|
Reference 1.Pokropivny, V.; Lohmus, R.; Hussainova, I.; Pokropivny, A.; Vlassov, S., Introduction to nanomaterials and nanotechnology. Tartu University Press Ukraine: 2007. 2.Husain, M.; Khan, Z. H., Advances in nanomaterials. Springer: 2016. 3.Schodek, D. L.; Ferreira, P.; Ashby, M. F., Nanomaterials, nanotechnologies and design: an introduction for engineers and architects. Butterworth-Heinemann: 2009. 4.林景正; 賴宏仁, 工業材料 1999, 153, 95-101. 5.Roduner, E., Chem. Soc. Rev. 2006, 35, 583-592. 6.Somorjai, G. A.; Chaudret, B., Nanomaterials in catalysis. John Wiley & Sons: 2012. 7.Roucoux, A.; Schulz, J.; Patin, H., Chem. Rev. 2002, 102, 3757-3778. 8.Yang, Y.; Wang, H.; Li, J.; He, B.; Wang, T.; Liao, S., Environ. Sci. Technol. 2012, 46, 6815-6821. 9.賴炤銘; 李錫隆, Chemistry (The Chinese Chem. Soc., Taipei) 2003, 61, 585-597. 10.Cao, G., Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific: 2004. 11.Knez, M.; Nielsch, K.; Niinistö, L., Adv. Mater. 2007, 19, 3425-3438. 12.Yuan, C.; Zhang, X.; Su, L.; Gao, B.; Shen, L., J. Mater. Chem. 2009, 19, 5772-5777. 13.Ehrman, S. H.; Friedlander, S. K.; Zachariah, M. R., J. Mater. Res. 1999, 14, 4551-4561. 14.Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y., Chem. Eur. J. 2005, 11, 454-463. 15.Zou, G.; Li, H.; Zhang, D.; Xiong, K.; Dong, C.; Qian, Y., J. Phys. Chem. B 2006, 110, 1632-1637. 16.Sinfelt, J. H., Acc. Chem. Res. 1977, 10, 15-20. 17.Bolz, F., Advanced materials in catalysis. Elsevier: 2013. 18.Ochal, P.; de la Fuente, J. L. G.; Tsypkin, M.; Seland, F.; Sunde, S.; Muthuswamy, N.; Rønning, M.; Chen, D.; Garcia, S.; Alayoglu, S., J. Electroanal. Chem. 2011, 655, 140-146. 19.Chaudhuri, R. G.; Paria, S., Chem. Rev. 2012, 112, 2373-2433. 20.Subramanian, R.; Denney, P. E.; Singh, J.; Otooni, M., J. Mater. Sci. 1998, 33, 3471-3477. 21.Schneider, G.; Decher, G., Langmuir 2008, 24, 1778-1789. 22.Sneh, O.; Clark-Phelps, R. B.; Londergan, A. R.; Winkler, J.; Seidel, T. E., Thin Solid Films 2002, 402, 248-261. 23.Park, J. C.; Kim, J. Y.; Heo, E.; Park, K. H.; Song, H., Langmuir 2010, 26, 16469-16473. 24.Sun, Y.; Wiley, B.; Li, Z.-Y.; Xia, Y., J. Am. Chem. Soc. 2004, 126, 9399-9406. 25.Xu, S.; Li, H.; Wang, L.; Yue, Q.; Sixiu, S.; Liu, J., CrystEngComm 2014, 16, 9075-9082. 26.Zhang, W.-M.; Hu, J.-S.; Guo, Y.-G.; Zheng, S.-F.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J., Adv. Mater. 2008, 20, 1160-1165. 27.Zhang, L.; Liu, T.; Zhao, X.; Qian, N.; Xiong, P.; Ma, W.; Lu, W.; Gao, Y.; Luo, H., CrystEngComm 2014, 16, 6126-6134. 28.Joo, S. H.; Park, J. Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G. A., Nat. Mater. 2009, 8, 126-131. 29.Huang, Y.; Zhou, X.; Yin, M.; Liu, C.; Xing, W., Chem. Mater. 2010, 22, 5122-5128. 30.Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D., Nat. Mater. 2013, 12, 81-87. 31.Mazumder, V.; Chi, M.; More, K. L.; Sun, S., J. Am. Chem. Soc. 2010, 132, 7848-7849. 32.Monzo, J.; Malewski, Y.; Kortlever, R.; Vidal-Iglesias, F. J.; Solla-Gullon, J.; Koper, M. T. M.; Rodriguez, P., J. Mater. Chem.A 2015, 3, 23690-23698. 