跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昭廷
研究生(外文):Chao-Ting Lin
論文名稱:探討鐵載體Staphyloferrin A立體組態改變對於螯合鐵能力及受體辨認的影響
論文名稱(外文):Manipulating Stereo Configurations of Staphyloferrin A to Study the Effect on the Iron Chelation and Receptor Recognition
指導教授:王宗興王宗興引用關係
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:140
中文關鍵詞:立體組態螯合鐵能力受體辨認
外文關鍵詞:staphyloferrin Astereo configurationiron chelationreceptor recognition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對人體和病原菌而言,鐵元素是種極為重要的營養素。細菌體會分泌一些小分子的鐵螯合劑—鐵載體,用以從宿主體內獲取鐵元素。為在營養限制的環境下生存,金黃色葡萄球菌會產生多種鐵載體,如: staphyloferrin A。天然物staphyloferrin A 由(D)—鳥胺酸和兩個分別帶有(S)、(R)立體組態的檸檬酸所組成,本篇論文我們將之標記成DSR。目前對於帶有不同立體組態的staphyloferrin A是否會改變其螯合鐵的能力,抑或影響其結合受體,仍未充分地被研究。此篇碩士論文中,我們藉由有機合成的方式,合成一系列帶有特定立體組態的staphyloferrin A衍生物。為了測定各衍生物的螯合鐵能力,我們利用其他螯合物,如EDTA或EGTA來做滴定實驗。接著將螢光素綴合至衍生物上,可選擇性的標記金黃色葡萄球菌。此外利用fluorescence polarization 偵測衍生物與受體結合的強弱。實驗結果證實staphyloferrin A支鏈上檸檬酸的立體組態確實會改變其螯合鐵的能力,進而影響到與受體蛋白HtsA的結合。我們在此篇論文中發展了可控制立體組態的staphyloferrin A 合成方法以利後續鐵載體衍生物的研究。
Iron is a crucial nutrient for both humans and bacterial pathogens. Microorganisms produce high affinity chelating molecules called siderophores to acquire iron. Staphylococcus aureus elaborates different siderophores, such as staphyloferrin A (SA), to grow under iron-restricted condition. Native SA is composed of D-ornithine and two chiral citrates with R and S configurations, labeled as DSR. It is still unclear how stereo configurations in SA affects the iron chelation or receptor recognition. In this work, we chemically synthesized five SA analogues with different stereo configurations of ornithine and citrates (DSR, LSR, DRS, DSS, and DRR). Utilizing EDTA and EGTA as chelation competitors, we determined pFe(Ⅲ) values of SA stereoisomers by UV-visible spectrophotometry. Moreover, functionalized SA analogues were conjugated to fluorescein, thereby affording SA-(PEG)3-FL, it could selectively label S. aureus. Subsequently, we analyzed the binding affinity between SA stereoisomers and cognate receptor HtsA via fluorescence polarization. Our results suggested stereo figuration of side chain in staphyloferrin A influence the stability of siderophore-Fe(Ⅲ) complex, and then affect the recognition to HtsA. In conclusion, we have provide a synthetic strategy to manipulate stereo configurations in SA that would facilitate the application of siderophore conjugates.
