(3.238.186.43) 您好!臺灣時間:2021/02/28 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉曉橋
研究生(外文):Hsiao-Chiao Liu
論文名稱:氟與氰基取代的有機小分子材料之合成、性質與太陽能電池應用
論文名稱(外文):Synthesis, Properties and Application of Fluorinated and Cyanated Small Molecular Materials for Organic Solar Cells
指導教授:汪根欉
指導教授(外文):Ken-Tsung Wong
口試日期:2017-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:147
中文關鍵詞:有機小分子材料
外文關鍵詞:Small Molecular Materials
相關次數:
  • 被引用被引用:1
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機太陽能電池 (OSCs) 相較於其他再生能源,具有低成本、輕量化、材料多樣性與可調性等優點,故近年來許多研究致力於開發新的元件架構與新的有機材料來提升太陽能電池的效率與耐久度。而小分子有機材料的優勢在於純化相對容易,每批品質一致,並且分子量低有利於蒸鍍製程。
本篇論文敘述設計合成出7個以 DAA 為架構之小分子電子予體,搭配 C70為電子受體應用於蒸鍍製程中有不錯得元件效率表現,探討分子結構對物化性質、晶體排列之影響及元件效率的關係。第一章介紹有機太陽能電池的基本原理與分子設計策略;第二章描述合成出以高平面性的強推電子基團雙噻吩並吡咯為中心,搭配引入單氟原子在苯並噻二唑為拉電子基團的染料,其中 DTPFoCN 達到5.1% 效率。在第三章中,以推電子基團 Ditolylaminophenyl 搭配苯並噻二唑, 分別引入雙氟原子與不同位相的氰基增強尾端拉電子基團的能力,更有效的降低LUMO能階,與其對照組比較四個分子的吸收光譜皆有紅移現象,其中DTCPBTCN2 效率最佳可達到5.4%。延伸合成噻吩取代苯環為架橋的DTCTBTCN3 結構,得到吸光更紅移的小分子。
Organic photovoltaics (OPVs) have the advantages of low manufacturing cost, environment friendly, material diversification and tenability. Therefore many studies have focused on the development of new organic materials in recent years to enhance the solar conversion efficiency and stability. In contrast to the polymers, small molecule organic compounds have consistent quality, well-defined structure and lower molecular weight, conducive to the evaporation process. Recently, a class of molecules with donor-acceptor-acceptor (D-A-A*) structure developed by our group can achieve a power conversion efficiency (PCE) of 6.80%. Based on this molecular architecture, we further introduced rigid and coplanar dithienopyrrole as electron donating part (D) to couple with benzothiadiazolecarbonitrile (A-A*), giving DTPFiCN and DTPFoCN. On the other hand, we introduced different numbers of fluorines and cyano groups into benzothiadiazole to enhance the ability of electron withdrawing, giving DTCPFFBTCN, DTCPiFBTCN, DTCPBTCN2 and DTCPBTCN3, to investigate the inductive effect and resonance effect of different substituted position. We also changed π-spacer to enhance the electron donating ability and quinoid character, giving DTCTBTCN3. Their photophysical and electrochemical properties, crystal packing, and photovoltaic performance of these seven molecules are disused.
