometry analysis, ethanol is the major product in liquid phase, whereas hydrogen is the byproduct. This study shows that hydrogen evolution decreases dramatically when applying the electrochemical redox shuttle method instead of the constant potential method. In addition, the composition of CuOx material was confirmed by in situ XANES and in situ X–ray diffraction measurement. This information proves that the electrochemical redox shuttle method not only stabilizes the catalyst not to form pure copper, but also improves the selectivity of ethanol. Thus, we predict that oxygen on catalyst plays an important role on CO2 reduction, which allows ethanol formation at low potential.
In conclusion, we provided a novel method to prevent the material itself from being reduced and thus maintain its performance, which could lead to potential applications of other oxidative catalysts.
目錄 i
圖目錄 iv
表目錄 viii
第一章 緒論 1
1.1 奈米材料 1
1.1.1 小尺寸效應 1
1.1.2 表面效應 2
1.1.3 量子尺寸效應 2
1.1.4 奈米材料於化學催化應用 3
1.1.5 奈米材料製備方法 4
1.1.6 界面活性劑對於奈米材料之作用 7
1.2 二氧化碳還原反應 9
1.2.1 有機法還原二氧化碳 11
1.2.2 光催法還原二氧化碳 12
1.2.3 電催法還原二氧化碳 13
1.3 研究動機 22
第二章 實驗步驟與儀器分析原理 26
2.1 本研究實驗流程 26
2.2 化學藥品 27
2.3 實驗儀器 28
2.4 中空氧化銅奈米材料製備 28
2.4.1奈米銅立方 (copper cube) 28
2.4.2微米銅三角板 (copper triangle plate) 29
2.4.3中空氧化銅奈米材料 29
2.5 樣品鑑定與分析 30
2.5.1紫外–可見光譜分析儀 (Ultraviolet–visible spectrometer) 30
2.5.2電子顯微鏡 (Electron Microscopy; EM) 32
2.5.3 光學顯微鏡 (Optical Microscope, OM) 37
2.6 電化學分析 38
2.6.1循環伏安法 (Cyclic Voltammetry, CV) 39
2.6.2線性掃描伏安法 (Linear Sweeping Voltammetry, LSV) 40
2.6.3定電位測定法 (amperometric i–t curve, i–t) 41
2.6.4循環式電壓法 (electrochemical redox shuttle) 41
2.7 臨場量測 43
2.7.1同步輻射光源 (Synchrotron Radiation) 44
2.7.2 X光吸收光譜 45
2.7.3 X光繞射 48
2.8 產物鑑定 50
2.8.1氣相層析法–質譜聯用 (Gas chromatography–mass spectrometry ,GC–Mass) 51
第三章 結果與討論 53
3.1 中空氧化銅奈米材料製備 53
3.1.1 奈米銅立方電子顯微鏡分析 53
3.1.2 微米銅三角板電子顯微鏡分析 55
3.1.3 中空氧化銅奈米材料 57
3.1.4 紫外–可見光譜分析 67
3.1.5 X光吸收光譜分析 68
3.2 合成理論分析 69
3.2.1臨場光學顯微鏡分析 69
3.2.2 X光繞射 73
3.2.3 合成機制 74
3.3 催化劑化學價態分析 78
3.3.1 電化學分析 78
3.3.2 臨場X光吸收光譜分析 83
3.4 二氧化碳電催化產物分析 88
3.5 催化劑穩定性分析 93
3.5.1 選定電壓之臨場X光吸收光譜分析 93
3.5.2 臨場X光繞射 99
3.5.3 電子顯微鏡分析 101
3.6 反應機制 102
第四章 結論 105
Reference 106
References
1.馬遠榮, 奈米科技. 商周出版社: 2002.
2.王世敏;許祖勛;傅晶, 奈米材料原理與製備. 五南圖書出版股份有限公司: 2004.
3.尹邦躍, 奈米時代. 五南圖書出版股份有限公司: 2002.
4.Zhu, J.; Fu, Q.; Xue, Y., J. Mater. Sci. 2016, 51, 4462-4469.
5.Lau, K. Y.; Piah, M. A. M., Malaysian Polym. J. 2011, 6, 58-69.
6.Kubo, R., J. Phys. Soc. Jpn. 1962, 17, 975-986.
7.Nalwa, H. S., Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers: 2004.
8.賴炤銘; 李錫隆, Chemistry (The Chinese Chemical Society, Taipei) 2003, 61, 585-597.
9.Köseoḡlu, R. Ö.; Phillips, C. R., Fuel 1988, 67, 1411-1416.
10.Zhu, W.; Zhang, Y.-J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S., J. Am. Chem. Soc. 2014, 136, 16132-16135.
11.閻子峰, 奈米催化技術. 五南圖書出版股份有限公司: 2004.
