跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:dbb8:8235:aad7:a019) 您好!臺灣時間:2024/12/08 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:于寶韜
研究生(外文):Pao-Tao Yu
論文名稱:非晶態碳酸鈣於仿生條件的相穩定與演化
論文名稱(外文):Biomimetic Phase Stabilization and Evolution of the Amorphous Calcium Carbonate
指導教授:陳振中陳振中引用關係
指導教授(外文):Chun-Chung Chan
口試日期:2017-07-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:124
中文關鍵詞:生物礦化含鎂方解石介晶體自組裝固態相轉變
外文關鍵詞:BiomineralizationHigh magnesium calciteMesocrystalSelf-assemblySpiculeSolid-state transformation.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:695
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物礦化指生物體內產生礦物質的過程,舉凡在貝殼、珍珠、珊瑚、骨頭、牙齒……等礦物可發現此現象;從奈米尺寸到宏觀世界,將硬物質和軟物質、無機與有機材料組合起來。本研究採取仿生條件提供無晶相碳酸鈣ACC的相演化環境,接續嘗試以原子力顯微鏡與cryo-TEM追蹤成核過程,並提供微脂體鍍膜限制空間和鎂離子以抑制晶體的長晶和相轉變,水溶液中能長時間穩定的含鎂非晶態碳酸鈣。改良系統以脂質模板(lipid templating)進行實驗,於室溫無溶劑環境隨Aging時間增加,以IR與XRD觀察到含鎂非晶態碳酸鈣; MgACC高度選擇性單一相轉變至Mg-calcite現象,並且以HR-FETEM追蹤到晶體由無晶相轉變成部分晶格紋路,進而再轉變為高度有序晶格紋路,SAED說明為奈米尺度的單晶Mg-calcite。於室溫無水溶液之Aging過程以SEM鑑定由奈米粒子聚集成鉅觀球體,將球體進行FIB後TEM的暗場結果得知奈米單晶具有高度有序位相的排列。後續以同輻光源XANES量測Ca的L edge與熱分析(TGA、DSC)實驗,說明lipid模板系統製備之MgACC經歷室溫下以較低活化能脫去結構水的固態相轉變路徑。為解釋水合能高的含MgACC能於Aging過程脫去結構水產生晶相,進而提出假設為lipid藉由鍵結鎂將結構水帶出礦物,在SEM-EDS表面量測得較多鎂含量得以之支持。固態NMR鑑定得知lipid因為與碳酸鈣鍵結造成兩種磷的環境,同輻XANES P-K edge說明lipid的phosphate與MgACC具有化學吸附關係。隨Aging時間增加,lipid-Mg-calcite球體外隨著含鎂量較高之lipid首先生成lipid與奈米粒子組成之有機膠體纖維柱狀型態,引發球體的黏附與融合而於Aging時間增加得到數百~數千微米尺度骨針狀晶型,近似生物體骨骼的相轉變與晶型演化現象。最終以洋菜膠與天門冬胺酸提供限制空間條件,促使ACC相轉成calcite與具有掌性之vaterite碳酸鈣,說明碳酸鈣形貌具有多變特徵。
Biomineralization refers to the biological process through which highly ordered inorganic materials with hierarchical structures are formed in living organisms. Currently, the mechanisms of biomineralization remains largely unknown. In this work, we used AFM to track the mineralization process of magnesium containing amorphous calcium carbonate (MgACC). The lipid templating method was used to synthesize and stable the MgACC for more than fifteen hours. For a longer setting time of lipid-MgACC in the solution, high Mg-calcite was also observed. The XRD and FT-IR measurements showed that lipid-MgACC powder would transform to high Mg-calcite during the aging process without heating and solvent. HR-TEM and SAED were used to characterize the fringes of Mg-calcite in this aging process. The nano-sized crystallinities of Mg-calcite could self-assemble to form spherical particles of 20 m with aging. Focused ion beam milling and dark field TEM imaging were performed to observe the amorphous region and highly co-orientated nano-crystallites of Mg-calcite inside the microspheres. From Ca-L edge XANES and low temperature crystallization peak as revealed by the TGA-DSC measurements, we infer that lipids helped remove the structure water of Mg-ACC in the aging process. On the basis of all the experimental data, it is suggested that the Mg-calcite crystallization process occurred via the solid-state transformation pathway. We hypothesize that lipid bound Mg-containing nanoparticles were extruded with the structure water and formed the lecithin organogel fiber. The fibers were highly adhesive for the spherical Mg-calcite. As the aging time increased, the microspheres of Mg-calcite aggregated along the fiber and consequently fused to form the long spicule. Lastly, chiral morphology of calcium carbonate was obtained in agarose gel in the presence of aspartic acids, demonstrating the versatile morphology of calcium carbonate.
