跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/21 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖梓伃
研究生(外文):Tzu-Yu Liao
論文名稱:臨場拉曼光譜技術應用於二氧化碳還原反應
論文名稱(外文):Investigation of electrochemical CO2 reduction via in situ Raman system
指導教授:陳浩銘陳浩銘引用關係
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:136
中文關鍵詞:二氧化碳還原奈米材料臨場拉曼表面增強拉曼散射光譜
外文關鍵詞:CO2 reductionnanomaterialin situ RamanSERS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,由於二氧化碳排放量的迅速增加,其還原反應受到許多科學家的重視,其中又以能產生碳氫化合物產物的銅金屬備受關注。然而,銅金屬的二氧化碳還原反應機制卻只有推測以及理論計算,並未被證明及詳細闡述。在這個研究中,臨場拉曼量測技術將運用於分析銅金屬表面上的二氧化碳還原反應機制。
拉曼光譜為良好鑑定鍵結的技術,與紅外光譜相比之下,並不會受到水的訊號干擾,十分適合進行臨場電化學量測。然而,當二氧化碳還原反應發生時,將會伴隨氣體產物的產生而干擾拉曼的訊號,為了解決這樣的問題,本實驗設計了一個可以配合拉曼直立式鏡頭及精密電極的反應槽。此拉曼裝置的巧思在於,為了避免產物氣泡的吸附而使用了長焦距鏡頭與水鏡交互搭配,另外還選用面積極小的電極來減少氣泡的生成。除了解決氣相產物對拉曼訊號的干擾外,提高拉曼散射訊號也是本研究的目標,因此本研究合成具有表面增強拉曼效應的銀金屬奈米立方為材料基板,在其表面上成功添加欲觀察的銅金屬薄層,藉此提高銅金屬與二氧化碳鍵結訊號的強度。最後藉由比對獲取的拉曼圖譜以及資料庫,可以鑑定出二氧化碳與催化劑表面反應產生的鍵結。除此之外,這些分析數據也吻合氣相層析–質譜法聯用量測的產物結果。
綜合上述實驗的資訊,本研究將能夠建立一個擁有臨場數據佐證的二氧化碳還原機制。
In recent years, CO2 reduction has been a growing priority for scientists due to the high level of emission. In this field, copper metal catalysts attract much attention because of the hydrocarbon products. However, the mechanism of CO2 reduction using copper metal has not been well-verified. In this work, in situ Raman spectroscopy measurement is applied to study the mechanism of CO2 reduction on copper.
Raman spectroscopy is widely used to identify the bonding states and also less influenced by water molecules than infrared spectroscopy. Thus, it is an effective technique to measure the spectrum of the reactions that happen in a solution. However, when CO2 reduction occurs, gases which interfere with the Raman signals are released as products. Therefore, we designed a new Raman cell coordinated with upright lenses and exquisite electrodes in order to solve this problem. In particular, lense with long focal length was chosen to prevent bubbles from attaching. Three in one electrodes with small surface area were also used to reduce bubble yield. In addition, we also aim to enhance the signal of Raman scattering. Therefore, we synthesized and used the SERS material, silver cubes, as the base of our catalysts, and add the sample copper that we want to investigate on it in order to enhance the signals from the intermediate states of CO2 reduction on copper. Finally, by comparing the obtained Raman spectrum with available data base, we can identify the intermediate bonding state of the CO2 reduction. Furthermore, these analyses can be used to predict the results of gas chromatography–mass spectrometry.
In conclusion, a well‐defined mechanism of CO2 reduction can be established by combining all the informations obtained from the experiments.