第一章 有機小分子太陽能電池簡介………………………………………………………….1
1-1 太陽能電池發展與介紹…………………………………………………………1
1-2 有機太陽能電池基本原理………………………………………………………3
1-3 不對稱型有機小分子太陽能電池簡介…………………………………………………7
1-4 研究動機……………………………………………………………………..…13
1-5 參考文獻………………………………………………………………………..15

第二章 以雙噻吩并吡咯為主體之DAA小分子染料的合成與應用……………….17
2-1 雙噻吩并吡咯衍生物之合成與性質…………………………………………..17
2-1-1 DTP衍生物背景介紹與分子設計…………………………...……………17
2-1-2 DTPFiCN與DTPFoCN分子合成……………………………...…………19
2-1-3 DTPFiCN與DTPFoCN分子光物理性質………………………………...23
2-1-4 DTPFiCN與DTPFoCN分子電化學性質……………………………...…25
2-1-5 DTPFiCN與DTPFoCN分子熱性質…………………………………...…26
2-1-6 DTPFiCN與DTPFoCN分子理論計算分析………………………...……27
2-1-7 DTPFiCN分子之X-ray結構.......................................................................29
2-2 雙噻吩并吡咯衍生物在光伏電池上的應用…………………………………..31
2-2-1 DTPFiCN與DTPFoCN的塊材混合型異質接面元件………………….......31
2-3 結論……………………………………………………………………………..33
2-4 參考文獻………………………………………………………………………..34

第三章 苯并噻二唑拉電子能力增強之DAA小分子染料的合成與應用………….35
3-1氟取代與氰基取代苯并噻二唑衍生物之合成與性質………………………...35
3-1-1 氟取代和氰基取代的效應與分子設計…………………………………...35
3-1-2 拉電子能力增強之DAA系列染料合成…………………………...…….40
3-1-3 拉電子能力增強之DAA系列染料光物理性質……………………...….45
3-1-4 拉電子能力增強之DAA系列染料電化學性質……………………...….48
3-1-5 拉電子能力增強之DAA系列染料熱性質…………………………...….50
3-1-6 拉電子能力增強之DAA系列染料理論計算分析…………………...….50
3-1-7 拉電子能力增強之DAA系列染料X-ray結構………………………….53
3-2 氟取代與氰基取代苯并噻二唑衍生物在光伏電池上的應用………………..60
3-2-1 拉電子能力增強之DAA系列染料的塊材混合型異質接面元件…...….60
3-3 結論……………………………………………………………………....……..62
3-4 參考文獻………………………………………………………………………..63

第四章 實驗部分……………………………………………………………………...65
4-1 實驗儀器………………………………………………………………………..65
4-2 合成……………………………………………………………………………..67

附錄甲 1H NMR、13C NMR and 19F NMR spectra………………………………......77
附錄乙 X-ray Crystallography Data…………………………………………………...88
1-5 參考文獻
(1)http://www.chyxx.com/industry/201602/386494.html
(2)https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png
(3)Sritharan, K.; Strobl, C. J.; Schneider, M. F.; Wixforth, A. Appl. Phys. Lett. 2006, 88, 054102.
(4)Tress, W.; Merten, A.; Furno, M.; Hein, M.; Leo, K.; Riede, M. Adv. Energy Mater. 2013, 3, 631–638.
(5)Zhang, W.; Tse, S. C.; Lu, J.; Tao, Y.; Wong, M. S. Journal of Materials Chemistry, 2010, 2182-2189.
(6)Kronenberg, N. M.; Deppisch, M.; Würthner, F.; Lademann, H. W. A.; Deing, K.; Meerholz, K. Chem. Commun. 2008, 6489.
(7)Bürckstümmer, H.; Kronenberg, N. M.; Gsänger, M.; Stolte, M.; Meerholz, K.; Würthner, F. J. Mater. Chem. 2010, 20, 240-243.
(8)Steinmann, V.; Kronenberg, N. M.; Lenze, M. R.; Graf, S. M.; Hertel, D.; Meerholz, K.; Bürckstümmer, H.; Tulyakova, E. V.; Würthner, F. Adv. Energy Mater. 2011, 888–893.
(9)Chen, Y. H.; Lin, L. Y.; Lu, C. W.; Lin, F.; Huang, Z. Y.; Lin, H. W.; Wang, P. H.; Liu, Y. H.; Wong, K. T.; Wen, J.; Miller, J.; Darling, S. B. J. Am. Chem. Soc. 2012, 134, 33, 13616–13623.
(10)Zou, Y.; Holst, J.; Zhang, Y.; Holmes, R. J. J. Mater. Chem. A. 2014, 2, 12397-12402.