12.Chiu, H.-T.; Huang, T.-K., Chemistry (The Chinese Chemical Society, Taipei) 2007, 65, 9-16.
13.Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., Adv. Mater. 2003, 15, 353-389.
14.Zhang, Z.; Ying, J. Y.; Dresselhaus, M. S., J. Mater. Res. 1997, 13, 1745-1748.
15.Yen, M.-Y.; Chiu, C.-W.; Hsia, C.-H.; Chen, F.-R.; Kai, J.-J.; Lee, C.-Y.; Chiu, H.-T., Adv. Mater. 2003, 15, 235-237.
16.Choi, H.; Park, S.-H., J. Am. Chem. Soc. 2004, 126, 6248-6249.
17.Wang, J.-H.; Yang, T.-H.; Wu, W.-W.; Chen, L.-J.; Chen, C.-H.; Chu, C.-J., Nanotechnology 2006, 17, 719-722.
18.Wang, Z.; Zhao, Z.; Qiu, J., Carbon 2006, 44, 1845-1869.
19.V., R. K. D.; Kim, I.; Zhong, Z.; Moon, J., Phys. Chem. Chem. Phys. 2014, 16, 22107-22115.
20.Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C., J. Am. Chem. Soc. 2010, 132, 6131-6144.
21.Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E., Nature 2012, 484, 49-54.
22.Jenkinson, D. S.; Adams, D. E.; Wild, A., Nature 1991, 351, 304-306.
23.Follett, R. F.; Shafer, S. R.; Jawson, M. D.; Franzluebbers, A. J., Soil Till. Res. 2005, 83, 159-166.
24.Frolicher, T. L., Nature Clim. Change 2016, 6, 823-824.
25.Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P., Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 1704-1709.
26.Yao, Y.; Hildebrandt, D.; Glasser, D.; Liu, X., Ind. Eng. Chem. Res. 2010, 49, 11061-11066.
27.Daza, Y. A.; Kent, R. A.; Yung, M. M.; Kuhn, J. N., Ind. Eng. Chem. Res. 2014, 53, 5828-5837.
28.Baine, O.; Adamson, G.; Barton, J.; Fitch, J.; Swayampati, D.; Jeskey, H., J. Org. Chem. 1954, 19, 510-514.
29.Tomishige, K.; Sakaihori, T.; Ikeda, Y.; Fujimoto, K., Catal. Lett. 1999, 58, 225-229.
30.Choi, B. G.; Kim, G. H.; Yi, K. B.; Kim, J.-N.; Hong, W. H., Korean J. Chem. Eng. 2012, 29, 478-482.
31.Huang, W.; Zhang, C.; Yin, L.; Xie, K., J. Nat. Gas Chem. 2004, 13, 113-115.
32.Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Angew. Chem. Int. Ed. 2013, 52, 7372-7408.
33.Kuramochi, Y.; Ishitani, O., Inorg. Chem. 2016, 55, 5702-5709.
34.Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O., J. Am. Chem. Soc. 2008, 130, 2023-2031.
35.DiMeglio, J. L.; Rosenthal, J., J. Am. Chem. Soc. 2013, 135, 8798-8801.
36.Köleli, F.; Atilan, T.; Palamut, N.; Gizir, A. M.; Aydin, R.; Hamann, C. H., J. Appl. Electrochem. 2003, 33, 447-450.
37.Kaneco, S.; Iiba, K.; Hiei, N.-h.; Ohta, K.; Mizuno, T.; Suzuki, T., Electrochim. Acta. 1999, 44, 4701-4706.
38.Li, C. W.; Kanan, M. W., J. Am. Chem. Soc. 2012, 134, 7231-7234.
39.Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A., Angew. Chem. Int. Ed. 2011, 123, 10077-10080.
40.Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J., Science 2015, 349, 1208-1213.
41.Hori, Y., Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry, Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds. Springer New York: New York, NY, 2008; pp 89-189.
42.Dietz, L.; Piccinin, S.; Maestri, M.,J. Phys. Chem. C 2015, 119, 4959-4966.
43.Luo, W.; Nie, X.; Janik, M. J.; Asthagiri, A., ACS Catal. 2016, 6, 219-229.
44.Katada, N.; Iseki, Y.; Shichi, A.; Fujita, N.; Ishino, I.; Osaki, K.; Torikai, T.; Niwa, M., Appl. Catal., A 2008, 349, 55-61.
45.Zimmermann, H.; Walzl, R., Ethylene. In Ullmann''s Encyclopedia of Industrial Chemistry, Wiley-Vch Verlag Gmbh & Co. Kgaa: 2000.
46.Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y., J. Am. Chem. Soc. 2015, 137, 14834-14837.
47.Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F., Nat. Commun. 2014, 5, 3242.