目錄
目錄 i
圖目錄 vi
表目錄 xiii
第一章 緒論 1
1.1 奈米材料 1
1.1.1 表面效應 2
1.1.2 電子侷限性 3
1.1.3 奈米材料催化 3
1.1.4 奈米材料合成 4
1.2 雙金屬奈米材料 5
1.2.1 核–殼結構之雙金屬奈米材料合成 6
1.2.2 核–殼結構之雙金屬奈米材料應用 7
1.3 二氧化碳還原反應 8
1.3.1 反應機制 10
1.4 光學檢測方法 13
1.4.1 傅立葉轉換紅外光譜 (Fourier Transform Infrared Spectroscopy, FTIR) 14
1.4.2 拉曼光譜 (Raman spectroscopy) 16
1.4.2.1 表面增強拉曼散射 (Surface-Enhanced Raman Scattering,SERS) 18
1.4.2.2 電磁場增益 (electromagnetic enhancement) 20
1.4.2.3 共振拉曼 (Resonance Raman Scattering,RRS) 20
第二章實驗步驟及實驗分析原理 21
2.1 本研究實驗流程 21
2.2 化學藥品 22
2.3 實驗儀器 23
2.4 銅 – 銀殼核雙金屬奈米材料 24
2.4.1 奈米銀立方 24
2.4.1.1 合成方法 24
2.4.1.2 純化方法 24
2.4.2 奈米銅立方 25
2.4.2.1 合成方法 25
2.4.2.2 純化方法 25
2.4.3 銅 – 銀殼核雙金屬奈米材料 25
2.4.3.1 合成方法 25
2.4.3.2 純化方法 26
2.5 樣品鑑定與分析 27
2.5.1 紫外–可見光吸收光譜 27
2.5.2 電子顯微鏡 30
2.5.2.1 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 30
2.5.2.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 32
2.5.2.3 能量色散X–射線光譜 (Energy–dispersive X–ray spectroscopy, EDS) 33
2.5.3 同步輻射 34
2.5.3.1 X光吸收光譜 35
2.6 電化學分析 37
2.6.1 線性掃描伏安法 (Linear Sweeping Voltammetry, LSV) 39
2.6.2 定電位測定法 (constant potential amperometry, CA) 40
2.7 產物鑑定 40
2.7.1 氣相層析法–質譜聯用(Gas chromatography–mass spectrometry ,GC-Mass) 41
2.7.2 核磁共振光譜 (Nuclear Magnetic Resonance Spectroscopy ,NMR) 43
2.8 臨場量測 (In situ) 45
2.8.1 拉曼光譜 (Raman spectroscopy) 68 46
第三章 結果與討論 49
3.1 銅 – 銀殼核雙金屬奈米材料製備 49
3.1.1 奈米銀/銅立方電子顯微鏡分析 49
3.1.2 銅 – 銀殼核雙金屬奈米材料 53
3.1.2.1 電子顯微鏡分析 53
3.1.2.2 能量色散X 射線光譜分析 56
3.1.2.3 X光吸收光譜分析 58
3.1.3 紫外–可見吸收光譜 59
3.2 電化學分析 61
3.3 二氧化碳電催化產物及拉曼圖譜比對分析 63
3.3.1 二氧化碳電催化產物分析 63
3.3.2 臨場拉曼量測分析 65
3.3.3 單金屬奈米立方 66
3.3.3.1 銀奈米立方二氧化碳電催產物分析 66
3.3.3.2 銀奈米立方拉曼圖譜分析 68
3.3.3.3 銅奈米立方二氧化碳電催產物分析 82
3.3.3.4 銅奈米立方拉曼圖譜分析 90
3.3.4 銅–銀殼核雙金屬奈米立方 96
3.3.4.1 薄銅–銀殼核雙金屬奈米立方電催產物分析 97
3.3.4.2 薄銅–銀殼核雙金屬奈米立方拉曼圖譜分析 100
3.3.4.3 厚銅–銀殼核雙金屬奈米立方電催產物分析 108
3.3.4.4 厚銅–銀殼核雙金屬奈米立方拉曼圖譜分析 112
3.3.5 拉曼圖譜統整 122
3.4 反應機制統整 123
第四章 結論 128
Reference 129
Reference
1.Pokropivny, V.; Lohmus, R.; Hussainova, I.; Pokropivny, A.; Vlassov, S., Introduction to nanomaterials and nanotechnology. Tartu University Press Ukraine: 2007.