(11)Griffith, O. L.; Liu, X.; Amonoo, J. A.; Djurovich, P. I.; Thompson, M. E.; Green, P. F. ; Forrest, S. R. Phys. Rev. 2015, 92, 085404.
(12)Zhang, X.; Steckler, T. T.; Dasari, R. R.; Ohira, S.; Potscavage, W.; Tiwari, S. P.; Coppee, S.; Ellinger, S.; Barlow, S.; Bredas, J.-L.; Kippelen, B.; Reynolds, J. R.; Marder, S. R. J. Mater. Chem. 2010, 20, 123.
(13)Cai, N.; Zhang, J.; Xu, M.; Zhang, M.; Wang, P. Adv. Funct. Mater. 2013, 23, 3539–3547.
(14)Weidelener, M.; Wessendorf, C. D.; Hanisch, J.; Ahlswede, E.; Götz, G.; Lindén, M.; Schulz, G.; Mena-Osteritz, E.; Mishra, A.; Bäuerle, P. Chem. Commun. 2013, 49, 10865-10867.
(15)Li, M.; Ni, W.; Feng, H.; Kan, B.; Wan, X.; Zhang, Y.; Yang, X.; Chen, Y. Chin. J. Chem. 2015, 33, 852–858.
(16)Liu, D.; Zhao, W.; Zhang, S.; Ye, L.; Zheng, Z.; Cui, Y.; Chen, Y.; Hou, J. Macromolecules. 2015, 48, 15, 5172–5178.
(17)Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 21, 7148–7151.
(18)Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. Nat. Commun. 2016, 7, 13740.
(19)Van der Poll, T. S.; Love, J. A.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646–3649.
(20)Gupta, V.; Kyaw, A. K.; Wang, D. H.; Chand, S.; Bazan, G. C.; Heeger, A. J. Sci. Rep. 2013, 3, 1965.
(21)Nazim, M.; Ameen, S.; Seo, H. K.; Shin, H.S. Sci. Rep. 2015, 5, 11143.
(22)Kietzke, T.; Hörhold, H.-H.; Neher, D. Chem. Mater. 2005, 17, 6532–6537.
(23)Yang, D.; Jiao, Y.; Yang, L.; Chen, Y.; Mizoi, S.; Huang, Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. J. Mater. Chem. A. 2015, 3, 17704.
(24)Holcombe, T. W.; Woo, C. H.; Kavulak, D. F. J.; Thompson, B. C.; Fréchet, J. M. J. J. Am. Chem. Soc. 2009, 131, 14160–14161.
(25)Patil, Y.; Misra, R.; Keshtov, M. L.; Sharma, G. D. J. Mater. Chem. A. 2017, 5, 3311-3319.
(26)Casey, A.; Han, Y.; Fei, Z.; White, A. J. P.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. C. 2015, 3, 265-275.
2-4 參考文獻
(1)Zhang, X.; Steckler, T. T.; Dasari, R. R.; Ohira, S.; Potscavage, W.; Tiwari, S. P.; Coppee, S.; Ellinger, S.; Barlow, S.; Bredas, J.-L.; Kippelen, B.; Reynolds, J. R.; Marder, S. R. J. Mater. Chem. 2010, 20, 123.
(2)Cai, N.; Zhang, J.; Xu, M.; Zhang, M.; Wang, P. Adv. Funct. Mater. 2013, 23, 3539–3547.
(3)Weidelener, M.; Wessendorf, C. D.; Hanisch, J.; Ahlswede, E.; Götz, G.; Lindén, M.; Schulz, G.; Mena-Osteritz, E.; Mishra, A.; Bäuerle, P. Chem. Commun. 2013, 49, 10865-10867.
(4)Li, M.; Ni, W.; Feng, H.; Kan, B.; Wan, X.; Zhang, Y.; Yang, X.; Chen, Y. Chin. J. Chem. 2015. 33, 852–858.
