(3.237.97.64) 您好!臺灣時間:2021/03/03 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉純青
研究生(外文):Vivien Yeh
論文名稱:精準調控的脂質環境中細菌視紫質之研究
論文名稱(外文):Study of Bacteriorhodopsin in a Controlled Lipid Environment
指導教授:陳振中陳振中引用關係余慈顏
指導教授(外文):Jerry C. C. ChanTsyr-Yan Yu
口試日期:2017-07-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:218
中文關鍵詞:膜蛋白脂質奈米碟細菌視紫質光迴圈動力學可見光瞬態吸收光譜脂質組成成分生物原生膜
外文關鍵詞:Membrane proteinlipid nanodiscbacteriorhodopsinphotocycle kineticstransient absorption spectroscopylipid compositionnative membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
膜蛋白的結構與功能會隨著細胞膜的環境而改變,因此模擬細胞膜環境是膜蛋白研究中相當重要的課題。脂質奈米碟的組成是由兩條平行的膜支架蛋白環狀包住磷脂質的疏水端,以形成穩定的雙層細胞膜結構。將膜蛋白鑲嵌於脂質奈米碟可以模擬原始細胞膜的雙層脂環境,穩定膜蛋白的結構,並使膜蛋白的結構與功能之研究更為容易。利用脂質奈米碟能夠形成精準調控的雙層脂膜的特性,我們證實脂質成分能夠調控膜蛋白的功能。為了觀察不同脂質奈米碟的脂質成分對膜蛋白造成的影響,我們將單體細菌視紫質包入由雙電性與陰電性脂質以不同比例形成的脂質奈米碟中,並利用可見光瞬態吸收光譜來偵測細菌視紫質的光迴圈動力學反應。實驗結果顯示,細菌視脂質的光迴圈速度會隨著脂質奈米碟中帶陰電性親水端的脂質減少而趨緩,光迴圈路徑也有所改變,證實了脂質奈米碟的脂質組成與膜蛋白質子幫浦功能間的關聯性。我們利用光致電流實驗更進一步地發現,脂質不僅影響光迴圈動力學,亦具有幫助質子傳遞的功能,在細菌視紫質質子幫浦的運作中扮演重要的角色。為了探討脂質奈米碟的尺寸對膜蛋白造成的影響,我們透過改變膜支架蛋白的長度來組成不同大小的脂質奈米碟。相較於在界面活性劑微胞環境中,被包入脂質奈米碟的細菌視紫質有明顯不同的光迴圈動力學。但是,細菌視紫質的光迴圈速度隨著奈米碟的尺寸並沒有顯著的改變。這顯示,相較於脂質成分的影響,脂質奈米碟大小對膜蛋白的功能並沒有顯著的影響。

綜合以上結果,我們證實了脂質奈米碟的成分和大小與嵌於其上膜蛋白之功能相關性。我們更進一步地研究能直接將膜蛋白從生物細胞膜上轉移至脂質奈米碟中的方法。利用特別設計的環狀膜支架蛋白,我們將三聚體細菌視紫質與部分脂雙層從古生嗜鹽桿菌的原生紫膜上直接轉移至脂質奈米碟中,在此步驟中無需添加人工合成脂質或脂質萃取物。利用此一方法獲得的原生紫膜奈米碟透過可見光圓二色譜與可見光瞬態吸收光譜證實細菌視紫質可保有原始的形式與功能。原生脂質奈米碟的圓形型態是以未負染高解析透射電子顯微鏡影像觀察而得,而紫膜奈米碟的脂質成分則是經由核磁共振光譜儀來分析。我們成功地製備含有原生脂雙層與膜蛋白的脂質奈米碟,保留了膜蛋白原生的環境而使膜蛋白的研究更接近生物體中的狀態。
The structure and function of membrane protein often shows dependency to the membrane environment. Monodisperse lipid nanodisc has been a useful tool for mimicking membrane environment for the biophysical characterization of membrane proteins. Nanodisc is a high-density lipoprotein with a disk shaped core of lipid molecules, wrapped by two copies of membrane scaffold protein, providing membrane protein a near-native lipid bilayer environment while suitable for spectroscopic studies. By incorporating monomeric bacteriorhodopsin (bR) into nanodisc, we demonstrate how to manually manipulate the function of membrane protein by altering the property of the nanodisc, such as lipid composition and the size of nanodisc. Embedding in nanodisc composed of different ratios of synthetic zwitterionic lipid to negatively charged lipid, the photocycle kinetics of bacteriorhodopsin was found to alter as the lipid composition changed. Full wavelength transient absorption spectroscopy revealed that as the content of PG decreased, the duration of the photocycle of bR increased drastically and the photocycle pathway was altered. Further measurement using transient photocurrent indicated that lipid molecule not only affects the photocycle kinetics but also plays a role in the release of proton from the protein to the bulk solution during proton translocation. To study the effect of the size of nanodisc, E. coli expressed bR was incorporated into nanodisc of two different sizes. The photocycle kinetics of bR embedded in nanodisc was compared to bR in detergent micelle, and was shown to have significant different photocycle kinetics. However, the sizes of nanodisc were found to exhibit no significant effect on the function of bR embedded.

While demonstrating how the synthetic membrane environment can influence the function of membrane protein, we further improved the native environment by using a novel one-step method to incorporate trimeric bR into lipid nanodisc prepared from the native purple membrane of Halobacterium salinarum, without adding any synthetic lipid or lipid extracts. The method was demonstrated to produce homogenous sample with sufficiently high yield suitable for biophysical studies. The trimeric conformation of bR was verified using visible wavelength circular dichroism, and Zernike phase TEM image showed a circular disk like morphology. The lipid composition of the native purple membrane nanodisc was investigated with 31P NMR and liquid chromatography mass spectrometry, where the essential lipids are shown to be maintained. Lastly, the preservation of photocycle activity was confirmed using transient absorption spectroscopy. We demonstrated the feasibility of transferring membrane protein into nanodisc directly from the native membrane, surrounded by native lipid molecules to preserve the biological structure.
Publications i
Acknowledgements ii
Abstract iii
Table of Contents vii
List of Figures xi
List of Tables xxi
Abbreviations xxii
1 Introduction 1
1.1 Membrane Protein 1
1.1.1 Membrane Protein Structures 4
1.1.2 Membrane Protein Characterization 9
1.2 Membrane Mimics 13
1.2.1 Detergent Micelle 15
1.2.2 Amphipols 21
1.2.3 Lipid Bicelle 22
1.2.4 Liposome 23
1.2.5 Styrene-Malic Acid Copolymers 24
1.3 Nanodisc 28
1.4 Bacteriorhodopsin 32
1.4.1 Halobacterium salinarum 34
1.4.2 Haloarcula marismortui 40
1.5 Motivation of Thesis 42
2 Experimental Background 46
2.1 Chromatography Methods 46
2.1.1 Size Exclusion Chromatography 47
2.1.2 Ionic Exchange Chromatography 52
2.2 Circular Dichroism Spectroscopy 55
2.3 Transient Absorption Spectroscopy 59
2.3.1 Principles 59
2.3.2 Experimental Setup 60
2.4 Transient Photocurrent Measurement 63
2.4.1 Principles 63
2.4.2 Experimental Setup 65
2.5 Solution State NMR 66
2.6 Nanodisc Assembly and Optimization 72
2.6.1 MSP Expression and Purification 72
2.6.2 Circularization of cMSP 75
2.6.3 Lipid and MSP Optimization 78
2.7 PM Preparation 80
2.7.1 H. salinarum Culture 80
2.7.2 PM Isolation 81
2.8 HmbRI Preparation 83
2.8.1 Site Directed Mutagenesis 83
2.8.2 HmbRID94N Culture and Purification 84
2.8.3 Isotopic Labeling Expression 87
3 Effect of Lipid Composition of Nanodisc 89
3.1 Introduction 89
3.2 Experimental Details 92
3.2.1 Sample Preparation 92
3.2.1.1 Monomeric bR in Triton X-100 Micelle 92
3.2.1.2 Nanodisc Assembly 93
3.2.2 Sample Characterization 96
3.2.2.1 Size and Assembly 96
3.2.2.2 Surface Charge 97
3.2.2.3 Oligomeric State and Retinal State 97
3.2.2.4 Photocycle Kinetics 98
3.3 Results and Discussion 99
3.3.1 Sizes, Oligomeric State and Surface Charge 99
3.3.2 Steady State Absorption and CD Spectroscopy 105
3.3.3 Time Resolved Difference Spectra 109
3.3.4 Transient Photocurrent Measurements 119
3.4 Conclusion 122
3.5 Acknowledgement 124
4 Effect of Size of Nanodisc 126
4.1 Introduction 126
4.2 Experimental details 130
4.2.1 Sample Preparation 130
4.2.1.1 Preparation of HmbRID94N 130
4.2.1.2 HmbRID94N Detergent Exchange 132
4.2.1.3 Nanodisc Assembly 133
4.2.2 Sample Characterization 134
4.3 Results and Discussion 135
4.3.1 HmbRID94N Purification using Trion X-100 136
4.3.2 HmbRID94N Characterization in Triton X-100 139
4.3.3 HmbRID94N in C7-DHPC 143
4.3.4 HmbRID94N in Nanodisc 145
4.4 Conclusion 154
4.5 Acknowledgement 157
5 Native Membrane Nanodisc 158
5.1 Introduction 158
5.2 Experimental details 161
5.2.1 Sample Preparation 161
5.2.1.1 Preparation of PM 161
5.2.1.2 PMND Assembly 162
5.2.2 Sample Characterization 163
5.3 Results and Discussion 166
5.3.1 PMND Assembly and Optimization 166
5.3.2 PMND Characterization 174
5.4 Conclusion 187
5.5 Acknowledgement 189
6 Conclusions and Outlook 190
7 References 195
8 Appendix 217
(1) Lodish, H.; Berk, A.; Zipursky, S. L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Molecular Cell Biology, 4th ed.; W. H. Freeman, 2000.