第1章 序論 1
1.1 生物礦化導論 1
1.1.1 生物體中之含鎂碳酸鈣 1
1.1.2 鎂元素於人體骨骼磷酸鈣晶體中的重要性 6
1.2 微脂體於生物礦化角色 8
1.3 生物礦化研究動機 9
1.4 參考文獻 9
第2章 研究方法與儀器鑑定 12
2.1 化學儀器與藥品 12
2.1.1使用儀器 12
2.1.2使用藥品 13
2.2 微型反應器 14
2.3 樣品鑑定方法 15
2.3.1 X光粉末繞射儀 15
2.3.2傅立葉轉換紅外光譜儀 15
2.3.3描式電子顯微鏡 15
2.3.4 X-ray 能量色散光譜儀 16
2.3.5穿透式電子顯微鏡 16
2.3.6熱重分析儀 17
2.3.7差示掃描量熱法 17
2.3.8原子力顯微鏡 17
第3章 非晶相碳酸鈣之穩定 20
3.1以微量混合器製備穩定的無晶相碳酸鈣 20
3.1.1導論 20
3.1.2實驗方法 20
3.1.3實驗結果與討論 21
3.2以原子力顯微鏡原位追蹤反應之成核現象 24
3.2.1導論 24
3.2.2實驗步驟與結果討論 24
3.3 以逆相微胞穩定無晶相碳酸鈣 32
3.3.1導論 32
3.3.2 實驗方法 32
3.4 以微酯體穩定無晶相碳酸鈣 38
3.4.1實驗方法 38
3.4.2結果與討論 39
3.4.3加入鎂離子使得碳酸鈣於微脂體內外有相轉變的差異 42
3.5 脂質鍍膜碳酸鈣研究(lipid coating) 44
3.5.1實驗方法 44
3.6 脂質模板礦化反應 48
3.7 參考文獻 49
第4章 含鎂非晶相碳酸鈣之相轉變 52
4.1 導論 52
4.2 實驗方法 53
4.2.1 MgACC與Mg-calcite樣品製備 53
4.2.2 MgACC於無溶劑環境下的相轉變 54
4.3 實驗結果 54
4.4參考文獻 81
第5章 含鎂方解石單晶與自聚集現象 83
5.1 導論 83
5.2 實驗結果 83
5.3 參考文獻 105
第6章 洋菜膠作為限制空間的礦化反應 106
6.1 導論 106
6.2 實驗方法 107
6.3 結果和討論 108
6.4 結論 120
6.5 參考文獻 121
第7章 結論 123
第1章
1.4 參考文獻
1.http://www.gly.uga.edu/railsback/Fundamentals/FundamentalsCarbs.html.
2.Xu, J. et al. Testing the cation-hydration effect on the crystallization of Ca–Mg–CO3 systems. Proc. Natl. Acad. Sci. 110, 17750–17755 (2013).
3.Cölfen, H. & Mann, S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003).
4.Cölfen, H. & Antonietti, M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005).
5.Lee, T. & Zhang, C. W. Dissolution enhancement by bio-inspired mesocrystals: the study of racemic (R,S)-(+/-)-sodium ibuprofen dihydrate. Pharm. Res. 25, 1563–1571 (2008).
6.Wu, X. L. et al. Green light stimulates terahertz emission from mesocrystal microspheres. Nat. Nanotechnol. 6, 103–106 (2011).
7.Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M. & Majima, T. A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat. Commun. 5, 3038 (2014).
8.Crossland, E. J. W. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215–219 (2013).
9.Hsieh, Y.-H. et al. Permanent ferroelectric retention of BiFeO3 mesocrystal. Nat. Commun. 7, 13199 (2016).