(5)Barlow, S. A.; Odom, K.; Lancaster, Y. A.; Getmanenko, R.; Mason, V.; Coropceanu, J.‐L.; Brédas, S. R.; Marder, J. Phys. Chem. B. 2010, 114, 14397.
(6)Lu, H. I.; Lu, C. W.; Lee, Y .C.; Lin, H. W.; Lin, L. Y.; Lin, F.; Chang, J. H.; Wu, C. I.; Wong, K. T. Chem. Mater. 2014, 26, 15, 4361–4367.
(7)Lin, L. Y.; Tsai, C. H.; Lin, F.; Huang, T. W.; Chou, S. H.; Wu, C. C.; Wong, K. T. Tetrahedron. 2012, 68, 36, 7509–7516.
(8)Evenson, S. J.; Pappenfus, T. M.; Delgado, M. C. R.; Radke-Wohlers, K. R.; Navarrete, J. T. L.; Rasmussen, S. C. Phys. Chem. Chem. Phys. 2012, 14, 6101.
(9)Mitsudo, K.; Shimohara, S.; Mizoguchi, J.; Mandai, H.; Suga, S. Org. Lett. 2012, 14, 11, 2702–2705.
(10)Tamilavan, V.; Song, M.; Kim, S.; Agneeswari, R.; Kang, J. W.; Hyun, M. H. Polymer. 2013, 54, 3198-3205.
(11)Van der Poll, T. S.; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646–3649.
(12)Tschaen, D. M.; Desmond, R.; King, A. O.; Fortin, M. C.; Pipik, B.; King, S.; Verhoeven, T. R. Synth. Commun. 1994, 24, 887–890.
(13)Gunderson, L. L. Acta Chim. Scand. 1996, 50, 58–63.
(14)Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679–9694.
3-4 參考文獻
(1)Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135, 5, 1806–1815.
(2)Nguyen, T. L.; Choi, H.; Ko, S.-J. M.; Uddin, A.; Walker, B.; Yum, S.; Jeong, J.-E.; Yun, M. H.; Shin, T. J.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Energy Environ. Sci. 2014, 7, 3040-3051.
(3)Yang, D.; Jiao, Y.; Yang, L.; Chen, Y.; Mizoi, S.; Huang, Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. J. Mater. Chem. A. 2015, 3, 17704.
(4)Cha, H.; Kim, H. N.; An, T. K.; Kang, M. S.; Kwon, S. K.; Kim, Y. H.; Park, C. E. ACS Appl. Mater. Interfaces. 2014, 6, 18, 15774–15782.
(5)Casey, A.; Green, J. P.; Tuladhar, P. S.; Kirkus, M.; Han, Y.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. A. 2017, 5, 6465-6470.
(6)Van der Poll, T. S.; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646–3649.
(7)Livi, F.; Zawacka, N. K.; Angmo, D.; Jørgensen, M.; Krebs, F. C.; Bundgaard, E. Macromolecules. 2015, 48, 11, 3481–3492.
(8)Cohen, D. T.; Buchwald, S. L. Org Lett. 2015, 17, 2, 202–205.
(9)Kularatne, R. S.; Taenzler, F. J.; Magurudeniya, H. D.; Du, J.; Murphy, J. W.; Sheina, E. E.; Gnade, B. E.; Biewer, M. C.; Stefan, M. C. J. Mater. Chem. A. 2013, 1, 15535-15543.
(10)Stenlid, J. H.; Brinck, T. J. Org. Chem. 2017, 82, 6, 3072–3083.
(11)http://chem.rutgers.edu/sites/default/files/coursefiles/courses_sp11/316/restricted/Notes-ResonanceandInductiveEffectsinAromaticCompounds.pdf
(12)Halama, A.; Kaválek, J.; Macháček, V.; Weidlich, T. J. Chem. Soc., Perkin Trans. 1, 1999, 1839-1846.
(13)Gallardo, I.; Guirado, G.; Marquet, J. J. Org. Chem. 2002, 67, 8, 2548–2555.