2.Husain, M.; Khan, Z. H., Advances in nanomaterials. Springer: 2016.
3.Schodek, D. L.; Ferreira, P.; Ashby, M. F., Nanomaterials, nanotechnologies and design: an introduction for engineers and architects. Butterworth-Heinemann: 2009.
4.林景正; 賴宏仁, 工業材料 1999, 153, 95-101.
5.Roduner, E., Chem. Soc. Rev. 2006, 35, 583-592.
6.Somorjai, G. A.; Chaudret, B., Nanomaterials in catalysis. John Wiley & Sons: 2012.
7.Roucoux, A.; Schulz, J.; Patin, H., Chem. Rev. 2002, 102, 3757-3778.
8.Yang, Y.; Wang, H.; Li, J.; He, B.; Wang, T.; Liao, S., Environ. Sci. Technol. 2012, 46, 6815-6821.
9.賴炤銘; 李錫隆, Chemistry (The Chinese Chem. Soc., Taipei) 2003, 61, 585-597.
10.Cao, G., Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific: 2004.
11.Knez, M.; Nielsch, K.; Niinistö, L., Adv. Mater. 2007, 19, 3425-3438.
12.Yuan, C.; Zhang, X.; Su, L.; Gao, B.; Shen, L., J. Mater. Chem. 2009, 19, 5772-5777.
13.Ehrman, S. H.; Friedlander, S. K.; Zachariah, M. R., J. Mater. Res. 1999, 14, 4551-4561.
14.Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y., Chem. Eur. J. 2005, 11, 454-463.
15.Zou, G.; Li, H.; Zhang, D.; Xiong, K.; Dong, C.; Qian, Y., J. Phys. Chem. B 2006, 110, 1632-1637.
16.Sinfelt, J. H., Acc. Chem. Res. 1977, 10, 15-20.
17.Bolz, F., Advanced materials in catalysis. Elsevier: 2013.
18.Ochal, P.; de la Fuente, J. L. G.; Tsypkin, M.; Seland, F.; Sunde, S.; Muthuswamy, N.; Rønning, M.; Chen, D.; Garcia, S.; Alayoglu, S., J. Electroanal. Chem. 2011, 655, 140-146.
19.Chaudhuri, R. G.; Paria, S., Chem. Rev. 2012, 112, 2373-2433.
20.Subramanian, R.; Denney, P. E.; Singh, J.; Otooni, M., J. Mater. Sci. 1998, 33, 3471-3477.
21.Schneider, G.; Decher, G., Langmuir 2008, 24, 1778-1789.
22.Sneh, O.; Clark-Phelps, R. B.; Londergan, A. R.; Winkler, J.; Seidel, T. E., Thin Solid Films 2002, 402, 248-261.
23.Park, J. C.; Kim, J. Y.; Heo, E.; Park, K. H.; Song, H., Langmuir 2010, 26, 16469-16473.
24.Sun, Y.; Wiley, B.; Li, Z.-Y.; Xia, Y., J. Am. Chem. Soc. 2004, 126, 9399-9406.
25.Xu, S.; Li, H.; Wang, L.; Yue, Q.; Sixiu, S.; Liu, J., CrystEngComm 2014, 16, 9075-9082.
26.Zhang, W.-M.; Hu, J.-S.; Guo, Y.-G.; Zheng, S.-F.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J., Adv. Mater. 2008, 20, 1160-1165.
27.Zhang, L.; Liu, T.; Zhao, X.; Qian, N.; Xiong, P.; Ma, W.; Lu, W.; Gao, Y.; Luo, H., CrystEngComm 2014, 16, 6126-6134.
28.Joo, S. H.; Park, J. Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G. A., Nat. Mater. 2009, 8, 126-131.
29.Huang, Y.; Zhou, X.; Yin, M.; Liu, C.; Xing, W., Chem. Mater. 2010, 22, 5122-5128.
30.Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D., Nat. Mater. 2013, 12, 81-87.
31.Mazumder, V.; Chi, M.; More, K. L.; Sun, S., J. Am. Chem. Soc. 2010, 132, 7848-7849.