33.Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E., Nature 2012, 484. 34.Qiao, J.; Liu, Y.; Hong, F.; Zhang, J., Chem. Soc. Rev. 2014, 43, 631-675. 35.Roberts, F. S.; Kuhl, K. P.; Nilsson, A., Angew. Chem. Int. Ed. 2015, 54, 5179-5182. 36.Song, Y., Peng, R., Hensley, D., Bonnesen, P., Liang, L., Wu, Z., Meyer, H., Chi, M., Ma, C., Sumpter, B. and Rondinone, A., ChemistrySelect 2016, 1, 6055-6061. 37.Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Electrochim. Acta 1994, 39, 1833-1839. 38.Nie, X.; Luo, W.; Janik, M. J.; Asthagiri, A., J. Catal. 2014, 312, 108-122. 39.Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A., Introduction to spectroscopy. Cengage Learning: 2008. 40.Baruch, M. F.; Pander, J. E.; White, J. L.; Bocarsly, A. B., ACS Catal. 2015, 5, 3148-3156. 41.Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S., ACS Catal. 2015, 5, 2814-2821. 42.Schmitt, K. G.; Gewirth, A. A., J. Phys. Chem. C 2014, 118, 17567-17576. 43.Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Chem. Phys. Lett. 1974, 26, 163-166. 44.Jeanmaire, D. L.; Van Duyne, R. P., J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1-20. 45.Jensen, L.; Aikens, C. M.; Schatz, G. C., Chem. Soc. Rev. 2008, 37, 1061-1073. 46.Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P., Annu. Rev. Anal. Chem. 2008, 1, 601-626. 47.Haynes, C. L.; McFarland, A. D.; Duyne, R. P. V., Surface-enhanced Raman spectroscopy. ACS Publications: 2005. 48.Kiefer, W.; Bernstein, H. J., Chem. Phys. Lett. 1972, 16, 5-9. 49.Hildebrandt, P.; Stockburger, M., J. Phys. Chem. 1984, 88, 5935-5944. 50.劉密新, 儀器分析. 清華大学出版社有限公司: 2002. 51.Perkampus, H., UV-VIS Spectroscopy and Its Applications. Springer Science & Business Media: 2013. 52.Adair, J. H.; Li, T.; Kido, T.; Havey, K.; Moon, J.; Mecholsky, J.; Morrone, A.; Talham, D. R.; Ludwig, M. H.; Wang, L., Mater. Sci. Eng. 1998, 23, 139-242. 53.Goodhew, P. J.; Humphreys, J.; Beanland, R., Electron Microscopy and Analysis, Third Edition. CRC Press: 2000. 54.Reimer, L., Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. Springer: 2013. 55.林昆霖, 國家奈米元件實驗室奈米通訊 2013, 20, 34-38. 56.Goldstein, J.; Newbury, D. E.; Joy, D. C.; Lyman, C. E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. R., Scanning Electron Microscopy and X-ray Microanalysis: Third Edition. Springer Science & Business Media: 2012. 57.Russ, J. C., Fundamentals of Energy Dispersive X-Ray Analysis: Butterworths Monographs in Materials. Butterworth-Heinemann: 2013. 58.Yano, J.; Yachandra, V. K., Photosynth. Res. 2009, 102, 241. 59.Penner‐Hahn, J. E., X-ray Absorption Spectroscopy. eLS: 2012. 60.胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司: 2002. 61.Harris, D. C., Exploring Chemical Analysis. W. H. Freeman: 2005. 62.Zoski, C. G., Handbook of Electrochemistry. Elsevier: 2007. 63.Roberge, P. R., Corrosion Engineering Principles and Practice. McGraw-Hill: 2008. 