(14)Mąkosza, M. Chem. Soc. Rev. 2010, 39, 2855-2868.
(15)Casey, A.; Han, Y.; Fei, Z.; White, A. J. P.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. C. 2015, 3, 265-275.
(16)Taneda, M.; Shizu, K.; Tanaka, H.; Adachi, C. Chem. Commun. 2015, 51, 5028-5031.
(17)Li, W.; Yan, L.; Zhou, H.; You, W. Chem. Mater. 2015, 27, 6470−6476.
(18)Casey, A.; Dimitrov, S. D.; Shakya-Tuladhar, P.; Fei, Z.; Nguyen, M.; Han, Y.; Anthopoulos, T. D.; Durrant, J. R.; Heeney, M. Chem. Mater. 2016, 28, 14, 5110–5120.
3-4 參考文獻
(1)Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135, 5, 1806–1815.
(2)Nguyen, T. L.; Choi, H.; Ko, S.-J. M.; Uddin, A.; Walker, B.; Yum, S.; Jeong, J.-E.; Yun, M. H.; Shin, T. J.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Energy Environ. Sci. 2014, 7, 3040-3051.
(3)Yang, D.; Jiao, Y.; Yang, L.; Chen, Y.; Mizoi, S.; Huang, Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. J. Mater. Chem. A. 2015, 3, 17704.
(4)Cha, H.; Kim, H. N.; An, T. K.; Kang, M. S.; Kwon, S. K.; Kim, Y. H.; Park, C. E. ACS Appl. Mater. Interfaces. 2014, 6, 18, 15774–15782.
(5)Casey, A.; Green, J. P.; Tuladhar, P. S.; Kirkus, M.; Han, Y.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. A. 2017, 5, 6465-6470.
(6)Van der Poll, T. S.; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646–3649.
(7)Livi, F.; Zawacka, N. K.; Angmo, D.; Jørgensen, M.; Krebs, F. C.; Bundgaard, E. Macromolecules. 2015, 48, 11, 3481–3492.
(8)Cohen, D. T.; Buchwald, S. L. Org Lett. 2015, 17, 2, 202–205.
(9)Kularatne, R. S.; Taenzler, F. J.; Magurudeniya, H. D.; Du, J.; Murphy, J. W.; Sheina, E. E.; Gnade, B. E.; Biewer, M. C.; Stefan, M. C. J. Mater. Chem. A. 2013, 1, 15535-15543.
(10)Stenlid, J. H.; Brinck, T. J. Org. Chem. 2017, 82, 6, 3072–3083.
(11http://chem.rutgers.edu/sites/default/files/coursefiles/courses_sp11/316/restricted/Notes-ResonanceandInductiveEffectsinAromaticCompounds.pdf
(12)Halama, A.; Kaválek, J.; Macháček, V.; Weidlich, T. J. Chem. Soc., Perkin Trans. 1, 1999, 1839-1846.
(13)Gallardo, I.; Guirado, G.; Marquet, J. J. Org. Chem. 2002, 67, 8, 2548–2555.
(14)Mąkosza, M. Chem. Soc. Rev. 2010, 39, 2855-2868.
(15)Casey, A.; Han, Y.; Fei, Z.; White, A. J. P.; Anthopoulos, T. D.; Heeney, M. J. Mater. Chem. C. 2015, 3, 265-275.
(16)Taneda, M.; Shizu, K.; Tanaka, H.; Adachi, C. Chem. Commun. 2015, 51, 5028-5031.
(17)Li, W.; Yan, L.; Zhou, H.; You, W. Chem. Mater. 2015, 27, 6470−6476.
(18)Casey, A.; Dimitrov, S. D.; Shakya-Tuladhar, P.; Fei, Z.; Nguyen, M.; Han, Y.; Anthopoulos, T. D.; Durrant, J. R.; Heeney, M. Chem. Mater. 2016, 28, 14, 5110–5120.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