10.Kim, Y.-Y. et al. A critical analysis of calcium carbonate mesocrystals. Nat. Commun. 5, 4341 (2014).
11.Ma, Y., Cohen, S. R., Addadi, L. & Weiner, S. Sea Urchin Tooth Design: An ‘All-calcite’ Polycrystalline Reinforced Fiber Composite for Grinding Rocks. Adv. Mater. 20, 1555–1559 (2008).
12.Yang, L., Killian, C. E., Kunz, M., Tamura, N. & Gilbert, P. U. P. A. Biomineral nanoparticles are space-filling. Nanoscale 3, 603–609 (2011).
13.Wang, R. Z., Addadi, L. & Weiner, S. Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. Philos. Trans. R. Soc. B Biol. Sci. 352, 469–480 (1997).
14.Ma, Y. et al. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proc. Natl. Acad. Sci. 106, 6048–6053 (2009).
15.Evans, J. S. ‘Liquid-like’ biomineralization protein assemblies: a key to the regulation of non-classical nucleation. CrystEngComm 15, 8388–8394 (2013).
16.Roehrich, A. & Drobny, G. Solid-State NMR Studies of Biomineralization Peptides and Proteins. Acc. Chem. Res. 46, 2136–2144 (2013).
17.Natalio, F. et al. Flexible Minerals: Self-Assembled calcite Spicules with Extreme Bending Strength. Science 339, 1298–1302 (2013).
18.Tester, C. C. et al. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes. CrystEngComm 13, 3975–3978 (2011).
19.Zimmermann, E. A., Busse, B. & Ritchie, R. O. The fracture mechanics of human bone: influence of disease and treatment. BoneKEy Rep. 4, 743 (2015).
20.Fontaine, A. L. et al. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci. Adv. 2, e1601145 (2016).
21.Wang, X. et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127–141 (2016).
22.https://en.wikipedia.org/wiki/Liposome.
23.Mann, S., Hannington, J. P. & Williams, R. J. P. Phospholipid vesicles as a model system for biomineralization. Nature 324, 565–567 (1986).

第3章
3.7參考文獻
1.Gong, Y. U. T. et al. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. U. S. A. 109, 6088–6093 (2012).
2.Loste, E., Wilson, R. M., Seshadri, R. & Meldrum, F. C. The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J. Cryst. Growth 254, 206–218 (2003).
3.Gebauer, D. et al. Proto-calcite and Proto-Vaterite in Amorphous Calcium Carbonates. Angew. Chem. Int. Ed. 49, 8889–8891 (2010).
4.Gal, A. et al. calcite Crystal Growth by a Solid-State Transformation of Stabilized Amorphous Calcium Carbonate Nanospheres in a Hydrogel. Angew. Chem. Int. Ed. 52, 4867–4870 (2013).
5.Stephenson, A. E. et al. Peptides Enhance Magnesium Signature in calcite: Insights into Origins of Vital Effects. Science 322, 724–727 (2008).
6.Nielsen, M. H., Aloni, S. & Yoreo, J. J. D. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).
7.Wu, C. et al. Dissolution of the calcite (104) Face under Specific calcite–Aspartic Acid Interaction As Revealed by in Situ Atomic Force Microscopy. Cryst. Growth Des. 12, 2594–2601 (2012).
8.Habraken, W. J. E. M. et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 4, 1507 (2013).
9.Mann, S. & Williams, R. J. P. Precipitation within unilamellar vesicles. Part 1. Studies of silver(I) oxide formation. J. Chem. Soc. Dalton Trans. 311–316 (1983).
10.Mann, S., Hannington, J. P. & Williams, R. J. P. Phospholipid vesicles as a model system for biomineralization. Nature 324, 565–567 (1986).
11.Tester, C. C. et al. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes. CrystEngComm 13, 3975–3978 (2011).
12.Tester, C. C., Whittaker, M. L. & Joester, D. Controlling nucleation in giant liposomes. Chem. Commun. 50, 5619–5622 (2014).
13.Prachayasittikul, V., Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Nantasenamat, C. & Galla, H.-J. EDTA-induced membrane fluidization and destabilization: biophysical studies on artificial lipid membranes. Acta Biochim. Biophys. Sin. 39, 901–913 (2007).