摘要 I
Abstract II
Table of Contents III
List of Figures VII
List of Tables X
Abbreviations XI
Chapter 1 Introduction 1
1-1 Antibiotics in crisis 1
1-2 Transition Metal in Infectious Disease 4
1-3 Iron Homeostasis in Host-pathogen interaction 4
1-3.1. Importance of Iron Homeostasis in Bacteria 4
1-3.2. Iron Acquisition of Bacteria 7
1-4 Siderophore 9
1-4.1. Chemistry of Siderophores 9
1-4.2. Siderophore Conjugates 11
1-4.3. Biosynthesis and Synthesis of Staphyloferrin A 12
1-4.4. Biochemistry of Staphyloferrin A 13
1-4.5. Coordination Chemistry of Staphyloferrin A 15
1-4.6. Determination of iron chelation 18
Chapter 2 Results and Discussion 21
2-1 Retrosynthesis of staphyloferrin A analogues 21
2-2 Design of Staphyloferrin A analogues 22
2-3 Synthesis of (S)- and (R)- dibenzyl citric acid 23
Chiral resolution 24
2-4 Synthesis of SA Analogues 26
2-5 Conjugation of Functionalized SA Analogues 32
2-6 Fe(Ⅲ)-binding Properties of SA Stereoisomers 33
2-7 Determination of the Fe(Ⅲ)-Binding Affinities of SA Stereoisomers 36
2-8 Studies of Cognate Receptor HtsA-binding 40
2-9 Bacterial Labeling Experiments 43
Conclusion 48
Perspective 49
Chapter 3 Material and Methods 51
3-1 Synthesis and Characterization of Compounds 51
3-1.1. General Materials and Methods 51
3-1.2. Synthesis of dibenzyl citric acid 52
3-1.3. Synthesis of Staphyloferrin A analogues 55
3-1.4. Click reaction Fluorescein onto Staphyloferrin A analogues 67
3-1.5. Synthesis of o,o-EDDHA 69
3-2 Procedures for Fe(Ⅲ)-binding Studies 70
3-2.1. General Materials and Methods 70
3-2.2. Optical Absorption Spectroscopy 71
3-2.3. Circular Dichroism (CD) Spectorscopy 71
3-2.4. Determination of Extinction Coefficients 72
3-2.5. Determination of pFe(Ⅲ) 75
3-3 Procedures for cognate receptor-binding Studies 76
3-3.1. General Materials and Methods 76
3-3.2. Fluorescence polarization assay for HstA 77
3-3.3. Determination of dissociation constants (Kd) 77
3-4 Bacterial experiments 78
3-4.1. General experimental methods in bacterial experiments 78
3-4.2. Bacteria imaging experiments 79
3-4.3. Bacteria labeling experiments 80
References 81
Appendix Ⅰ 95
Appendix Ⅱ 128
Appendix Ⅲ 132
Appendix Ⅳ 139
1.Ventola, C. L., The Antibiotic Resistance Crisis: Part 1: Causes and Threats. P&T 2015, 40 (4), 277-283.
2.Viswanathan, V. K., Off-label abuse of antibiotics by bacteria. Gut Microbes 2014, 5 (1), 3-4.
3.Piddock, L. J. V., The crisis of no new antibiotics—what is the way forward? Lancet Infect. Dis. 2012, 12 (3), 249-253.
4.Prevention, C. f. D. C. a. Antibiotic resistance threats in the United States. https://www.cdc.gov/drugresistance/threat-report-2013/ (accessed May 20).
5.Bassetti, M.; Merelli, M.; Temperoni, C.; Astilean, A., New antibiotics for bad bugs: where are we? Ann. Clin. Microbiol. Antimicrob. 2013, 12 (1), 22.
6.Pendleton, J. N.; Gorman, S. P.; Gilmore, B. F., Clinical relevance of the ESKAPE pathogens. Expert review of anti-infective therapy 2013, 11 (3), 297-308.
7.Boucher, H. W.; Talbot, G. H.; Bradley, J. S.; Edwards, J. E.; Gilbert, D.; Rice, L. B.; Scheld, M.; Spellberg, B.; Bartlett, J., Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48 (1), 1-12.
8.Gross, M., Antibiotics in crisis. Curr. Biol. 2013, 23 (24), 1063-1065.
9.Organization, T. W. H. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/# (accessed May 24).
10.Willyard, C., Drug-resistant bacteria ranked. Nature 2017, 543 (7643), 15-15.
11.Wertheim, H. F. L.; Melles, D. C.; Vos, M. C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H. A.; Nouwen, J. L., The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5 (12), 751-762.
12.Tong, S. Y.; Davis, J. S.; Eichenberger, E.; Holland, T. L.; Fowler, V. G., Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28 (3), 603-661.
13.Enright, M. C.; Robinson, D. A.; Randle, G.; Feil, E. J.; Grundmann, H.; Spratt, B. G., The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (11), 7687-7692.
14.Chambers, H. F.; DeLeo, F. R., Waves of Resistance: Staphylococcus aureus in the Antibiotic Era. Nat. Rev. Microbiol. 2009, 7 (9), 629-641.
15.David, M. Z.; Daum, R. S., Community-Associated Methicillin-Resistant Staphylococcus aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic. Clin. Microbiol. Rev. 2010, 23 (3), 616-687.