32.Monzo, J.; Malewski, Y.; Kortlever, R.; Vidal-Iglesias, F. J.; Solla-Gullon, J.; Koper, M. T. M.; Rodriguez, P., J. Mater. Chem.A 2015, 3, 23690-23698.
33.Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E., Nature 2012, 484.
34.Qiao, J.; Liu, Y.; Hong, F.; Zhang, J., Chem. Soc. Rev. 2014, 43, 631-675.
35.Roberts, F. S.; Kuhl, K. P.; Nilsson, A., Angew. Chem. Int. Ed. 2015, 54, 5179-5182.
36.Song, Y., Peng, R., Hensley, D., Bonnesen, P., Liang, L., Wu, Z., Meyer, H., Chi, M., Ma, C., Sumpter, B. and Rondinone, A., ChemistrySelect 2016, 1, 6055-6061.
37.Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Electrochim. Acta 1994, 39, 1833-1839.
38.Nie, X.; Luo, W.; Janik, M. J.; Asthagiri, A., J. Catal. 2014, 312, 108-122.
39.Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A., Introduction to spectroscopy. Cengage Learning: 2008.
40.Baruch, M. F.; Pander, J. E.; White, J. L.; Bocarsly, A. B., ACS Catal. 2015, 5, 3148-3156.
41.Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S., ACS Catal. 2015, 5, 2814-2821.
42.Schmitt, K. G.; Gewirth, A. A., J. Phys. Chem. C 2014, 118, 17567-17576.
43.Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Chem. Phys. Lett. 1974, 26, 163-166.
44.Jeanmaire, D. L.; Van Duyne, R. P., J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1-20.
45.Jensen, L.; Aikens, C. M.; Schatz, G. C., Chem. Soc. Rev. 2008, 37, 1061-1073.
46.Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P., Annu. Rev. Anal. Chem. 2008, 1, 601-626.
47.Haynes, C. L.; McFarland, A. D.; Duyne, R. P. V., Surface-enhanced Raman spectroscopy. ACS Publications: 2005.
48.Kiefer, W.; Bernstein, H. J., Chem. Phys. Lett. 1972, 16, 5-9.
49.Hildebrandt, P.; Stockburger, M., J. Phys. Chem. 1984, 88, 5935-5944.
50.劉密新, 儀器分析. 清華大学出版社有限公司: 2002.
51.Perkampus, H., UV-VIS Spectroscopy and Its Applications. Springer Science & Business Media: 2013.
52.Adair, J. H.; Li, T.; Kido, T.; Havey, K.; Moon, J.; Mecholsky, J.; Morrone, A.; Talham, D. R.; Ludwig, M. H.; Wang, L., Mater. Sci. Eng. 1998, 23, 139-242.
53.Goodhew, P. J.; Humphreys, J.; Beanland, R., Electron Microscopy and Analysis, Third Edition. CRC Press: 2000.
54.Reimer, L., Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. Springer: 2013.
55.林昆霖, 國家奈米元件實驗室奈米通訊 2013, 20, 34-38.
56.Goldstein, J.; Newbury, D. E.; Joy, D. C.; Lyman, C. E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. R., Scanning Electron Microscopy and X-ray Microanalysis: Third Edition. Springer Science & Business Media: 2012.
57.Russ, J. C., Fundamentals of Energy Dispersive X-Ray Analysis: Butterworths Monographs in Materials. Butterworth-Heinemann: 2013.
58.Yano, J.; Yachandra, V. K., Photosynth. Res. 2009, 102, 241.
59.Penner‐Hahn, J. E., X-ray Absorption Spectroscopy. eLS: 2012.
60.胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司: 2002.
61.Harris, D. C., Exploring Chemical Analysis. W. H. Freeman: 2005.
62.Zoski, C. G., Handbook of Electrochemistry. Elsevier: 2007.
63.Roberge, P. R., Corrosion Engineering Principles and Practice. McGraw-Hill: 2008.