(2) Wallin, E.; Heijne, G. V. Genome-Wide Analysis of Integral Membrane Proteins from Eubacterial, Archaean, and Eukaryotic Organisms. Protein Sci. 1998, 7 (4), 1029–1038.
(3) Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E. L. L. Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete genomes1. J. Mol. Biol. 2001, 305 (3), 567–580.
(4) Ahram, M.; Litou, Z. I.; Fang, R.; Al-Tawallbeh, G. Estimation of Membrane Proteins in the Human Proteome. In Silico Biol. 2006, 6 (5), 379–386.
(5) Daley, D. O.; Rapp, M.; Granseth, E.; Melén, K.; Drew, D.; Heijne, G. von. Global Topology Analysis of the Escherichia Coli Inner Membrane Proteome. Science 2005, 308 (5726), 1321–1323.
(6) Kim, H.; Melén, K.; Österberg, M.; Heijne, G. von. A Global Topology Map of the Saccharomyces Cerevisiae Membrane Proteome. Proc. Natl. Acad. Sci. 2006, 103 (30), 11142–11147.
(7) Bakheet, T. M.; Doig, A. J. Properties and Identification of Human Protein Drug Targets. Bioinformatics 2009, 25 (4), 451–457.
(8) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. How Many Drug Targets Are There? Nat. Rev. Drug Discov. 2006, 5 (12), 993–996.
(9) Yıldırım, M. A.; Goh, K.-I.; Cusick, M. E.; Barabási, A.-L.; Vidal, M. Drug—target Network. Nat. Biotechnol. 2007, 25 (10), 1119–1126.
(10) Henderson, R.; Unwin, P. N. T. Three-Dimensional Model of Purple Membrane Obtained by Electron Microscopy. Nature 1975, 257 (5521), 28–32.
(11) Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. Structure of the Protein Subunits in the Photosynthetic Reaction Centre of Rhodopseudomonas Viridis at 3|[angst]| Resolution. Nature 1985, 318 (6047), 618–624.
(12) Michel, H. Three-Dimensional Crystals of a Membrane Protein Complex. J. Mol. Biol. 1982, 158 (3), 567–572.
(13) White, S. H. The Progress of Membrane Protein Structure Determination. Protein Sci. 2004, 13 (7), 1948–1949.
(14) Almén, M. S.; Nordström, K. J.; Fredriksson, R.; Schiöth, H. B. Mapping the Human Membrane Proteome: A Majority of the Human Membrane Proteins Can Be Classified according to Function and Evolutionary Origin. BMC Biol. 2009, 7, 50.
(15) Salom, D.; Palczewski, K. Structural Biology of Membrane Proteins. In Production of Membrane Proteins; Robinson, A. S., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2011; pp 249–273.
(16) Fredriksson, R.; Lagerström, M. C.; Lundin, L.-G.; Schiöth, H. B. The G-Protein-Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic Analysis, Paralogon Groups, and Fingerprints. Mol. Pharmacol. 2003, 63 (6), 1256–1272.
(17) Kobilka, B. K. G Protein Coupled Receptor Structure and Activation. Biochim. Biophys. Acta BBA - Biomembr. 2007, 1768 (4), 794–807.
(18) Okada, T.; Le Trong, I.; Fox, B. A.; Behnke, C. A.; Stenkamp, R. E.; Palczewski, K. X-Ray Diffraction Analysis of Three-Dimensional Crystals of Bovine Rhodopsin Obtained from Mixed Micelles. J. Struct. Biol. 2000, 130 (1), 73–80.
(19) Okada, T.; Sugihara, M.; Bondar, A.-N.; Elstner, M.; Entel, P.; Buss, V. The Retinal Conformation and Its Environment in Rhodopsin in Light of a New 2.2 Å Crystal Structure†. J. Mol. Biol. 2004, 342 (2), 571–583.
(20) White, S. H. Biophysical Dissection of Membrane Proteins. Nature 2009, 459 (7245), 344–346.
(21) Hanson, M. A.; Stevens, R. C. Discovery of New GPCR Biology: One Receptor Structure at a Time. Structure 2009, 17 (1), 8–14.
(22) Bowie, J. U. Helix-Bundle Membrane Protein Fold Templates. Protein Sci. 1999, 8 (12), 2711–2719.
(23) Dutzler, R.; Campbell, E. B.; Cadene, M.; Chait, B. T.; MacKinnon, R. X-Ray Structure of a ClC Chloride Channel at 3.0 |[angst]| Reveals the Molecular Basis of Anion Selectivity. Nature 2002, 415 (6869), 287–294.
(24) Toyoshima, C.; Nomura, H. Structural Changes in the Calcium Pump Accompanying the Dissociation of Calcium. Nature 2002, 418 (6898), 605–611.
(25) Olesen, C.; Sørensen, T. L.-M.; Nielsen, R. C.; Møller, J. V.; Nissen, P. Dephosphorylation of the Calcium Pump Coupled to Counterion Occlusion. Science 2004, 306 (5705), 2251–2255.
(26) Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The Protein Kinase Complement of the Human Genome. Science 2002, 298 (5600), 1912–1934.
(27) Kandalepas, P. C.; Vassar, R. Identification and Biology of β-Secretase: Identification and Biology of β-Secretase. J. Neurochem. 2012, 120, 55–61.
(28) Reiss, K.; Saftig, P. The “A Disintegrin And Metalloprotease” (ADAM) Family of Sheddases: Physiological and Cellular Functions. Semin. Cell Dev. Biol. 2009, 20 (2), 126–137.
(29) Pahl, M. C.; Askinazi, O. L.; Hamilton, C.; Cheng, I.; Cichewicz, K.; Kuhn, J.; Manohar, S.; Deppmann, C. D. Signalling via Single-Pass Transmembrane Proteins. In eLS; John Wiley & Sons, Ltd, 2001.
(30) Zviling, M.; Kochva, U.; Arkin, I. T. How Important Are Transmembrane Helices of Bitopic Membrane Proteins? Biochim. Biophys. Acta BBA - Biomembr. 2007, 1768 (3), 387–392.
(31) Lemmon, M. A.; Treutlein, H. R.; Adams, P. D.; Brünger, A. T.; Engelman, D. M. A Dimerization Motif for Transmembrane α–helices. Nat. Struct. Mol. Biol. 1994, 1 (3), 157–163.
(32) Arkin, I. T. Structural Aspects of Oligomerization Taking Place between the Transmembrane α-Helices of Bitopic Membrane Proteins. Biochim. Biophys. Acta BBA - Biomembr. 2002, 1565 (2), 347–363.
(33) von Heijne, G. Membrane-Protein Topology. Nat. Rev. Mol. Cell Biol. 2006, 7 (12), 909–918.
(34) Kleinschmidt, J. H. Folding and Stability of Monomeric β-Barrel Membrane Proteins. In Protein–Lipid Interactions; Tamm, L. K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2005; pp 27–56.
(35) Pautsch, A.; Schulz, G. E. High-Resolution Structure of the OmpA Membrane Domain. J. Mol. Biol. 2000, 298 (2), 273–282.
(36) Ferguson, A. D.; Hofmann, E.; Coulton, J. W.; Diederichs, K.; Welte, W. Siderophore-Mediated Iron Transport: Crystal Structure of FhuA with Bound Lipopolysaccharide. Science 1998, 282 (5397), 2215–2220.
(37) Snijder, H. J.; Ubarretxena-Belandia, I.; Blaauw, M.; Kalk, K. H.; Verheij, H. M.; Egmond, M. R.; Dekker, N.; Dijkstra, B. W. Structural Evidence for Dimerization-Regulated Activation of an Integral Membrane Phospholipase. Nature 1999, 401 (6754), 717–721.
(38) Cowan, S. W.; Schirmer, T.; Rummel, G.; Steiert, M.; Ghosh, R.; Pauptit, R. A.; Jansonius, J. N.; Rosenbusch, J. P. Crystal Structures Explain Functional Properties of Two E. Coli Porins. Nature 1992, 358 (6389), 727–733.