16.Merkx, M.; Pierik, A. J., Editorial overview: Nine short stories of metals in biology. Curr. Opin. Chem. Biol. 2017, 37, vi-vii.
17.Chudobova, D.; Dostalova, S.; Ruttkay-Nedecky, B.; Guran, R.; Rodrigo, M. A. M.; Tmejova, K.; Krizkova, S.; Zitka, O.; Adam, V.; Kizek, R., The effect of metal ions on Staphylococcus aureus revealed by biochemical and mass spectrometric analyses. Microbiol. Res. 2015, 170, 147-156.
18.Haley, K. P.; Skaar, E. P., A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microb. Infect. 2012, 14 (3), 217-227.
19.Barber, M. F.; Elde, N. C., Buried treasure: evolutionary perspectives on microbial iron piracy. Trends Genet. 2015, 31 (11), 627-636.
20.German, N.; Lüthje, F.; Hao, X.; Rønn, R.; Rensing, C., Microbial Virulence and Interactions With Metals. Prog. Mol. Biol. Transl. Sci. 2016, 142, 27-49.
21.Ma, Z.; Jacobsen, F. E.; Giedroc, D. P., Coordination Chemistry of Bacterial Metal Transport and Sensing. Chem. Rev. 2009, 109 (10), 4644-4681.
22.Fischbach, M. A.; Lin, H.; Liu, D. R.; Walsh, C. T., How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat. Chem. Biol. 2006, 2 (3), 132-138.
23.Hood, M. I.; Skaar, E. P., Nutritional immunity: transition metals at the pathogen–host interface. Nat Rev Micro 2012, 10 (8), 525-537.
24.Cassat, J. E.; Skaar, E. P., Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin. Immunopathol. 2012, 34 (2), 215-235.
25.Ganz, T.; Nemeth, E., Regulation of iron acquisition and iron distribution in mammals. Biochim. Biophys. Acta 2006, 1763 (7), 690-699.
26.Weinberg, E. D., Nutritional immunity: Host''s attempt to withhold iron from microbial invaders. JAMA 1975, 231 (1), 39-41.
27.Cairo, G.; Bernuzzi, F.; Recalcati, S., A precious metal: Iron, an essential nutrient for all cells. Genes Nutr. 2006, 1 (1), 25-39.
28.Andrews, S. C., Iron Storage in Bacteria. Adv. Microb. Physiol. 1998, 40, 281-351.
29.Andrews, S. C.; Robinson, A. K.; Rodríguez-Quiñones, F., Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27 (2-3), 215-237.
30.Cassat, James E.; Skaar, Eric P., Iron in Infection and Immunity. Cell Host Microbe 2013, 13 (5), 509-519.
31.Sheldon, J. R.; Heinrichs, D. E., Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol. Rev. 2015, 39 (4), 592-630.
32.Sheldon, J. R.; Laakso, H. A.; Heinrichs, D. E., Iron Acquisition Strategies of Bacterial Pathogens. Microbiol Spectr 2016, 4 (2).
33.Le, N. T. V.; Richardson, D. R., The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim. Biophys. Acta 2002, 1603 (1), 31-46.
34.Lukianova, O. A.; David, S. S., A role for iron–sulfur clusters in DNA repair. Curr. Opin. Chem. Biol. 2005, 9 (2), 145-151.
35.Miethke, M.; Marahiel, M. A., Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71 (3), 413-451.
36.Ratledge, C.; Dover, L. G., Iron Metabolism in Pathogenic Bacteria. Annu. Rev. Microbiol. 2000, 54 (1), 881-941.
37.Ratledge, C., Iron Metabolism and Infection. Food and Nutrition Bulletin 2007, 28, 515-523.
38.Cornelis, P.; Wei, Q.; Andrews, S. C.; Vinckx, T., Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 2011, 3 (6), 540-549.
39.Waldron, K. J.; Robinson, N. J., How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Micro 2009, 7 (1), 25-35.
40.Schaible, U. E.; Kaufmann, S. H. E., Iron and microbial infection. Nat Rev Micro 2004, 2 (12), 946-953.
41.Raymond, K. N.; Dertz, E. A.; Kim, S. S., Enterobactin: An archetype for microbial iron transport. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (7), 3584-3588.
42.Krewulak, K. D.; Vogel, H. J., Structural biology of bacterial iron uptake. Biochim. Biophys. Acta 2008, 1778 (9), 1781-1804.