64.Wang, J., Analytical Electrochemistry. John Wiley & Sons: 2000.
65.Nazari, M. H.; Mazhab-Jafari, H.; Leng, L.; Guenther, A.; Genov, R., IEEE Trans. Biomed. Circuits Syst 2013, 7, 338-348.
66.薛華, 分析化學. 清華大学出版社有限公司: 1994.
67.Günther, H., NMR spectroscopy: basic principles, concepts and applications in chemistry. John Wiley & Sons: 2013.
68.Colthup, N., Introduction to infrared and Raman spectroscopy. Elsevier: 2012.
69.Sun, Y.; Xia, Y., Science 2002, 298, 2176-2179.
70.Tao, A.; Sinsermsuksakul, P.; Yang, P., Angew. Chem. Int. Ed. 2006, 45, 4597-4601.
71.Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L., J. Phys. Chem. C 2014, 118, 9801-9808.
72.Tsuji, M.; Hikino, S.; Tanabe, R.; Yamaguchi, D., Chem. Lett. 2010, 39, 334-336.
73.Linic, S.; Christopher, P.; Ingram, D. B., Nat. Mater. 2011, 10, 911-921.
74.Usman, M. S.; Ibrahim, N. A.; Shameli, K.; Zainuddin, N.; Yunus, W. M. Z. W., Molecules 2012, 17, 14928-14936.
75.Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y.; Jiao, F.; Xu, B., J. Am. Chem. Soc. 2017, 139, 3774-3783.
76.Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., Energy Environ. Sci. 2012, 5, 7050-7059.
77.Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J., J. Am. Chem. Soc. 2015, 137, 13844-13850.
78.Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y.; Jiao, F.; Xu, B., J. Am. Chem. Soc. 2017, 139, 3774-3783.
79.Hori, Y., Electrochemical CO2 Reduction on Metal Electrodes. Springer: New York, 2008.
80.Schmitt, K. G.; Gewirth, A. A., J. Phys. Chem. C 2014, 118, 17567-17576.
81.Using Raman Spectroscopy to Assist in the REACH Registration of Gases; Kaiser Optical Systems, Inc.: 2015.
82.Davis, A. R.; Oliver, B. G., J. Solution Chem. 1972, 1, 329-339.
83.Muhlenkamp, K. A., Utilizing Surface Enhanced Raman Spectroscopy to Monitor the Carbon Dioxide Electro‐Reduction Reaction on Copper at Low Overpotentials. The Ohio State University: 2015.
84.Chery, D.; Lair, V.; Cassir, M., Front. Energy Res. 2015, 3, 1-10.
85.Hori, Y., Wakebe, H., Tsukamoto, T. and Koga, O., Electrochim. Act. 1994, 39, 1833-1839.
86.Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F., ACS Catal. 2015, 5, 4293-4299.
87.Mao, H.; Xu, J.; Hu, Y.; Huang, Y.; Song, Y., J. Mater. Chem. A 2015, 3, 11976-11984.
88.Zhang, Y.-J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A., ACS Catal. 2014, 4, 3742-3748.
89.Kuhl, K. P.; Cave, E. R.; Abramc, D. N.; Jaramillo, T. F., Energy Environ. Sci. 2012, 5, 7050-7059.
90.Hori, Y.; Murata, A.; Takahashi, R., J. Chem. Soc. Faraday Trans. I 1989, 85, 2309-2326.
91.Ren, F.; Xiao, X.; Zheng, X. D., Appl. Phys. Lett. 2015, 106, 123901.
92.Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Electrochim. Act. 1994, 39, 1833-1839.
93.HruSak, J., S. Afr. J. Chem. 1997, 50, 93-101.
94.Figueiredo, M. C.; Ledezma-Yanez, I.; Koper, M. T. M., ACS Catal. 2016, 6, 2382-2392.
95.Grewe, J.; Erturk, U.; Otto, A., Langmuir 1998, 14, 696-707.
96.Luo, W.; Nie, X.; Janik, M. J.; Asthagiri, A., ACS Catal. 2016, 6, 219-229.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top