(39) Forst, D.; Welte, W.; Wacker, T.; Diederichs, K. Structure of the Sucrose-Specific Porin ScrY from Salmonella Typhimurium and Its Complex with Sucrose. Nat. Struct. Mol. Biol. 1998, 5 (1), 37–46.
(40) Goñi, F. M. Non-Permanent Proteins in Membranes: When Proteins Come as Visitors (Review). Mol. Membr. Biol. 2002, 19 (4), 237–245.
(41) Whited, A. M.; Johs, A. The Interactions of Peripheral Membrane Proteins with Biological Membranes. Chem. Phys. Lipids 2015, 192, 51–59.
(42) Murray, D.; Honig, B. Electrostatic Control of the Membrane Targeting of C2 Domains. Mol. Cell 2002, 9 (1), 145–154.
(43) Harel, M.; Aharoni, A.; Gaidukov, L.; Brumshtein, B.; Khersonsky, O.; Meged, R.; Dvir, H.; Ravelli, R. B. G.; McCarthy, A.; Toker, L.; et al. Structure and Evolution of the Serum Paraoxonase Family of Detoxifying and Anti-Atherosclerotic Enzymes. Nat. Struct. Mol. Biol. 2004, 11 (5), 412–419.
(44) Ames, J. B.; Ishima, R.; Tanaka, T.; Gordon, J. I.; Stryer, L.; Ikura, M. Molecular Mechanics of Calcium–myristoyl Switches. Nature 1997, 389 (6647), 198–202.
(45) Cho, W.; Stahelin, R. V. Membrane-Protein Interactions in Cell Signaling and Membrane Trafficking. Annu. Rev. Biophys. Biomol. Struct. 2005, 34 (1), 119–151.
(46) Smith, E. M.; Macdonald, P. J.; Chen, Y.; Mueller, J. D. Quantifying Protein-Protein Interactions of Peripheral Membrane Proteins by Fluorescence Brightness Analysis. Biophys. J. 2014, 107 (1), 66–75.
(47) Newby, Z. E. R.; O’Connell, J. D.; Gruswitz, F.; Hays, F. A.; Harries, W. E. C.; Harwood, I. M.; Ho, J. D.; Lee, J. K.; Savage, D. F.; Miercke, L. J. W.; et al. A General Protocol for the Crystallization of Membrane Proteins for X-Ray Structural Investigation. Nat. Protoc. 2009, 4 (5), 619–637.
(48) Striegel, A. M. Multiple Detection in Size-Exclusion Chromatography of Macromolecules. Anal. Chem. 2005, 77 (5), 104 A – 113 A.
(49) Nury, H.; Manon, F.; Arnou, B.; le Maire, M.; Pebay-Peyroula, E.; Ebel, C. Mitochondrial Bovine ADP/ATP Carrier in Detergent Is Predominantly Monomeric but Also Forms Multimeric Species. Biochemistry (Mosc.) 2008, 47 (47), 12319–12331.
(50) Wei, Y.; Li, H.; Fu, D. Oligomeric State of the Escherichia Coli Metal Transporter YiiP. J. Biol. Chem. 2004, 279 (38), 39251–39259.
(51) Riley, M. L.; Wallace, B. A.; Flitsch, S. L.; Booth, P. J. Slow α Helix Formation during Folding of a Membrane Protein. Biochemistry (Mosc.) 1997, 36 (1), 192–196.
(52) Lórenz-Fonfría, V. A.; Villaverde, J.; Trézéguet, V.; Lauquin, G. J.-M.; Brandolin, G.; Padrós, E. Structural and Functional Implications of the Instability of the ADP/ATP Transporter Purified from Mitochondria as Revealed by FTIR Spectroscopy. Biophys. J. 2003, 85 (1), 255–266.
(53) Pascal, A. A.; Caron, L.; Rousseau, B.; Lapouge, K.; Duval, J.-C.; Robert, B. Resonance Raman Spectroscopy of a Light-Harvesting Protein from the Brown Alga Laminaria Saccharina. Biochemistry (Mosc.) 1998, 37 (8), 2450–2457.
(54) Reyes, N.; Ginter, C.; Boudker, O. Transport Mechanism of a Bacterial Homologue of Glutamate Transporters. Nature 2009, 462 (7275), 880–885.
(55) Junge, F.; Schneider, B.; Reckel, S.; Schwarz, D.; Dötsch, V.; Bernhard, F. Large-Scale Production of Functional Membrane Proteins. Cell. Mol. Life Sci. 2008, 65 (11), 1729–1755.
(56) Privé, G. G. Detergents for the Stabilization and Crystallization of Membrane Proteins. Methods 2007, 41 (4), 388–397.
(57) Carpenter, E. P.; Beis, K.; Cameron, A. D.; Iwata, S. Overcoming the Challenges of Membrane Protein Crystallography. Curr. Opin. Struct. Biol. 2008, 18 (5), 581–586.
(58) Pedersen, B. P.; Buch-Pedersen, M. J.; Preben Morth, J.; Palmgren, M. G.; Nissen, P. Crystal Structure of the Plasma Membrane Proton Pump. Nature 2007, 450 (7172), 1111–1114.
(59) Long, S. B.; Tao, X.; Campbell, E. B.; MacKinnon, R. Atomic Structure of a Voltage-Dependent K+ Channel in a Lipid Membrane-like Environment. Nature 2007, 450 (7168), 376–382.
(60) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H.-J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; et al. High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor. Science 2007, 318 (5854), 1258–1265.
(61) Adrian, M.; Dubochet, J.; Lepault, J.; McDowall, A. W. Cryo-Electron Microscopy of Viruses. Nature 1984, 308 (5954), 32–36.
(62) Mosser, G. Two-Dimensional Crystallogenesis of Transmembrane Proteins. Micron 2001, 32 (5), 517–540.
(63) Luca, S.; Heise, H.; Baldus, M. High-Resolution Solid-State NMR Applied to Polypeptides and Membrane Proteins. Acc. Chem. Res. 2003, 36 (11), 858–865.
(64) Ketchem, R. R.; Hu, W.; Cross, T. A. High-Resolution Conformation of Gramicidin A in a Lipid Bilayer by Solid-State NMR. Science 1993, 261 (5127), 1457–1460.
(65) Andrew, E. R.; Bradbury, A.; Eades, R. G. NMR Spectra from a Crystal Rotated at High Speed. Nat. Lond. 1958, 182, 1659.
(66) Garavito, R. M.; Ferguson-Miller, S. Detergents as Tools in Membrane Biochemistry. J. Biol. Chem. 2001, 276 (35), 32403–32406.
(67) le Maire, M.; Champeil, P.; Møller, J. V. Interaction of Membrane Proteins and Lipids with Solubilizing Detergents. Biochim. Biophys. Acta BBA - Biomembr. 2000, 1508 (1–2), 86–111.
(68) Linke, D. Chapter 34 Detergents: An Overview. In Methods in Enzymology; Deutscher, R. R. B. and M. P., Ed.; Guide to Protein Purification, 2nd Edition; Academic Press, 2009; Vol. 463, pp 603–617.
(69) Lin, S.-H.; Guidotti, G. Chapter 35 Purification of Membrane Proteins. In Methods in Enzymology; Deutscher, R. R. B. and M. P., Ed.; Guide to Protein Purification, 2nd Edition; Academic Press, 2009; Vol. 463, pp 619–629.
(70) Newby, Z. E. R.; O’Connell, J. D.; Gruswitz, F.; Hays, F. A.; Harries, W. E. C.; Harwood, I. M.; Ho, J. D.; Lee, J. K.; Savage, D. F.; Miercke, L. J. W.; et al. A General Protocol for the Crystallization of Membrane Proteins for X-Ray Structural Investigation. Nat. Protoc. 2009, 4 (5), 619–637.
(71) Seddon, A. M.; Curnow, P.; Booth, P. J. Membrane Proteins, Lipids and Detergents: Not Just a Soap Opera. Biochim. Biophys. Acta BBA - Biomembr. 2004, 1666 (1–2), 105–117.
(72) Hunte, C.; Screpanti, E.; Venturi, M.; Rimon, A.; Padan, E.; Michel, H. Structure of a Na+/H+ Antiporter and Insights into Mechanism of Action and Regulation by pH. Nature 2005, 435 (7046), 1197–1202.
(73) Lund, S.; Orlowski, S.; Foresta, B. de; Champeil, P.; Maire, M. le; Møller, J. V. Detergent Structure and Associated Lipid as Determinants in the Stabilization of Solubilized Ca2+-ATPase from Sarcoplasmic Reticulum. J. Biol. Chem. 1989, 264 (9), 4907–4915.
(74) Gutmann, D. A. P.; Mizohata, E.; Newstead, S.; Ferrandon, S.; Henderson, P. J. F.; van Veen, H. W.; Byrne, B. A High-Throughput Method for Membrane Protein Solubility Screening: The Ultracentrifugation Dispersity Sedimentation Assay. Protein Sci. 2007, 16 (7), 1422–1428.
