|
第1章 1.4 參考文獻 1.http://www.gly.uga.edu/railsback/Fundamentals/FundamentalsCarbs.html. 2.Xu, J. et al. Testing the cation-hydration effect on the crystallization of Ca–Mg–CO3 systems. Proc. Natl. Acad. Sci. 110, 17750–17755 (2013). 3.Cölfen, H. & Mann, S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003). 4.Cölfen, H. & Antonietti, M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005). 5.Lee, T. & Zhang, C. W. Dissolution enhancement by bio-inspired mesocrystals: the study of racemic (R,S)-(+/-)-sodium ibuprofen dihydrate. Pharm. Res. 25, 1563–1571 (2008). 6.Wu, X. L. et al. Green light stimulates terahertz emission from mesocrystal microspheres. Nat. Nanotechnol. 6, 103–106 (2011). 7.Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M. & Majima, T. A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat. Commun. 5, 3038 (2014). 8.Crossland, E. J. W. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215–219 (2013). 9.Hsieh, Y.-H. et al. Permanent ferroelectric retention of BiFeO3 mesocrystal. Nat. Commun. 7, 13199 (2016). 10.Kim, Y.-Y. et al. A critical analysis of calcium carbonate mesocrystals. Nat. Commun. 5, 4341 (2014). 11.Ma, Y., Cohen, S. R., Addadi, L. & Weiner, S. Sea Urchin Tooth Design: An ‘All-calcite’ Polycrystalline Reinforced Fiber Composite for Grinding Rocks. Adv. Mater. 20, 1555–1559 (2008). 12.Yang, L., Killian, C. E., Kunz, M., Tamura, N. & Gilbert, P. U. P. A. Biomineral nanoparticles are space-filling. Nanoscale 3, 603–609 (2011). 13.Wang, R. Z., Addadi, L. & Weiner, S. Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. Philos. Trans. R. Soc. B Biol. Sci. 352, 469–480 (1997). 14.Ma, Y. et al. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proc. Natl. Acad. Sci. 106, 6048–6053 (2009). 15.Evans, J. S. ‘Liquid-like’ biomineralization protein assemblies: a key to the regulation of non-classical nucleation. CrystEngComm 15, 8388–8394 (2013). 16.Roehrich, A. & Drobny, G. Solid-State NMR Studies of Biomineralization Peptides and Proteins. Acc. Chem. Res. 46, 2136–2144 (2013). 17.Natalio, F. et al. Flexible Minerals: Self-Assembled calcite Spicules with Extreme Bending Strength. Science 339, 1298–1302 (2013). 18.Tester, C. C. et al. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes. CrystEngComm 13, 3975–3978 (2011). 19.Zimmermann, E. A., Busse, B. & Ritchie, R. O. The fracture mechanics of human bone: influence of disease and treatment. BoneKEy Rep. 4, 743 (2015). 20.Fontaine, A. L. et al. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci. Adv. 2, e1601145 (2016). 21.Wang, X. et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127–141 (2016). 22.https://en.wikipedia.org/wiki/Liposome. 23.Mann, S., Hannington, J. P. & Williams, R. J. P. Phospholipid vesicles as a model system for biomineralization. Nature 324, 565–567 (1986).
第3章 3.7參考文獻 1.Gong, Y. U. T. et al. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. U. S. A. 109, 6088–6093 (2012). 2.Loste, E., Wilson, R. M., Seshadri, R. & Meldrum, F. C. The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J. Cryst. Growth 254, 206–218 (2003). 3.Gebauer, D. et al. Proto-calcite and Proto-Vaterite in Amorphous Calcium Carbonates. Angew. Chem. Int. Ed. 49, 8889–8891 (2010). 4.Gal, A. et al. calcite Crystal Growth by a Solid-State Transformation of Stabilized Amorphous Calcium Carbonate Nanospheres in a Hydrogel. Angew. Chem. Int. Ed. 52, 4867–4870 (2013). 5.Stephenson, A. E. et al. Peptides Enhance Magnesium Signature in calcite: Insights into Origins of Vital Effects. Science 322, 724–727 (2008). 6.Nielsen, M. H., Aloni, S. & Yoreo, J. J. D. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014). 7.Wu, C. et al. Dissolution of the calcite (104) Face under Specific calcite–Aspartic Acid Interaction As Revealed by in Situ Atomic Force Microscopy. Cryst. Growth Des. 12, 2594–2601 (2012). 8.Habraken, W. J. E. M. et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 4, 1507 (2013). 9.Mann, S. & Williams, R. J. P. Precipitation within unilamellar vesicles. Part 1. Studies of silver(I) oxide formation. J. Chem. Soc. Dalton Trans. 311–316 (1983). 