64.Wang, J., Analytical Electrochemistry. John Wiley & Sons: 2000. 65.Nazari, M. H.; Mazhab-Jafari, H.; Leng, L.; Guenther, A.; Genov, R., IEEE Trans. Biomed. Circuits Syst 2013, 7, 338-348. 66.薛華, 分析化學. 清華大学出版社有限公司: 1994. 67.Günther, H., NMR spectroscopy: basic principles, concepts and applications in chemistry. John Wiley & Sons: 2013. 68.Colthup, N., Introduction to infrared and Raman spectroscopy. Elsevier: 2012. 69.Sun, Y.; Xia, Y., Science 2002, 298, 2176-2179. 70.Tao, A.; Sinsermsuksakul, P.; Yang, P., Angew. Chem. Int. Ed. 2006, 45, 4597-4601. 71.Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L., J. Phys. Chem. C 2014, 118, 9801-9808. 72.Tsuji, M.; Hikino, S.; Tanabe, R.; Yamaguchi, D., Chem. Lett. 2010, 39, 334-336. 73.Linic, S.; Christopher, P.; Ingram, D. B., Nat. Mater. 2011, 10, 911-921. 74.Usman, M. S.; Ibrahim, N. A.; Shameli, K.; Zainuddin, N.; Yunus, W. M. Z. W., Molecules 2012, 17, 14928-14936. 75.Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y.; Jiao, F.; Xu, B., J. Am. Chem. Soc. 2017, 139, 3774-3783. 76.Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., Energy Environ. Sci. 2012, 5, 7050-7059. 77.Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J., J. Am. Chem. Soc. 2015, 137, 13844-13850. 78.Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y.; Jiao, F.; Xu, B., J. Am. Chem. Soc. 2017, 139, 3774-3783. 79.Hori, Y., Electrochemical CO2 Reduction on Metal Electrodes. Springer: New York, 2008. 80.Schmitt, K. G.; Gewirth, A. A., J. Phys. Chem. C 2014, 118, 17567-17576. 81.Using Raman Spectroscopy to Assist in the REACH Registration of Gases; Kaiser Optical Systems, Inc.: 2015. 82.Davis, A. R.; Oliver, B. G., J. Solution Chem. 1972, 1, 329-339. 83.Muhlenkamp, K. A., Utilizing Surface Enhanced Raman Spectroscopy to Monitor the Carbon Dioxide Electro‐Reduction Reaction on Copper at Low Overpotentials. The Ohio State University: 2015. 84.Chery, D.; Lair, V.; Cassir, M., Front. Energy Res. 2015, 3, 1-10. 85.Hori, Y., Wakebe, H., Tsukamoto, T. and Koga, O., Electrochim. Act. 1994, 39, 1833-1839. 86.Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F., ACS Catal. 2015, 5, 4293-4299. 87.Mao, H.; Xu, J.; Hu, Y.; Huang, Y.; Song, Y., J. Mater. Chem. A 2015, 3, 11976-11984. 88.Zhang, Y.-J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A., ACS Catal. 2014, 4, 3742-3748. 89.Kuhl, K. P.; Cave, E. R.; Abramc, D. N.; Jaramillo, T. F., Energy Environ. Sci. 2012, 5, 7050-7059. 90.Hori, Y.; Murata, A.; Takahashi, R., J. Chem. Soc. Faraday Trans. I 1989, 85, 2309-2326. 91.Ren, F.; Xiao, X.; Zheng, X. D., Appl. Phys. Lett. 2015, 106, 123901. 92.Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Electrochim. Act. 1994, 39, 1833-1839. 93.HruSak, J., S. Afr. J. Chem. 1997, 50, 93-101. 94.Figueiredo, M. C.; Ledezma-Yanez, I.; Koper, M. T. M., ACS Catal. 2016, 6, 2382-2392. 95.Grewe, J.; Erturk, U.; Otto, A., Langmuir 1998, 14, 696-707. 96.Luo, W.; Nie, X.; Janik, M. J.; Asthagiri, A., ACS Catal. 2016, 6, 219-229.
|