43.Chu, B. C.; Garcia-Herrero, A.; Johanson, T. H.; Krewulak, K. D.; Lau, C. K.; Peacock, R. S.; Slavinskaya, Z.; Vogel, H. J., Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. BioMetals 2010, 23 (4), 601-611.
44.Skaar, E. P., The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathog. 2010, 6 (8), e1000949.
45.Contreras, H.; Chim, N.; Credali, A.; Goulding, C. W., Heme uptake in bacterial pathogens. Curr. Opin. Chem. Biol. 2014, 19, 34-41.
46.Kortman, G. A. M.; Raffatellu, M.; Swinkels, D. W.; Tjalsma, H., Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol. Rev. 2014, 38 (6), 1202-1234.
47.Papanikolaou, G.; Pantopoulos, K., Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 2005, 202 (2), 199-211.
48.Gray-Owen, S. D.; Schyvers, A. B., Bacterial transferrin and lactoferrin receptors. Trends Microbiol. 1996, 4 (5), 185-191.
49.Mazmanian, S. K.; Skaar, E. P.; Gaspar, A. H.; Humayun, M.; Gornicki, P.; Jelenska, J.; Joachmiak, A.; Missiakas, D. M.; Schneewind, O., Passage of Heme-Iron Across the Envelope of Staphylococcus aureus. Science 2003, 299 (5608), 906.
50.Laakso, H. A.; Marolda, C. L.; Pinter, T. B.; Stillman, M. J.; Heinrichs, D. E., A heme-responsive regulator controls synthesis of staphyloferrin B in Staphylococcus aureus. J. Biol. Chem. 2015.
51.Hider, R. C.; Kong, X., Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27 (5), 637-657.
52.Boukhalfa, H.; Crumbliss, A. L., Chemical aspects of siderophore mediated iron transport. Biometals 2002, 15 (4), 325-339.
53.Saha, R.; Saha, N.; Donofrio, R. S.; Bestervelt, L. L., Microbial siderophores: a mini review. J. Basic Microbiol. 2013, 53 (4), 303-317.
54.Dale, S. E.; Sebulsky, M. T.; Heinrichs, D. E., Involvement of SirABC in Iron-Siderophore Import in Staphylococcus aureus. J. Bacteriol. 2004, 186 (24), 8356-8362.
55.Ellermann, M.; Arthur, J. C., Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic. Biol. Med. 2017, 105, 68-78.
56.Kurth, C.; Kage, H.; Nett, M., Siderophores as molecular tools in medical and environmental applications. Org. Biomol. Chem. 2016, 14 (35), 8212-8227.
57.Braun, V.; Pramanik, A.; Gwinner, T.; Köberle, M.; Bohn, E., Sideromycins: tools and antibiotics. BioMetals 2009, 22 (1), 3.
58.Möllmann, U.; Heinisch, L.; Bauernfeind, A.; Köhler, T.; Ankel-Fuchs, D., Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. BioMetals 2009, 22 (4), 615-624.
59.Zheng, T.; Nolan, E. M., Enterobactin-Mediated Delivery of β-Lactam Antibiotics Enhances Antibacterial Activity against Pathogenic Escherichia coli. J. Am. Chem. Soc. 2014, 136 (27), 9677-9691.
60.Wencewicz, T. A.; Möllmann, U.; Long, T. E.; Miller, M. J., Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates. BioMetals 2009, 22 (4), 633.
61.Schalk, I. J.; Mislin, G. L. A., Bacterial Iron Uptake Pathways: Gates for the Import of Bactericide Compounds. J. Med. Chem. 2017, 60 (11), 4573-4576.
62.Beasley, F. C.; Heinrichs, D. E., Siderophore-mediated iron acquisition in the staphylococci. Journal of Inorganic Biochemistry 2010, 104 (3), 282-288.
63.Drechsel, H.; Winkelmann, G., The configuration of the chiral carbon atoms in staphyloferrin A and analysis of the transport properties in Staphylococcus aureus. Biometals 2005, 18 (1), 75-81.
64.Cotton, J. L.; Tao, J.; Balibar, C. J., Identification and Characterization of the Staphylococcus aureus Gene Cluster Coding for Staphyloferrin A. Biochemistry 2009, 48 (5), 1025-1035.