(75) Gautier, A.; Mott, H. R.; Bostock, M. J.; Kirkpatrick, J. P.; Nietlispach, D. Structure Determination of the Seven-Helix Transmembrane Receptor Sensory Rhodopsin II by Solution NMR Spectroscopy. Nat. Struct. Mol. Biol. 2010, 17 (6), 768–774.
(76) Tribet, C.; Audebert, R.; Popot, J.-L. Amphipols: Polymers That Keep Membrane Proteins Soluble in Aqueous Solutions. Proc. Natl. Acad. Sci. 1996, 93 (26), 15047–15050.
(77) Gorzelle, B. M.; Hoffman, A. K.; Keyes, M. H.; Gray, D. N.; Ray, D. G.; Sanders, C. R. Amphipols Can Support the Activity of a Membrane Enzyme. J. Am. Chem. Soc. 2002, 124 (39), 11594–11595.
(78) Mueller, K. Structural Dimorphism of Bile Salt/lecithin Mixed Micelles. A Possible Regulatory Mechanism for Cholesterol Solubility in Bile? X-Ray Structural Analysis. Biochemistry (Mosc.) 1981, 20 (2), 404–414.
(79) Sanders, C. R.; Landis, G. C. Reconstitution of Membrane Proteins into Lipid-Rich Bilayered Mixed Micelles for NMR Studies. Biochemistry (Mosc.) 1995, 34 (12), 4030–4040.
(80) Prosser, R. S.; Evanics, F.; Kitevski, J. L.; Al-Abdul-Wahid, M. S. Current Applications of Bicelles in NMR Studies of Membrane-Associated Amphiphiles and Proteins,. Biochemistry (Mosc.) 2006, 45 (28), 8453–8465.
(81) Johansson, L. C.; Wöhri, A. B.; Katona, G.; Engström, S.; Neutze, R. Membrane Protein Crystallization from Lipidic Phases. Curr. Opin. Struct. Biol. 2009, 19 (4), 372–378.
(82) Loudet, C.; Khemtémourian, L.; Aussenac, F.; Gineste, S.; Achard, M.-F.; Dufourc, E. J. Bicelle Membranes and Their Use for Hydrophobic Peptide Studies by Circular Dichroism and Solid State NMR. Biochim. Biophys. Acta BBA - Gen. Subj. 2005, 1724 (3), 315–323.
(83) van Dam, L.; Karlsson, G.; Edwards, K. Direct Observation and Characterization of DMPC/DHPC Aggregates under Conditions Relevant for Biological Solution NMR. Biochim. Biophys. Acta BBA - Biomembr. 2004, 1664 (2), 241–256.
(84) Lau, T.-L.; Partridge, A. W.; Ginsberg, M. H.; Ulmer, T. S. Structure of the Integrin β3 Transmembrane Segment in Phospholipid Bicelles and Detergent Micelles. Biochemistry (Mosc.) 2008, 47 (13), 4008–4016.
(85) Lindberg, M.; Biverståhl, H.; Gräslund, A.; Mäler, L. Structure and Positioning Comparison of Two Variants of Penetratin in Two Different Membrane Mimicking Systems by NMR. Eur. J. Biochem. 2003, 270 (14), 3055–3063.
(86) Poget, S. F.; Girvin, M. E. Solution NMR of Membrane Proteins in Bilayer Mimics: Small Is Beautiful, but Sometimes Bigger Is Better. Biochim. Biophys. Acta BBA - Biomembr. 2007, 1768 (12), 3098–3106.
(87) Kagawa, Y.; Racker, E. Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation XXV. RECONSTITUTION OF VESICLES CATALYZING 32Pi—ADENOSINE TRIPHOSPHATE EXCHANGE. J. Biol. Chem. 1971, 246 (17), 5477–5487.
(88) Ramos-Franco, J.; Bare, D.; Caenepeel, S.; Nani, A.; Fill, M.; Mignery, G. Single-Channel Function of Recombinant Type 2 Inositol 1,4,5-Trisphosphate Receptor. Biophys. J. 2000, 79 (3), 1388–1399.
(89) Wang, L.; Sigworth, F. J. Structure of the BK Potassium Channel in a Lipid Membrane from Electron Cryomicroscopy. Nature 2009, 461 (7261), 292–295.
(90) Wang, L.; Tonggu, L. Membrane Protein Reconstitution for Functional and Structural Studies. Sci. China Life Sci. 2015, 58 (1), 66–74.
(91) Young, H. S.; Rigaud, J. L.; Lacapère, J. J.; Reddy, L. G.; Stokes, D. L. How to Make Tubular Crystals by Reconstitution of Detergent-Solubilized Ca2(+)-ATPase. Biophys. J. 1997, 72 (6), 2545–2558.
(92) Tonge, S. R.; Tighe, B. J. Responsive Hydrophobically Associating Polymers: A Review of Structure and Properties. Adv. Drug Deliv. Rev. 2001, 53 (1), 109–122.
(93) Knowles, T. J.; Finka, R.; Smith, C.; Lin, Y.-P.; Dafforn, T.; Overduin, M. Membrane Proteins Solubilized Intact in Lipid Containing Nanoparticles Bounded by Styrene Maleic Acid Copolymer. J. Am. Chem. Soc. 2009, 131 (22), 7484–7485.
(94) Orwick-Rydmark, M.; Lovett, J. E.; Graziadei, A.; Lindholm, L.; Hicks, M. R.; Watts, A. Detergent-Free Incorporation of a Seven-Transmembrane Receptor Protein into Nanosized Bilayer Lipodisq Particles for Functional and Biophysical Studies. Nano Lett. 2012, 12 (9), 4687–4692.
(95) Alfrey, T.; Lavin, E. The Copolymerization of Styrene and Maleic Anhydride. J. Am. Chem. Soc. 1945, 67 (11), 2044–2045.
(96) Hill, D. J. T.; O’Donnell, J. H.; O’Sullivan, P. W. Analysis of the Mechanism of Copolymerization of Styrene and Maleic Anhydride. Macromolecules 1985, 18 (1), 9–17.
(97) Klumperman, B. Mechanistic Considerations on Styrene?maleic Anhydride Copolymerization Reactions. Polym. Chem. 2010, 1 (5), 558.
(98) Yao, Z.; Li, B.-G.; Wang, W.-J.; Pan, Z.-R. Continuous Thermal Bulk Copolymerization of Styrene and Maleic Anhydride. J. Appl. Polym. Sci. 1999, 73 (5), 615–622.
(99) Dörr, J. M.; Scheidelaar, S.; Koorengevel, M. C.; Dominguez, J. J.; Schäfer, M.; van Walree, C. A.; Killian, J. A. The Styrene–maleic Acid Copolymer: A Versatile Tool in Membrane Research. Eur. Biophys. J. 2016, 45 (1), 3–21.
(100) Lee, S. C.; Knowles, T. J.; Postis, V. L. G.; Jamshad, M.; Parslow, R. A.; Lin, Y.; Goldman, A.; Sridhar, P.; Overduin, M.; Muench, S. P.; et al. A Method for Detergent-Free Isolation of Membrane Proteins in Their Local Lipid Environment. Nat. Protoc. 2016, 11 (7), 1149–1162.
(101) Scheidelaar, S.; Koorengevel, M.; Pardo, J.; Meeldijk, J.; Breukink, E.; Killian, J. ?Antoinett. Molecular Model for the Solubilization of Membranes into Nanodisks by Styrene Maleic Acid Copolymers. Biophys. J. 2015, 108 (2), 279–290.
(102) Dörr, J. M.; Koorengevel, M. C.; Schäfer, M.; Prokofyev, A. V.; Scheidelaar, S.; Cruijsen, E. A. W. van der; Dafforn, T. R.; Baldus, M.; Killian, J. A. Detergent-Free Isolation, Characterization, and Functional Reconstitution of a Tetrameric K+ Channel: The Power of Native Nanodiscs. Proc. Natl. Acad. Sci. 2014, 111 (52), 18607–18612.
(103) Long, A. R.; O’Brien, C. C.; Malhotra, K.; Schwall, C. T.; Albert, A. D.; Watts, A.; Alder, N. N. A Detergent-Free Strategy for the Reconstitution of Active Enzyme Complexes from Native Biological Membranes into Nanoscale Discs. BMC Biotechnol. 2013, 13 (1), 41.
(104) Smirnova, I. A.; Sjöstrand, D.; Li, F.; Björck, M.; Schäfer, J.; Östbye, H.; Högbom, M.; von Ballmoos, C.; Lander, G. C.; Ädelroth, P.; et al. Isolation of Yeast Complex IV in Native Lipid Nanodiscs. Biochim. Biophys. Acta BBA - Biomembr. 2016, 1858 (12), 2984–2992.