10.Mann, S., Hannington, J. P. & Williams, R. J. P. Phospholipid vesicles as a model system for biomineralization. Nature 324, 565–567 (1986). 11.Tester, C. C. et al. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes. CrystEngComm 13, 3975–3978 (2011). 12.Tester, C. C., Whittaker, M. L. & Joester, D. Controlling nucleation in giant liposomes. Chem. Commun. 50, 5619–5622 (2014). 13.Prachayasittikul, V., Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Nantasenamat, C. & Galla, H.-J. EDTA-induced membrane fluidization and destabilization: biophysical studies on artificial lipid membranes. Acta Biochim. Biophys. Sin. 39, 901–913 (2007). 14.Bewernitz, M. A., Gebauer, D., Long, J., Cölfen, H. & Gower, L. B. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss. 159, 291–312 (2013). 15.Ihli, J. et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 5, 3169, (2014). 16.Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. U. S. A. 107, 16438–16443 (2010). 17.Rodriguez-Blanco, J. D., Shaw, S. & Benning, L. G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, viavaterite. Nanoscale 3, 265–271 (2011). 18.Huang, Y.-C. et al. Calcium-43 NMR Studies of Polymorphic Transition of calcite to Aragonite. J. Phys. Chem. B 116, 14295–14301 (2012).
第4章 4.4參考文獻 1.Gong, Y. U. T. et al. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. U. S. A. 109, 6088–6093 (2012). 2.Seto, J. et al. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc. Natl. Acad. Sci. 109, 3699–3704 (2012). 3.Ihli, J. et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 5, 3169, (2014). 4.Long, X., Ma, Y. & Qi, L. In Vitro Synthesis of High Mg calcite under Ambient Conditions and Its Implication for Biomineralization Process. Cryst. Growth Des. 11, 2866–2873 (2011). 5.Lenders, J. J. M. et al. High-Magnesian calcite Mesocrystals: A Coordination Chemistry Approach. J. Am. Chem. Soc. 134, 1367–1373 (2012). 6.Xu, J. et al. Testing the cation-hydration effect on the crystallization of Ca–Mg–CO3 systems. Proc. Natl. Acad. Sci. 110, 17750–17755 (2013). 7.Cölfen, H. & Antonietti, M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005). 8.Ma, Y. et al. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proc. Natl. Acad. Sci. 106, 6048–6053 (2009). 9.Yang, L., Killian, C. E., Kunz, M., Tamura, N. & Gilbert, P. U. P. A. Biomineral nanoparticles are space-filling. Nanoscale 3, 603–609 (2011). 10.Berner, R. A. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta 39, 489–504 (1975). 11.Beniash, E., Aizenberg, J., Addadi, L. & Weiner, S. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. B Biol. Sci. 264, 461–465 (1997). 12.Foran, E., Weiner, S. & Fine, M. Biogenic Fish gut Calcium Carbonate is a Stable Amorphous Phase in the Gilt-head Seabream, Sparus aurata. Sci. Rep. 3, (2013). 13.Wang, Y.-Y., Yao, Q.-Z., Zhou, G.-T. & Fu, S.-Q. Transformation of amorphous calcium carbonate into monohydrocalcite in aqueous solution: a biomimetic mineralization study. Eur. J. Mineral. 27, 717–729 (2015). 14.Zhang, Z., Xie, Y., Xu, X., Pan, H. & Tang, R. Transformation of amorphous calcium carbonate into aragonite. J. Cryst. Growth 343, 62–67 (2012). 15.Liu, R. et al. Crystallization and oriented attachment of monohydrocalcite and its crystalline phase transformation. CrystEngComm 15, 509–515 (2013). 16.Schenk, A. S. et al. Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides—relevance to biomineralization. Faraday Discuss. 159, 327–344 (2013). 17.Tseng, Y.-H., Mou, C.-Y. & Chan, J. C. C. Solid-State NMR Study of the Transformation of Octacalcium Phosphate to Hydroxyapatite: A Mechanistic Model for Central Dark Line Formation. J. Am. Chem. Soc. 128, 6909–6918 (2006). 18.Andersson, K. O. et al. XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution. Environ. Sci. Technol. 50, 4229–4237 (2016). 19.Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. U. S. A. 107, 16438–16443 (2010). 20.A. V. Radha, A. F.-M. Energetic and structural studies of amorphous Ca[subscript 1-x]Mg[subscript x]CO[subscript 3]·nH[subscript 2]O (0 {less than] x [less than] 1)). Geochim. Cosmochim. Acta, 90, 83–95 (2012).