65.Beasley, F. C.; Vinés, E. D.; Grigg, J. C.; Zheng, Q.; Liu, S.; Lajoie, G. A.; Murphy, M. E. P.; Heinrichs, D. E., Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol. Microbiol. 2009, 72 (4), 947-963.
66.Hammer, N. D.; Skaar, E. P., Molecular Mechanisms of Staphylococcus aureus Iron Acquisition. Annu. Rev. Microbiol. 2011, 65 (1), 129-147.
67.Hannauer, M.; Sheldon, J. R.; Heinrichs, D. E., Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus. FEBS Lett. 2015, 589 (6), 730-737.
68.Pandey, R. K.; Jarvis, G. G.; Low, P. S., Chemical synthesis of staphyloferrin A and its application for Staphylococcus aureus detection. Org. Biomol. Chem. 2014, 12 (11), 1707-1710.
69.Milner, S. J.; Seve, A.; Snelling, A. M.; Thomas, G. H.; Kerr, K. G.; Routledge, A.; Duhme-Klair, A.-K., Staphyloferrin A as siderophore-component in fluoroquinolone-based Trojan horse antibiotics. Org. Biomol. Chem. 2013, 11 (21), 3461-3468.
70.Grigg, J. C.; Cooper, J. D.; Cheung, J.; Heinrichs, D. E.; Murphy, M. E. P., The Staphylococcus aureus Siderophore Receptor HtsA Undergoes Localized Conformational Changes to Enclose Staphyloferrin A in an Arginine-rich Binding Pocket. J. Biol. Chem. 2010, 285 (15), 11162-11171.
71.Cooper, J. D.; Hannauer, M.; Marolda, C. L.; Briere, L.-A. K.; Heinrichs, D. E., Identification of a Positively Charged Platform in Staphylococcus aureus HtsA That Is Essential for Ferric Staphyloferrin A Transport. Biochemistry 2014, 53 (31), 5060-5069.
72.Konetschny-Rapp, S.; Jung, G.; Meiwes, J.; ZÄHner, H., Staphyloferrin A: a structurally new siderophore from staphylococci. Eur. J. Biochem. 1990, 191 (1), 65-74.
73.Carroll, C. S.; Grieve, C. L.; Murugathasan, I.; Bennet, A. J.; Czekster, C. M.; Liu, H.; Naismith, J.; Moore, M. M., The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family. Int. J. Biochem. Cell Biol. 2017, 89, 136-146.
74.Tomišić, V.; Blanc, S.; Elhabiri, M.; Expert, D.; Albrecht-Gary, A.-M., Iron(III) Uptake and Release by Chrysobactin, a Siderophore of the Phytophatogenic Bacterium Erwinia chrysanthemi. Inorg. Chem. 2008, 47 (20), 9419-9430.
75.Harris, W. R.; Carrano, C. J.; Raymond, K. N., Coordination chemistry of microbial iron transport compounds. 16. Isolation, characterization, and formation constants of ferric aerobactin. J. Am. Chem. Soc. 1979, 101 (10), 2722-2727.
76.Madsen, J. L. H.; Johnstone, T. C.; Nolan, E. M., Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus. J. Am. Chem. Soc. 2015, 137 (28), 9117-9127.
77.Abergel, R. J.; Zawadzka, A. M.; Raymond, K. N., Petrobactin-Mediated Iron Transport in Pathogenic Bacteria:  Coordination Chemistry of an Unusual 3,4-Catecholate/Citrate Siderophore. J. Am. Chem. Soc. 2008, 130 (7), 2124-2125.
78.Küpper, F. C.; Carrano, C. J.; Kuhn, J.-U.; Butler, A., Photoreactivity of Iron(III)−Aerobactin:  Photoproduct Structure and Iron(III) Coordination. Inorg. Chem. 2006, 45 (15), 6028-6033.
79.Bickel, H.; Gäumann, E.; Nussberger, G.; Reusser, P.; Vischer, E.; Voser, W.; Wettstein, A.; Zähner, H., Stoffwechselprodukte von Actinomyceten. 25. Mitteilung. Über die Isolierung und Charakterisierung der Ferrimycine A1 und A2, neuer Antibiotika der Sideromycin-Gruppe. Helv. Chim. Acta 1960, 43 (7), 2105-2118.