(105) Jamshad, M.; Grimard, V.; Idini, I.; Knowles, T. J.; Dowle, M. R.; Schofield, N.; Sridhar, P.; Lin, Y.; Finka, R.; Wheatley, M.; et al. Structural Analysis of a Nanoparticle Containing a Lipid Bilayer Used for Detergent-Free Extraction of Membrane Proteins. Nano Res. 2015, 8 (3), 774–789.
(106) Gulati, S.; Jamshad, M.; Knowles, T. J.; Morrison, K. A.; Downing, R.; Cant, N.; Collins, R.; Koenderink, J. B.; Ford, R. C.; Overduin, M.; et al. Detergent-Free Purification of ABC (ATP-Binding-Cassette) Transporters. Biochem. J. 2014, 461 (2), 269–278.
(107) Postis, V.; Rawson, S.; Mitchell, J. K.; Lee, S. C.; Parslow, R. A.; Dafforn, T. R.; Baldwin, S. A.; Muench, S. P. The Use of SMALPs as a Novel Membrane Protein Scaffold for Structure Study by Negative Stain Electron Microscopy. Biochim. Biophys. Acta BBA - Biomembr. 2015, 1848 (2), 496–501.
(108) Jamshad, M.; Charlton, J.; Lin, Y.-P.; Routledge, S. J.; Bawa, Z.; Knowles, T. J.; Overduin, M.; Dekker, N.; Dafforn, T. R.; Bill, R. M.; et al. G-Protein Coupled Receptor Solubilization and Purification for Biophysical Analysis and Functional Studies, in the Total Absence of Detergent. Biosci. Rep. 2015, 35 (2), e00188.
(109) Dominguez Pardo, J. J.; Dörr, J. M.; Iyer, A.; Cox, R. C.; Scheidelaar, S.; Koorengevel, M. C.; Subramaniam, V.; Killian, J. A. Solubilization of Lipids and Lipid Phases by the Styrene–maleic Acid Copolymer. Eur. Biophys. J. 2017, 46 (1), 91–101.
(110) Sahu, I. D.; McCarrick, R. M.; Troxel, K. R.; Zhang, R.; Smith, H. J.; Dunagan, M. M.; Swartz, M. S.; Rajan, P. V.; Kroncke, B. M.; Sanders, C. R.; et al. DEER EPR Measurements for Membrane Protein Structures via Bifunctional Spin Labels and Lipodisq Nanoparticles. Biochemistry (Mosc.) 2013, 52 (38), 6627–6632.
(111) Prabudiansyah, I.; Kusters, I.; Caforio, A.; Driessen, A. J. M. Characterization of the Annular Lipid Shell of the Sec Translocon. Biochim. Biophys. Acta BBA - Biomembr. 2015, 1848 (10, Part A), 2050–2056.
(112) Banerjee, S.; Pal, T. K.; Guha, S. K. Probing Molecular Interactions of Poly(styrene-Co-Maleic Acid) with Lipid Matrix Models to Interpret the Therapeutic Potential of the Co-Polymer. Biochim. Biophys. Acta BBA - Biomembr. 2012, 1818 (3), 537–550.
(113) Bayburt, T. H.; Sligar, S. G. Membrane Protein Assembly into Nanodiscs. FEBS Lett. 2010, 584 (9), 1721–1727.
(114) Huang, Y.; DiDonato, J. A.; Levison, B. S.; Schmitt, D.; Li, L.; Wu, Y.; Buffa, J.; Kim, T.; Gerstenecker, G. S.; Gu, X.; et al. An Abundant Dysfunctional Apolipoprotein A1 in Human Atheroma. Nat. Med. 2014, 20 (2), 193–203.
(115) Lund-Katz, S.; Phillips, M. C. High Density Lipoprotein Structure–Function and Role in Reverse Cholesterol Transport. In Cholesterol Binding and Cholesterol Transport Proteins:; Harris, J. R., Ed.; Subcellular Biochemistry; Springer Netherlands, 2010; pp 183–227.
(116) Silva, R. A. G. D.; Huang, R.; Morris, J.; Fang, J.; Gracheva, E. O.; Ren, G.; Kontush, A.; Jerome, W. G.; Rye, K.-A.; Davidson, W. S. Structure of Apolipoprotein A-I in Spherical High Density Lipoproteins of Different Sizes. Proc. Natl. Acad. Sci. 2008, 105 (34), 12176–12181.
(117) Davidson, W. S.; Thompson, T. B. The Structure of Apolipoprotein A-I in High Density Lipoproteins. J. Biol. Chem. 2007, 282 (31), 22249–22253.
(118) Huang, R.; Silva, R. A. G. D.; Jerome, W. G.; Kontush, A.; Chapman, M. J.; Curtiss, L. K.; Hodges, T. J.; Davidson, W. S. Apolipoprotein A-I Structural Organization in High-Density Lipoproteins Isolated from Human Plasma. Nat. Struct. Mol. Biol. 2011, 18 (4), 416–422.
(119) Phillips, J. C.; Wriggers, W.; Li, Z.; Jonas, A.; Schulten, K. Predicting the Structure of Apolipoprotein A-I in Reconstituted High-Density Lipoprotein Disks. Biophys. J. 1997, 73 (5), 2337–2346.
(120) Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G. Self-Assembly of Discoidal Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins. Nano Lett. 2002, 2 (8), 853–856.
(121) Jonas, A. Reconstitution of High-Density Lipoproteins. Methods Enzymol. 1986, 128, 553–582.
(122) Denisov, I. G.; Grinkova, Y. V.; Lazarides, A. A.; Sligar, S. G. Directed Self-Assembly of Monodisperse Phospholipid Bilayer Nanodiscs with Controlled Size. J. Am. Chem. Soc. 2004, 126 (11), 3477–3487.
(123) Klon, A. E.; Segrest, J. P.; Harvey, S. C. Comparative Models for Human Apolipoprotein A-I Bound to Lipid in Discoidal High-Density Lipoprotein Particles. Biochemistry (Mosc.) 2002, 41 (36), 10895–10905.
(124) Denisov, I. G.; Sligar, S. G. Nanodiscs for Structural and Functional Studies of Membrane Proteins. Nat. Struct. Mol. Biol. 2016, 23 (6), 481–486.
(125) Efremov, R. G.; Leitner, A.; Aebersold, R.; Raunser, S. Architecture and Conformational Switch Mechanism of the Ryanodine Receptor. Nature 2015, 517 (7532), 39–43.
(126) Frauenfeld, J.; Gumbart, J.; Sluis, E. O. van der; Funes, S.; Gartmann, M.; Beatrix, B.; Mielke, T.; Berninghausen, O.; Becker, T.; Schulten, K.; et al. Cryo-EM Structure of the ribosome–SecYE Complex in the Membrane Environment. Nat. Struct. Mol. Biol. 2011, 18 (5), 614–621.
(127) Katayama, H.; Wang, J.; Tama, F.; Chollet, L.; Gogol, E. P.; Collier, R. J.; Fisher, M. T. Three-Dimensional Structure of the Anthrax Toxin Pore Inserted into Lipid Nanodiscs and Lipid Vesicles. Proc. Natl. Acad. Sci. 2010, 107 (8), 3453–3457.
(128) Yu, T.-Y.; Raschle, T.; Hiller, S.; Wagner, G. Solution NMR Spectroscopic Characterization of Human VDAC-2 in Detergent Micelles and Lipid Bilayer Nanodiscs. Biochim. Biophys. Acta BBA - Biomembr. 2012, 1818 (6), 1562–1569.
(129) Raschle, T.; Hiller, S.; Yu, T.-Y.; Rice, A. J.; Walz, T.; Wagner, G. Structural and Functional Characterization of the Integral Membrane Protein VDAC-1 in Lipid Bilayer Nanodiscs. J. Am. Chem. Soc. 2009, 131 (49), 17777–17779.
(130) Shenkarev, Z. O.; Lyukmanova, E. N.; Solozhenkin, O. I.; Gagnidze, I. E.; Nekrasova, O. V.; Chupin, V. V.; Tagaev, A. A.; Yakimenko, Z. A.; Ovchinnikova, T. V.; Kirpichnikov, M. P.; et al. Lipid-Protein Nanodiscs: Possible Application in High-Resolution NMR Investigations of Membrane Proteins and Membrane-Active Peptides. Biochem. Mosc. 2009, 74 (7), 756–765.
(131) Shenkarev, Z. O.; Lyukmanova, E. N.; Paramonov, A. S.; Shingarova, L. N.; Chupin, V. V.; Kirpichnikov, M. P.; Blommers, M. J. J.; Arseniev, A. S. Lipid−Protein Nanodiscs as Reference Medium in Detergent Screening for High-Resolution NMR Studies of Integral Membrane Proteins. J. Am. Chem. Soc. 2010, 132 (16), 5628–5629.
(132) Morgado, L.; Zeth, K.; Burmann, B. M.; Maier, T.; Hiller, S. Characterization of the Insertase BamA in Three Different Membrane Mimetics by Solution NMR Spectroscopy. J. Biomol. NMR 2015, 61 (3-4), 333–345.