14.Bewernitz, M. A., Gebauer, D., Long, J., Cölfen, H. & Gower, L. B. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss. 159, 291–312 (2013).
15.Ihli, J. et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 5, 3169, (2014).
16.Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. U. S. A. 107, 16438–16443 (2010).
17.Rodriguez-Blanco, J. D., Shaw, S. & Benning, L. G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, viavaterite. Nanoscale 3, 265–271 (2011).
18.Huang, Y.-C. et al. Calcium-43 NMR Studies of Polymorphic Transition of calcite to Aragonite. J. Phys. Chem. B 116, 14295–14301 (2012).

第4章
4.4參考文獻
1.Gong, Y. U. T. et al. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. U. S. A. 109, 6088–6093 (2012).
2.Seto, J. et al. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc. Natl. Acad. Sci. 109, 3699–3704 (2012).
3.Ihli, J. et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 5, 3169, (2014).
4.Long, X., Ma, Y. & Qi, L. In Vitro Synthesis of High Mg calcite under Ambient Conditions and Its Implication for Biomineralization Process. Cryst. Growth Des. 11, 2866–2873 (2011).
5.Lenders, J. J. M. et al. High-Magnesian calcite Mesocrystals: A Coordination Chemistry Approach. J. Am. Chem. Soc. 134, 1367–1373 (2012).
6.Xu, J. et al. Testing the cation-hydration effect on the crystallization of Ca–Mg–CO3 systems. Proc. Natl. Acad. Sci. 110, 17750–17755 (2013).
7.Cölfen, H. & Antonietti, M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005).
8.Ma, Y. et al. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proc. Natl. Acad. Sci. 106, 6048–6053 (2009).
9.Yang, L., Killian, C. E., Kunz, M., Tamura, N. & Gilbert, P. U. P. A. Biomineral nanoparticles are space-filling. Nanoscale 3, 603–609 (2011).
10.Berner, R. A. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta 39, 489–504 (1975).
11.Beniash, E., Aizenberg, J., Addadi, L. & Weiner, S. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. B Biol. Sci. 264, 461–465 (1997).
12.Foran, E., Weiner, S. & Fine, M. Biogenic Fish gut Calcium Carbonate is a Stable Amorphous Phase in the Gilt-head Seabream, Sparus aurata. Sci. Rep. 3, (2013).
13.Wang, Y.-Y., Yao, Q.-Z., Zhou, G.-T. & Fu, S.-Q. Transformation of amorphous calcium carbonate into monohydrocalcite in aqueous solution: a biomimetic mineralization study. Eur. J. Mineral. 27, 717–729 (2015).
14.Zhang, Z., Xie, Y., Xu, X., Pan, H. & Tang, R. Transformation of amorphous calcium carbonate into aragonite. J. Cryst. Growth 343, 62–67 (2012).
15.Liu, R. et al. Crystallization and oriented attachment of monohydrocalcite and its crystalline phase transformation. CrystEngComm 15, 509–515 (2013).
16.Schenk, A. S. et al. Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides—relevance to biomineralization. Faraday Discuss. 159, 327–344 (2013).
17.Tseng, Y.-H., Mou, C.-Y. & Chan, J. C. C. Solid-State NMR Study of the Transformation of Octacalcium Phosphate to Hydroxyapatite:  A Mechanistic Model for Central Dark Line Formation. J. Am. Chem. Soc. 128, 6909–6918 (2006).
18.Andersson, K. O. et al. XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution. Environ. Sci. Technol. 50, 4229–4237 (2016).
19.Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. U. S. A. 107, 16438–16443 (2010).
20.A. V. Radha, A. F.-M. Energetic and structural studies of amorphous Ca[subscript 1-x]Mg[subscript x]CO[subscript 3]·nH[subscript 2]O (0 {less than] x [less than] 1)). Geochim. Cosmochim. Acta, 90, 83–95 (2012).

第5章
5.3 參考文獻
1.Angelico, R. et al. Biocompatible lecithin organogels: structure and phase equilibria. Langmuir ACS J. Surf. Colloids 21, 140–148 (2005).
2.Kumar, R. & Katare, O. P. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review. AAPS PharmSciTech 6, E298–E310 (2005).