80.Smith, R. M.; Martell, A. E., Critical stability constants. Springer: 1989.
81.Rzhepishevska, O.; Ekstrand-Hammarström, B.; Popp, M.; Björn, E.; Bucht, A.; Sjöstedt, A.; Antti, H.; Ramstedt, M., The Antibacterial Activity of Ga3+ Is Influenced by Ligand Complexation as Well as the Bacterial Carbon Source. Antimicrob. Agents Chemother. 2011, 55 (12), 5568-5580.
82.Takeuchi, Y.; Nagao, Y.; Toma, K.; Yoshikawa, Y.; Akiyama, T.; Nishioka, H.; Abe, H.; Harayama, T.; Yamamoto, S., Synthesis and Siderophore Activity of Vibrioferrin and One of Its Diastereomeric Isomers. Chem. Pharm. Bull. 1999, 47 (9), 1284-1287.
83.Bugdahn, N.; Oberthür, M., Syntheses and Iron Binding Affinities of the Bacillus anthracis Siderophore Petrobactin and Sidechain-Modified Analogues. Eur. J. Org. Chem. 2014, 2014 (2), 426-435.
84.Gardner, R. A.; Kinkade, R.; Wang, C.; Phanstiel, Total Synthesis of Petrobactin and Its Homologues as Potential Growth Stimuli for Marinobacter hydrocarbonoclasticus, an Oil-Degrading Bacteria. J. Org. Chem. 2004, 69 (10), 3530-3537.
85.Raymond, K. N.; Dertz, E. A., Biochemical and Physical Properties of Siderophores. In Iron Transport in Bacteria, American Society of Microbiology: 2004.
86.Seyedsayamdost, M. R.; Traxler, M. F.; Zheng, S.-L.; Kolter, R.; Clardy, J., Structure and Biosynthesis of Amychelin, an Unusual Mixed-Ligand Siderophore from Amycolatopsis sp. AA4. J. Am. Chem. Soc. 2011, 133 (30), 11434-11437.
87.Amin, S. A.; Green, D. H.; Küpper, F. C.; Carrano, C. J., Vibrioferrin, an Unusual Marine Siderophore: Iron Binding, Photochemistry, and Biological Implications. Inorg. Chem. 2009, 48 (23), 11451-11458.
88.Cheung, J.; Beasley, F. C.; Liu, S.; Lajoie, G. A.; Heinrichs, D. E., Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol. Microbiol. 2009, 74 (3), 594-608.
89.Ji, C.; Miller, M. J., Siderophore–fluoroquinolone conjugates containing potential reduction-triggered linkers for drug release: synthesis and antibacterial activity. BioMetals 2015, 28 (3), 541-551.
90.Sassone-Corsi, M.; Chairatana, P.; Zheng, T.; Perez-Lopez, A.; Edwards, R. A.; George, M. D.; Nolan, E. M.; Raffatellu, M., Siderophore-based immunization strategy to inhibit growth of enteric pathogens. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (47), 13462-13467.
91.Jakobsche, C. E.; McEnaney, P. J.; Zhang, A. X.; Spiegel, D. A., Reprogramming Urokinase into an Antibody-Recruiting Anticancer Agent. ACS Chem. Biol. 2012, 7 (2), 316-321.
92.McEnaney, P. J.; Fitzgerald, K. J.; Zhang, A. X.; Douglass, E. F.; Shan, W.; Balog, A.; Kolesnikova, M. D.; Spiegel, D. A., Chemically Synthesized Molecules with the Targeting and Effector Functions of Antibodies. J. Am. Chem. Soc. 2014, 136 (52), 18034-18043.
93.Sebulsky, M. T.; Speziali, C. D.; Shilton, B. H.; Edgell, D. R.; Heinrichs, D. E., FhuD1, a Ferric Hydroxamate-binding Lipoprotein in Staphylococcus aureus: A CASE OF GENE DUPLICATION AND LATERAL TRANSFER. J. Biol. Chem. 2004, 279 (51), 53152-53159.
94.Schwyn, B.; Neilands, J. B., Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160 (1), 47-56.
95.Persmark, M.; Expert, D.; Neilands, J. B., Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. J. Biol. Chem. 1989, 264 (6), 3187-3193.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top