(133) Glück, J. M.; Wittlich, M.; Feuerstein, S.; Hoffmann, S.; Willbold, D.; Koenig, B. W. Integral Membrane Proteins in Nanodiscs Can Be Studied by Solution NMR Spectroscopy. J. Am. Chem. Soc. 2009, 131 (34), 12060–12061.
(134) Hagn, F.; Etzkorn, M.; Raschle, T.; Wagner, G. Optimized Phospholipid Bilayer Nanodiscs Facilitate High-Resolution Structure Determination of Membrane Proteins. J. Am. Chem. Soc. 2013, 135 (5), 1919–1925.
(135) Davydov, D. R.; Fernando, H.; Baas, B. J.; Sligar, S. G.; Halpert, J. R. Kinetics of Dithionite-Dependent Reduction of Cytochrome P450 3A4:  Heterogeneity of the Enzyme Caused by Its Oligomerization. Biochemistry (Mosc.) 2005, 44 (42), 13902–13913.
(136) Baas, B. J.; Denisov, I. G.; Sligar, S. G. Homotropic Cooperativity of Monomeric Cytochrome P450 3A4 in a Nanoscale Native Bilayer Environment. Arch. Biochem. Biophys. 2004, 430 (2), 218–228.
(137) Bayburt, T. H.; Vishnivetskiy, S. A.; McLean, M. A.; Morizumi, T.; Huang, C.; Tesmer, J. J. G.; Ernst, O. P.; Sligar, S. G.; Gurevich, V. V. Monomeric Rhodopsin Is Sufficient for Normal Rhodopsin Kinase (GRK1) Phosphorylation and Arrestin-1 Binding. J. Biol. Chem. 2011, 286 (2), 1420–1428.
(138) Lanyi, J. K. Proton Translocation Mechanism and Energetics in the Light-Driven Pump Bacteriorhodopsin. Biochim. Biophys. Acta BBA-Bioenerg. 1993, 1183 (2), 241–261.
(139) Huang, K. S.; Bayley, H.; Liao, M.-J.; London, E.; Khorana, H. G. Refolding of an Integral Membrane Protein. Denaturation, Renaturation, and Reconstitution of Intact Bacteriorhodopsin and Two Proteolytic Fragments. J. Biol. Chem. 1981, 256 (8), 3802–3809.
(140) Booth, P. J.; Flitsch, S. L.; Stern, L. J.; Greenhalgh, D. A.; Kim, P. S.; Khorana, H. G. Intermediates in the Folding of the Membrane Protein Bacteriorhodopsin. Nat. Struct. Mol. Biol. 1995, 2 (2), 139–143.
(141) Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G. Assembly of Single Bacteriorhodopsin Trimers in Bilayer Nanodiscs. Arch. Biochem. Biophys. 2006, 450 (2), 215–222.
(142) Lanyi, J. K. Molecular Mechanism of Ion Transport in Bacteriorhodopsin:  Insights from Crystallographic, Spectroscopic, Kinetic, and Mutational Studies. J. Phys. Chem. B 2000, 104 (48), 11441–11448.
(143) Baudry, J.; Tajkhorshid, E.; Molnar, F.; Phillips, J.; Schulten, K. Molecular Dynamics Study of Bacteriorhodopsin and the Purple Membrane. J. Phys. Chem. B 2001, 105 (5), 905–918.
(144) Luecke, H.; Schobert, B.; Richter, H.-T.; Cartailler, J.-P.; Lanyi, J. K. Structure of Bacteriorhodopsin at 1.55 Å Resolution 1. J. Mol. Biol. 1999, 291 (4), 899–911.
(145) Lemke, H.-D.; Oesterhelt, D. Lysine 216 Is a Binding Site of the Retinyl Moiety in Bacteriorhodopsin. FEBS Lett. 1981, 128 (2), 255–260.
(146) Oesterhelt, D.; Stoeckenius, W. Rhodopsin-like Protein from the Purple Membrane of Halobacterium Halobium. Nature 1971, 233 (39), 149–152.
(147) Stoeckenius, W.; Rowen, R. A Morphological Study of Halobacterium Halobium and Its Lysis in Media of Low Salt Concentration. J. Cell Biol. 1967, 34 (1), 365–393.
(148) Oesterhelt, D.; Stoeckenius, W. Functions of a New Photoreceptor Membrane. Proc. Natl. Acad. Sci. 1973, 70 (10), 2853–2857.
(149) Terner, J.; El-Sayed, M. A. Time-Resolved Resonance Raman Spectroscopy of Photobiological and Photochemical Transients. Acc. Chem. Res. 1985, 18 (11), 331–338.
(150) Rothschild, K. J.; Zagaeski, M.; Cantore, W. A. Conformational Changes of Bacteriorhodopsin Detected by Fourier Transform Infrared Difference Spectroscopy. Biochem. Biophys. Res. Commun. 1981, 103 (2), 483–489.
(151) Hackett, N. R.; Stern, L. J.; Chao, B. H.; Kronis, K. A.; Khorana, H. G. Structure-Function Studies on Bacteriorhodopsin. V. Effects of Amino Acid Substitutions in the Putative Helix F. J. Biol. Chem. 1987, 262 (19), 9277–9284.
(152) Hoffmann, M.; Wanko, M.; Strodel, P.; König, P. H.; Frauenheim, T.; Schulten, K.; Thiel, W.; Tajkhorshid, E.; Elstner, M. Color Tuning in Rhodopsins: The Mechanism for the Spectral Shift between Bacteriorhodopsin and Sensory Rhodopsin II. J. Am. Chem. Soc. 2006, 128 (33), 10808–10818.
(153) Lanyi, J. K. Proton Transfers in the Bacteriorhodopsin Photocycle. Biochim. Biophys. Acta BBA - Bioenerg. 2006, 1757 (8), 1012–1018.
(154) Sharkov, A. V.; Pakulev, A. V.; Chekalin, S. V.; Matveetz, Y. A. Primary Events in Bacteriorhodopsin Probed by Subpicosecond Spectroscopy. Biochim. Biophys. Acta BBA - Bioenerg. 1985, 808 (1), 94–102.
(155) Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 2004, 66 (1), 665–688.
(156) Zimanyi, L.; Varo, G.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K. Pathways of Proton Release in the Bacteriorhodopsin Photocycle. Biochemistry (Mosc.) 1992, 31 (36), 8535–8543.
(157) Morgan, J. E.; Vakkasoglu, A. S.; Lanyi, J. K.; Gennis, R. B.; Maeda, A. Coordinating the Structural Rearrangements Associated with Unidirectional Proton Transfer in the Bacteriorhodopsin Photocycle Induced by Deprotonation of the Proton-Release Group: A Time-Resolved Difference FTIR Spectroscopic Study. Biochemistry (Mosc.) 2010, 49 (15), 3273–3281.
(158) Phatak, P.; Ghosh, N.; Yu, H.; Cui, Q.; Elstner, M. Amino Acids with an Intermolecular Proton Bond as Proton Storage Site in Bacteriorhodopsin. Proc. Natl. Acad. Sci. 2008, 105 (50), 19672–19677.
(159) Gerwert, K.; Souvignier, G.; Hess, B. Simultaneous Monitoring of Light-Induced Changes in Protein Side-Group Protonation, Chromophore Isomerization, and Backbone Motion of Bacteriorhodopsin by Time-Resolved Fourier-Transform Infrared Spectroscopy. Proc. Natl. Acad. Sci. 1990, 87 (24), 9774–9778.
(160) Smith, S. O.; Pardoen, J. A.; Mulder, P. P. J.; Curry, B.; Lugtenburg, J.; Mathies, R. Chromophore Structure in Bacteriorhodopsin’s O640 Photointermediate. Biochemistry (Mosc.) 1983, 22 (26), 6141–6148.
(161) Riesle, J.; Oesterhelt, D.; Dencher, N. A.; Heberle, J. D38 Is an Essential Part of the Proton Translocation Pathway in Bacteriorhodopsin. Biochemistry (Mosc.) 1996, 35 (21), 6635–6643.
(162) Richter, H.-T.; Needleman, R.; Kandori, H.; Maeda, A.; Lanyi, J. K. Relationship of Retinal Configuration and Internal Proton Transfer at the End of the Bacteriorhodopsin Photocycle. Biochemistry (Mosc.) 1996, 35 (48), 15461–15466.
(163) Corcelli, A.; Lattanzio, V. M. T.; Mascolo, G.; Papadia, P.; Fanizzi, F. Lipid-Protein Stoichiometries in a Crystalline Biological Membrane: NMR Quantitative Analysis of the Lipid Extract of the Purple Membrane. J. Lipid Res. 2002, 43 (1), 132–140.
(164) Blaurock, A. E.; Stoeckenius, W. Structure of the Purple Membrane. Nature 1971, 233 (39), 152–155.