第5章 5.3 參考文獻 1.Angelico, R. et al. Biocompatible lecithin organogels: structure and phase equilibria. Langmuir ACS J. Surf. Colloids 21, 140–148 (2005). 2.Kumar, R. & Katare, O. P. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review. AAPS PharmSciTech 6, E298–E310 (2005). 3.Raut, S. et al. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm. Sin. B 2, 8–15 (2012). 4.Cölfen, H. & Antonietti, M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005). 5.Zhang, Z., Xie, Y., Xu, X., Pan, H. & Tang, R. Transformation of amorphous calcium carbonate into aragonite. J. Cryst. Growth 343, 62–67 (2012).
第6章 6.5 參考文獻 1.Zhan, J., Lin, H.-P. & Mou, C.-Y. Biomimetic Formation of Porous Single-Crystalline CaCO3 via Nanocrystal Aggregation. Adv. Mater. 15, 621–623 (2003). 2.Li, H. & Estroff, L. A. Calcite Growth in Hydrogels: Assessing the Mechanism of Polymer-Network Incorporation into Single Crystals. Adv. Mater. 21, 470–473 (2009). 3.Li, H., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels. Science 326, 1244–1247 (2009). 4.Orme, C. A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001). 5.Stephens, C. J., Ladden, S. F., Meldrum, F. C. & Christenson, H. K. Amorphous Calcium Carbonate is Stabilized in Confinement. Adv. Funct. Mater. 20, 2108–2115 (2010). 6.Hollingsworth, M. D. Calcite Biocomposites Up Close. Science 326, 1194–1195 (2009). 7.Brownlee, C. pH regulation in symbiotic anemones and corals: A delicate balancing act. Proc. Natl. Acad. Sci. 106, 16541–16542 (2009). 8.Elhadj, S. et al. Peptide Controls on Calcite Mineralization: Polyaspartate Chain Length Affects Growth Kinetics and Acts as a Stereochemical Switch on Morphology. Cryst. Growth Des. 6, 197–201 (2006). 9.Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium Carbonate Formation and Dissolution. Chem. Rev. 107, 342–381 (2007). 10.Elhadj, S., Yoreo, J. J. D., Hoyer, J. R. & Dove, P. M. Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth. Proc. Natl. Acad. Sci. 103, 19237–19242 (2006). 11.Yoreo, J. J. D. & Dove, P. M. Shaping Crystals with Biomolecules. Science 306, 1301–1302 (2004). 12.Goffredo, S. et al. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation. PLOS ONE 6, e22338 (2011). 13.Busch, S. et al. Biomimetic Morphogenesis of Fluorapatite-Gelatin Composites: Fractal Growth, the Question of Intrinsic Electric Fields, Core/Shell Assemblies, Hollow Spheres and Reorganization of Denatured Collagen. Eur. J. Inorg. Chem. 1999, 1643–1653 (1999). 14.Paparcone, R., Kniep, R. & Brickmann, J. Hierarchical pattern of microfibrils in a 3D fluorapatite–gelatine nanocomposite: simulation of a bio-related structure building process. Phys. Chem. Chem. Phys. 11, 2186–2194 (2009). 15.Spanos, N. & Koutsoukos, P. G. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. J. Cryst. Growth 191, 783–790 (1998). 16.Nebel, H. & Epple, M. Continuous Preparation of Calcite, Aragonite and Vaterite, and of Magnesium-Substituted Amorphous Calcium Carbonate (Mg-ACC). Z. Für Anorg. Allg. Chem. 634, 1439–1443 (2008). 17.Li & Estroff, L. A. Hydrogels Coupled with Self-Assembled Monolayers: An in Vitro Matrix To Study Calcite Biomineralization. J. Am. Chem. Soc. 129, 5480–5483 (2007). 18.Hou, W.-T. & Feng, Q.-L. Morphologies and Growth Model of Biomimetic Fabricated Calcite Crystals Using Amino Acids and Insoluble Matrix Membranes of Mytilus edulis. Cryst. Growth Des. 6, 1086–1090 (2006). 19.Gower, L. B. Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization. Chem. Rev. 108, 4551-4627 (2008). 20.Zhong, C. & Chu, C. C. Acid Polysaccharide-Induced Amorphous Calcium Carbonate (ACC) Films: Colloidal Nanoparticle Self-Organization Process. Langmuir 25, 3045–3049 (2009). 21.Mason, S. F. Origins of biomolecular handedness. Nature 311, 19–23 (1984).
|