48.Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B. A.; Baskin, A.; Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R.; Klie, R. F.; Král, P.; Abiade, J.; Salehi-Khojin, A., Nat. Commun. 2014, 5, 4470.
49.Song, Y.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Wu, Z.; Meyer, H. M.; Chi, M.; Ma, C.; Sumpter, B. G.; Rondinone, A. J., ChemistrySelect 2016, 1, 6055-6061.
50.Appel, A. M., Nature 2014, 508, 460-461.
51.Le, M.; Ren, M.; Zhang, Z.; Sprunger, P. T.; Kurtz, R. L.; Flake, J. C., J. Electrochem. Soc. 2011, 158, E45-E49.
52.Lan, Y.; Gai, C.; Kenis, P. J.; Lu, J., ChemElectroChem 2014, 1, 1577-1582.
53.Mahmoud, M. A.; Saira, F.; El-Sayed, M. A., Nano Lett. 2010, 10, 3764-3769.
54.Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A., Introduction to Spectroscopy. Cengage Learning: 2008.
55.Crabtree, R. H., The organometallic chemistry of the transition metals. John Wiley & Sons: 2009.
56.Bell, D. C.; Erdman, N., Low voltage electron microscopy: principles and applications. John Wiley & Sons: 2012.
57.Williams, D. B.; Carter, C. B., Transmission Electron Microscopy. Springer: 2009.
58.Egerton, R. F., Physical principles of electron microscopy. Springer: 2005.
59.Shindo, D.; Oikawa, T., Energy Dispersive X-ray Spectroscopy. In Analytical Electron Microscopy for Materials Science, Springer Japan: Tokyo, 2002; pp 81-102.
60.Villagrasa, J. P.; Colomer-Farrarons, J.; Miribel, P. L., State of the Art in Biosensors - General Aspects. Rinken, T., Ed. InTech: Rijeka, 2013; p Ch. 10.
61.Mabbott, G. A., J. Chem. Educ. 1983, 60, 697.
62.Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. Wiley New York: 1980; Vol. 2.
63.Brownson, D. A. C.; Banks, C. E., The Handbook of Graphene Electrochemistry. Springer London: London, 2014; pp 23-77.
64.Schnohr, C. S.; Ridgway, M. C., X-Ray Absorption Spectroscopy of Semiconductors. Springer Berlin Heidelberg: 2014.
65.Grunwaldt, J.-D.; Baiker, A., Phys . Chem. Chem. Phys . 2005, 7, 3526-3539.
66.Koningsberger, D. C.; Prins, R., X-ray absorption : principles, applications, techniques of EXAFS, SEXAFS, and XANES. New York : Wiley: 1988.
67.Kowalska, J. K.; Lima, F. A.; Pollock, C. J.; DeBeer, S., Isr. J. Chem. 2016, 56, 803-815.
68.Lee, J.-F., Chemistry (The Chinese Chemical Society, Taipei) 1995, 53, 280-293.
69.Fay, M. J.; Proctor, A.; Hoffmann, D. P.; Hercules, D. M., Anal. Chern 1988, 60, 1225A.
70.林麗娟, 工業材料 1994, 86, 100-109.
71.林麗娟; 鄭信民, 工業材料雜誌 2002, 181, 100-108.
72.Karasek, F. W.; Clement, R. E., Basic gas chromatography-mass spectrometry: principles and techniques. Elsevier: 2012.
73.Gross, J. H., Mass spectrometry: a textbook. Springer Science & Business Media: 2006.
74.Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L.,J. Phys. Chem. C 2014, 118, 9801-9808.
75.Marks, L.; Peng, L., J. Phys.: Condens. Matter 2016, 28, 053001.
76.Usman, M. S.; Ibrahim, N. A.; Shameli, K.; Zainuddin, N.; Yunus, W. M. Z. W., Molecules 2012, 17, 14928-14936.
77.Anderson, B. D.; Tracy, J. B., Nanoscale 2014, 6, 12195-12216.
78.Chen, K.; Xue, D., Phys. Chem. Chem. Phys. 2014, 16, 11168-11172.
79.Koningsberger, D. C.; Ramaker, D. E., Handbook of Heterogeneous Catalysis 2008.
80.Hori, Y.; Murata, A.; Takahashi, R., J. Chem. Soc., Faraday Trans. 1989, 85, 2309-2326.
81.Meyer, B. K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P. J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; Heiliger, C.; Heinemann, M.; sing, J. B.; Krost, A.; Shokovets, S.; Muller, C.; Ronning, C., Phys. Status Solidi B 2012, 249, 1487-1509.
82.Cheng, M.-J.; Clark, E. L.; Pham, H. H.; Bell, A. T.; Head-Gordon, M., ACS Catal. 2016, 6, 7769-7777.
83.Hirunsit, P.; Soodsawang, W.; Limtrakul, J., J. Phys. Chem. C 2015, 119, 8238-8249.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top