(165) Cartailler, J.-P.; Luecke, H. X-Ray Crystallographic Analysis of Lipid-Protein Interactions in the Bacteriorhodopsin Purple Membrane. Annu. Rev. Biophys. Biomol. Struct. 2003, 32 (1), 285–310.
(166) Reyenolds, J. A.; Stoeckenius, W. Molecular Weight of Bacteriorhodopsin Solubilized in Triton X-100. Proc. Natl. Acad. Sci. 1977, 74 (7), 2803–2804.
(167) Sternberg, B.; L’Hostis, C.; Whiteway, C. A.; Watts, A. The Essential Role of Specific Halobacterium Halobium Polar Lipids in 2D-Array Formation of Bacteriorhodopsin. Biochim. Biophys. Acta BBA - Biomembr. 1992, 1108 (1), 21–30.
(168) Heberle, J.; Riesle, J.; Thiedemann, G.; Oesterhelt, D.; Dencher, N. A. Proton Migration along the Membrane Surface and Retarded Surface to Bulk Transfer. Nature 1994, 370 (6488), 379–382.
(169) Mukhopadhay, A. K.; Bose, S.; Hendler, R. W. Membrane-Mediated Control of the Bacteriorhodopsin Photocycle. Biochemistry (Mosc.) 1994, 33 (36), 10889–10895.
(170) Joshi, M. K.; Dracheva, S.; Mukhopadhyay, A. K.; Bose, S.; Hendler, R. W. Importance of Specific Native Lipids in Controlling the Photocycle of Bacteriorhodopsin. Biochemistry (Mosc.) 1998, 37 (41), 14463–14470.
(171) Dracheva, S.; Bose, S.; Hendler, R. W. Chemical and Functional Studies on the Importance of Purple Membrane Lipids in Bacteriorhodopsin Photocycle Behavior. FEBS Lett. 1996, 382 (1–2), 209–212.
(172) Sugiyama, Y.; Yamada, N.; Mukohata, Y. The Light-Driven Proton Pump, Cruxrhodopsin-2 in Haloarcula Sp. Arg-2 (bR+, hR−), and Its Coupled ATP Formation. Biochim. Biophys. Acta BBA - Bioenerg. 1994, 1188 (3), 287–292.
(173) Sugiyama, Y.; Maeda, M.; Futai, M.; Mukohata, Y. Isolation of a Gene That Encodes a New Retinal Protein, Archaerhodopsin, from Halobacterium Sp. Aus-1. J. Biol. Chem. 1989, 264 (35), 20859–20862.
(174) Balashov, S. P.; Imasheva, E. S.; Boichenko, V. A.; Antón, J.; Wang, J. M.; Lanyi, J. K. Xanthorhodopsin: A Proton Pump with a Light-Harvesting Carotenoid Antenna. Science 2005, 309 (5743), 2061–2064.
(175) DeLong, E. F.; Béjà, O. The Light-Driven Proton Pump Proteorhodopsin Enhances Bacterial Survival during Tough Times. PLOS Biol. 2010, 8 (4), e1000359.
(176) Tsai, F.-K.; Fu, H.-Y.; Yang, C.-S.; Chu, L.-K. Photochemistry of a Dual-Bacteriorhodopsin System in Haloarcula Marismortui : HmbRI and HmbRII. J. Phys. Chem. B 2014, 118 (26), 7290–7301.
(177) Sineshchekov, O. A.; Jung, K.-H.; Spudich, J. L. Two Rhodopsins Mediate Phototaxis to Low-and High-Intensity Light in Chlamydomonas Reinhardtii. Proc. Natl. Acad. Sci. 2002, 99 (13), 8689–8694.
(178) Baliga, N. S.; Bonneau, R.; Facciotti, M. T.; Pan, M.; Glusman, G.; Deutsch, E. W.; Shannon, P.; Chiu, Y.; Weng, R. S.; Gan, R. R.; et al. Genome Sequence of Haloarcula Marismortui: A Halophilic Archaeon from the Dead Sea. Genome Res. 2004, 14 (11), 2221–2234.
(179) Fu, H.-Y.; Lin, Y.-C.; Chang, Y.-N.; Tseng, H.; Huang, C.-C.; Liu, K.-C.; Huang, C.-S.; Su, C.-W.; Weng, R. R.; Lee, Y.-Y.; et al. A Novel Six-Rhodopsin System in a Single Archaeon. J. Bacteriol. 2010, 192 (22), 5866–5873.
(180) Fu, H.-Y.; Yi, H.-P.; Lu, Y.-H.; Yang, C.-S. Insight into a Single Halobacterium Using a Dual-Bacteriorhodopsin System with Different Functionally Optimized pH Ranges to Cope with Periplasmic pH Changes Associated with Continuous Light Illumination. Mol. Microbiol. 2013, 88 (3), 551–561.
(181) Hsu, M.-F.; Yu, T.-F.; Chou, C.-C.; Fu, H.-Y.; Yang, C.-S.; Wang, A. H. J. Using Haloarcula Marismortui Bacteriorhodopsin as a Fusion Tag for Enhancing and Visible Expression of Integral Membrane Proteins in Escherichia Coli. PLOS ONE 2013, 8 (2), e56363.
(182) Shevchenko, V.; Gushchin, I.; Polovinkin, V.; Round, E.; Borshchevskiy, V.; Utrobin, P.; Popov, A.; Balandin, T.; Büldt, G.; Gordeliy, V. Crystal Structure of Escherichia Coli -Expressed Haloarcula Marismortui Bacteriorhodopsin I in the Trimeric Form. PLOS ONE 2014, 9 (12), e112873.
(183) Luecke, H.; Schobert, B.; Richter, H.-T.; Cartailler, J.-P.; Lanyi, J. K. Structural Changes in Bacteriorhodopsin During Ion Transport at 2 Angstrom Resolution. Science 1999, 286 (5438), 255–260.
(184) Hong, P.; Koza, S.; Bouvier, E. S. P. Size-Exclusion Chromatography for the Analysis of Protein Biotherapeutics and Their Aggregates. J. Liq. Chromatogr. Relat. Technol. 2012, 35 (20), 2923–2950.
(185) Heyn, M. P.; Cherry, R. J.; Dencher, N. A. Lipid-Protein Interactions in Bacteriorhodopsin-Dimyristoylphosphatidylcholine Vesicles. Biochemistry (Mosc.) 1981, 20 (4), 840–849.
(186) Becher, B.; Ebrey, T. G. Evidence for Chromophore-Chromophore (exciton) Interaction in the Purple Membrane of Halobacteriumhalobium. Biochem. Biophys. Res. Commun. 1976, 69 (1), 1–6.
(187) Pescitelli, G.; Woody, R. W. The Exciton Origin of the Visible Circular Dichroism Spectrum of Bacteriorhodopsin. J. Phys. Chem. B 2012, 116 (23), 6751–6763.
(188) Birge, R. R.; Gillespie, N. B.; Izaguirre, E. W.; Kusnetzow, A.; Lawrence, A. F.; Singh, D.; Song, Q. W.; Schmidt, E.; Stuart, J. A.; Seetharaman, S.; et al. Biomolecular Electronics: Protein-Based Associative Processors and Volumetric Memories. J. Phys. Chem. B 1999, 103 (49), 10746–10766.
(189) Kuo, C.-L.; Chu, L.-K. Modeling of Photocurrent Kinetics upon Pulsed Photoexcitation of Photosynthetic Proteins: A Case of Bacteriorhodopsin. Bioelectrochemistry 2014, 99, 1–7.
(190) Miyasaka, T.; Koyama, K. Rectified Photocurrents from Purple Membrane Langmuir-Blodgett Films at the Electrode-Electrolyte Interface. Thin Solid Films 1992, 210–211, Part 1, 146–149.
(191) Liu, S. Y.; Govindjee, R.; Ebrey, T. G. Light-Induced Currents from Oriented Purple Membrane: II. Proton and Cation Contributions to the Photocurrent. Biophys. J. 1990, 57 (5), 951–963.
(192) Okajima, T. L.; Hong, F. T. Kinetic Analysis of Displacement Photocurrents Elicited in Two Types of Bacteriorhodopsin Model Membranes. Biophys. J. 1986, 50 (5), 901–912.
(193) Simmeth, R.; Rayfield, G. W. Evidence That the Photoelectric Response of Bacteriorhodopsin Occurs in Less than 5 Picoseconds. Biophys. J. 1990, 57 (5), 1099–1101.
(194) Craik, D. J.; Allewell, N. M. Thematic Minireview Series on Circular Proteins. J. Biol. Chem. 2012, 287 (32), 26999–27000.
(195) Craik, D. J.; Čemažar, M.; Wang, C. K. L.; Daly, N. L. The Cyclotide Family of Circular Miniproteins: Nature’s Combinatorial Peptide Template. Pept. Sci. 2006, 84 (3), 250–266.