3.Raut, S. et al. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm. Sin. B 2, 8–15 (2012).
4.Cölfen, H. & Antonietti, M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005).
5.Zhang, Z., Xie, Y., Xu, X., Pan, H. & Tang, R. Transformation of amorphous calcium carbonate into aragonite. J. Cryst. Growth 343, 62–67 (2012).

第6章
6.5 參考文獻
1.Zhan, J., Lin, H.-P. & Mou, C.-Y. Biomimetic Formation of Porous Single-Crystalline CaCO3 via Nanocrystal Aggregation. Adv. Mater. 15, 621–623 (2003).
2.Li, H. & Estroff, L. A. Calcite Growth in Hydrogels: Assessing the Mechanism of Polymer-Network Incorporation into Single Crystals. Adv. Mater. 21, 470–473 (2009).
3.Li, H., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels. Science 326, 1244–1247 (2009).
4.Orme, C. A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001).
5.Stephens, C. J., Ladden, S. F., Meldrum, F. C. & Christenson, H. K. Amorphous Calcium Carbonate is Stabilized in Confinement. Adv. Funct. Mater. 20, 2108–2115 (2010).
6.Hollingsworth, M. D. Calcite Biocomposites Up Close. Science 326, 1194–1195 (2009).
7.Brownlee, C. pH regulation in symbiotic anemones and corals: A delicate balancing act. Proc. Natl. Acad. Sci. 106, 16541–16542 (2009).
8.Elhadj, S. et al. Peptide Controls on Calcite Mineralization:  Polyaspartate Chain Length Affects Growth Kinetics and Acts as a Stereochemical Switch on Morphology. Cryst. Growth Des. 6, 197–201 (2006).
9.Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium Carbonate Formation and Dissolution. Chem. Rev. 107, 342–381 (2007).
10.Elhadj, S., Yoreo, J. J. D., Hoyer, J. R. & Dove, P. M. Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth. Proc. Natl. Acad. Sci. 103, 19237–19242 (2006).
11.Yoreo, J. J. D. & Dove, P. M. Shaping Crystals with Biomolecules. Science 306, 1301–1302 (2004).
12.Goffredo, S. et al. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation. PLOS ONE 6, e22338 (2011).
13.Busch, S. et al. Biomimetic Morphogenesis of Fluorapatite-Gelatin Composites: Fractal Growth, the Question of Intrinsic Electric Fields, Core/Shell Assemblies, Hollow Spheres and Reorganization of Denatured Collagen. Eur. J. Inorg. Chem. 1999, 1643–1653 (1999).
14.Paparcone, R., Kniep, R. & Brickmann, J. Hierarchical pattern of microfibrils in a 3D fluorapatite–gelatine nanocomposite: simulation of a bio-related structure building process. Phys. Chem. Chem. Phys. 11, 2186–2194 (2009).
15.Spanos, N. & Koutsoukos, P. G. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. J. Cryst. Growth 191, 783–790 (1998).
16.Nebel, H. & Epple, M. Continuous Preparation of Calcite, Aragonite and Vaterite, and of Magnesium-Substituted Amorphous Calcium Carbonate (Mg-ACC). Z. Für Anorg. Allg. Chem. 634, 1439–1443 (2008).
17.Li & Estroff, L. A. Hydrogels Coupled with Self-Assembled Monolayers:  An in Vitro Matrix To Study Calcite Biomineralization. J. Am. Chem. Soc. 129, 5480–5483 (2007).
18.Hou, W.-T. & Feng, Q.-L. Morphologies and Growth Model of Biomimetic Fabricated Calcite Crystals Using Amino Acids and Insoluble Matrix Membranes of Mytilus edulis. Cryst. Growth Des. 6, 1086–1090 (2006).
19.Gower, L. B. Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization. Chem. Rev. 108, 4551-4627 (2008).
20.Zhong, C. & Chu, C. C. Acid Polysaccharide-Induced Amorphous Calcium Carbonate (ACC) Films: Colloidal Nanoparticle Self-Organization Process. Langmuir 25, 3045–3049 (2009).
21.Mason, S. F. Origins of biomolecular handedness. Nature 311, 19–23 (1984).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top