(196) Nasr, M. L.; Baptista, D.; Strauss, M.; Sun, Z.-Y. J.; Grigoriu, S.; Huser, S.; Plückthun, A.; Hagn, F.; Walz, T.; Hogle, J. M.; et al. Covalently Circularized Nanodiscs for Studying Membrane Proteins and Viral Entry. Nat. Methods 2016, advance online publication.
(197) Antos, J. M.; Popp, M. W.-L.; Ernst, R.; Chew, G.-L.; Spooner, E.; Ploegh, H. L. A Straight Path to Circular Proteins. J. Biol. Chem. 2009, 284 (23), 16028–16036.
(198) Oesterhelt, D.; Stoeckenius, W. Isolation of the Cell Membrane of Halobacterium Halobium and Its Fractionation into Red and Purple Membrane. Methods Enzymol. 1974, 31, 667–678.
(199) Cai, M.; Huang, Y.; Sakaguchi, K.; Clore, G. M.; Gronenborn, A. M.; Craigie, R. An Efficient and Cost-Effective Isotope Labeling Protocol for Proteins Expressed in Shape Escherichia Coli. J. Biomol. NMR 1998, 11 (1), 97–102.
(200) Mitra, N. Nanodiscs: Membrane Protein Research in Near-Native Conditions. Mater. Methods 2015.
(201) Wadsäter, M.; Maric, S.; Simonsen, J. B.; Mortensen, K.; Cardenas, M. The Effect of Using Binary Mixtures of Zwitterionic and Charged Lipids on Nanodisc Formation and Stability. Soft Matter 2013, 9 (7), 2329–2337.
(202) Dowhan, W.; Bogdanov, M. Lipid-Dependent Membrane Protein Topogenesis. Annu. Rev. Biochem. 2009, 78 (1), 515–540.
(203) Zhang, W.; Campbell, H. A.; King, S. C.; Dowhan, W. Phospholipids as Determinants of Membrane Protein Topology PHOSPHATIDYLETHANOLAMINE IS REQUIRED FOR THE PROPER TOPOLOGICAL ORGANIZATION OF THE γ-AMINOBUTYRIC ACID PERMEASE (GabP) OF ESCHERICHIA COLI. J. Biol. Chem. 2005, 280 (28), 26032–26038.
(204) Mukhopadhyay, A. K.; Dracheva, S.; Bose, S.; Hendler, R. W. Control of the Integral Membrane Proton Pump, Bacteriorhodopsin, by Purple Membrane Lipids of Halobacterium Halobium. Biochemistry (Mosc.) 1996, 35 (28), 9245–9252.
(205) Cui, J.; Kawatake, S.; Umegawa, Y.; Lethu, S.; Yamagami, M.; Matsuoka, S.; Sato, F.; Matsumori, N.; Murata, M. Stereoselective Synthesis of the Head Group of Archaeal Phospholipid PGP-Me to Investigate Bacteriorhodopsin–lipid Interactions. Org. Biomol. Chem. 2015, 13 (41), 10279–10284.
(206) Rigaud, J.-L.; Pitard, B.; Levy, D. Reconstitution of Membrane Proteins into Liposomes: Application to Energy-Transducing Membrane Proteins. Biochim. Biophys. Acta BBA - Bioenerg. 1995, 1231 (3), 223–246.
(207) Yoshino, M.; Kikukawa, T.; Takahashi, H.; Takagi, T.; Yokoyama, Y.; Amii, H.; Baba, T.; Kanamori, T.; Sonoyama, M. Physicochemical Studies of Bacteriorhodopsin Reconstituted in Partially Fluorinated Phosphatidylcholine Bilayers. J. Phys. Chem. B 2013, 117 (18), 5422–5429.
(208) Yokoyama, Y.; Negishi, L.; Kitoh, T.; Sonoyama, M.; Asami, Y.; Mitaku, S. Effect of Lipid Phase Transition on Molecular Assembly and Structural Stability of Bacteriorhodopsin Reconstituted into Phosphatidylcholine Liposomes with Different Acyl-Chain Lengths. J. Phys. Chem. B 2010, 114 (47), 15706–15711.
(209) Wang, Z.; Bai, J.; Xu, Y. The Effect of Charged Lipids on Bacteriorhodopsin Membrane Reconstitution and Its Photochemical Activities. Biochem. Biophys. Res. Commun. 2008, 371 (4), 814–817.
(210) Happe, M.; Teather, R. M.; Overath, P.; Knobling, A.; Oesterhelt, D. Direction of Proton Translocation in Proteoliposomes Formed from Purple Membrane and Acidic Lipids Depends on the pH during Reconstitution. Biochim. Biophys. Acta BBA - Biomembr. 1977, 465 (2), 415–420.
(211) Tunuguntla, R.; Bangar, M.; Kim, K.; Stroeve, P.; Ajo-Franklin, C. M.; Noy, A. Lipid Bilayer Composition Can Influence the Orientation of Proteorhodopsin in Artificial Membranes. Biophys. J. 2013, 105 (6), 1388–1396.
(212) Johnson, P. J. M.; Halpin, A.; Morizumi, T.; Brown, L. S.; Prokhorenko, V. I.; Ernst, O. P.; Miller, R. J. D. The Photocycle and Ultrafast Vibrational Dynamics of Bacteriorhodopsin in Lipid Nanodiscs. Phys. Chem. Chem. Phys. 2014, 16 (39), 21310–21320.
(213) Wang, J.; Link, S.; Heyes, C. D.; El-Sayed, M. A. Comparison of the Dynamics of the Primary Events of Bacteriorhodopsin in Its Trimeric and Monomeric States. Biophys. J. 2002, 83 (3), 1557–1566.
(214) Ng, K. C.; Chu, L.-K. Effects of Surfactants on the Purple Membrane and Bacteriorhodopsin: Solubilization or Aggregation? J. Phys. Chem. B 2013, 117 (20), 6241–6249.
(215) Xiang, Y.; Zhang, J.; Liu, Y.; Guo, Z.; Lu, S. Design of an Effective Methanol-Blocking Membrane with Purple Membrane for Direct Methanol Fuel Cells. J. Membr. Sci. 2011, 367 (1), 325–331.
(216) Scherrer, P.; Mathew, M. K.; Sperling, W.; Stoeckenius, W. Retinal Isomer Ratio in Dark-Adapted Purple Membrane and Bacteriorhodopsin Monomers. Biochemistry (Mosc.) 1989, 28 (2), 829–834.
(217) Cherry, R. J.; Müller, U.; Henderson, R.; Heyn, M. P. Temperature-Dependent Aggregation of Bacteriorhodopsin in Dipalmitoyl- and Dimyristoylphosphatidylcholine Vesicles. J. Mol. Biol. 1978, 121 (2), 283–298.
(218) Gulik-Krzywicki, T.; Seigneuret, M.; Rigaud, J. L. Monomer-Oligomer Equilibrium of Bacteriorhodopsin in Reconstituted Proteoliposomes. A Freeze-Fracture Electron Microscope Study. J. Biol. Chem. 1987, 262 (32), 15580–15588.
(219) Grzesiek, S.; Dencher, N. A. Monomeric and Aggregated Bacteriorhodopsin: Single-Turnover Proton Transport Stoichiometry and Photochemistry. Proc. Natl. Acad. Sci. 1988, 85 (24), 9509–9513.
(220) Dong, Y. Q.; Ramos, R. G.; Li, D.; Barrett, S. E. Controlling Coherence Using the Internal Structure of Hard Pi Pulses. Phys. Rev. Lett. 2008, 100, 4.
(221) Dai, W.; Fu, C.; Raytcheva, D.; Flanagan, J.; Khant, H. A.; Liu, X.; Rochat, R. H.; Haase-Pettingell, C.; Piret, J.; Ludtke, S. J.; et al. Visualizing Virus Assembly Intermediates inside Marine Cyanobacteria. Nature 2013, 502 (7473), 707–710.
(222) Kuo, P.-C.; Chen, I.-H.; Chen, C.-T.; Lee, K.-P.; Chen, C.-W.; Lin, C.-C.; Chiu, S. W.-Y.; Hsieh, Y.-F.; Wang, Y.-L.; Shiue, J. On-Chip Thin Film Zernike Phase Plate for In-Focus Transmission Electron Microscopy Imaging of Organic Materials. ACS Nano 2013, 7 (1), 465–470.
(223) Renner, C. Lipid Composition of Integral Purple Membrane by 1H and 31P NMR. J. Lipid Res. 2005, 46 (8), 1755–1764.
(224) Chizhov, I.; Schmies, G.; Seidel, R.; Sydor, J. R.; Lüttenberg, B.; Engelhard, M. The Photophobic Receptor from Natronobacterium Pharaonis: Temperature and pH Dependencies of the Photocycle of Sensory Rhodopsin II. Biophys. J. 1998, 75 (2), 999–1009.
(225) Chu, L.-K.; Yen, C.-W.; El-Sayed, M. A. Bacteriorhodopsin-Based Photo-Electrochemical Cell. Biosens. Bioelectron. 2010, 26 (2), 620–626.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