|
1.Ventola, C. L., The Antibiotic Resistance Crisis: Part 1: Causes and Threats. P&T 2015, 40 (4), 277-283. 2.Viswanathan, V. K., Off-label abuse of antibiotics by bacteria. Gut Microbes 2014, 5 (1), 3-4. 3.Piddock, L. J. V., The crisis of no new antibiotics—what is the way forward? Lancet Infect. Dis. 2012, 12 (3), 249-253. 4.Prevention, C. f. D. C. a. Antibiotic resistance threats in the United States. https://www.cdc.gov/drugresistance/threat-report-2013/ (accessed May 20). 5.Bassetti, M.; Merelli, M.; Temperoni, C.; Astilean, A., New antibiotics for bad bugs: where are we? Ann. Clin. Microbiol. Antimicrob. 2013, 12 (1), 22. 6.Pendleton, J. N.; Gorman, S. P.; Gilmore, B. F., Clinical relevance of the ESKAPE pathogens. Expert review of anti-infective therapy 2013, 11 (3), 297-308. 7.Boucher, H. W.; Talbot, G. H.; Bradley, J. S.; Edwards, J. E.; Gilbert, D.; Rice, L. B.; Scheld, M.; Spellberg, B.; Bartlett, J., Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48 (1), 1-12. 8.Gross, M., Antibiotics in crisis. Curr. Biol. 2013, 23 (24), 1063-1065. 9.Organization, T. W. H. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/# (accessed May 24). 10.Willyard, C., Drug-resistant bacteria ranked. Nature 2017, 543 (7643), 15-15. 11.Wertheim, H. F. L.; Melles, D. C.; Vos, M. C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H. A.; Nouwen, J. L., The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5 (12), 751-762. 12.Tong, S. Y.; Davis, J. S.; Eichenberger, E.; Holland, T. L.; Fowler, V. G., Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28 (3), 603-661. 13.Enright, M. C.; Robinson, D. A.; Randle, G.; Feil, E. J.; Grundmann, H.; Spratt, B. G., The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (11), 7687-7692. 14.Chambers, H. F.; DeLeo, F. R., Waves of Resistance: Staphylococcus aureus in the Antibiotic Era. Nat. Rev. Microbiol. 2009, 7 (9), 629-641. 15.David, M. Z.; Daum, R. S., Community-Associated Methicillin-Resistant Staphylococcus aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic. Clin. Microbiol. Rev. 2010, 23 (3), 616-687. 16.Merkx, M.; Pierik, A. J., Editorial overview: Nine short stories of metals in biology. Curr. Opin. Chem. Biol. 2017, 37, vi-vii. 17.Chudobova, D.; Dostalova, S.; Ruttkay-Nedecky, B.; Guran, R.; Rodrigo, M. A. M.; Tmejova, K.; Krizkova, S.; Zitka, O.; Adam, V.; Kizek, R., The effect of metal ions on Staphylococcus aureus revealed by biochemical and mass spectrometric analyses. Microbiol. Res. 2015, 170, 147-156. 18.Haley, K. P.; Skaar, E. P., A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microb. Infect. 2012, 14 (3), 217-227. 19.Barber, M. F.; Elde, N. C., Buried treasure: evolutionary perspectives on microbial iron piracy. Trends Genet. 2015, 31 (11), 627-636. 20.German, N.; Lüthje, F.; Hao, X.; Rønn, R.; Rensing, C., Microbial Virulence and Interactions With Metals. Prog. Mol. Biol. Transl. Sci. 2016, 142, 27-49. 21.Ma, Z.; Jacobsen, F. E.; Giedroc, D. P., Coordination Chemistry of Bacterial Metal Transport and Sensing. Chem. Rev. 2009, 109 (10), 4644-4681. 22.Fischbach, M. A.; Lin, H.; Liu, D. R.; Walsh, C. T., How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat. Chem. Biol. 2006, 2 (3), 132-138. 23.Hood, M. I.; Skaar, E. P., Nutritional immunity: transition metals at the pathogen–host interface. Nat Rev Micro 2012, 10 (8), 525-537. 24.Cassat, J. E.; Skaar, E. P., Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin. Immunopathol. 2012, 34 (2), 215-235. 25.Ganz, T.; Nemeth, E., Regulation of iron acquisition and iron distribution in mammals. Biochim. Biophys. Acta 2006, 1763 (7), 690-699. 26.Weinberg, E. D., Nutritional immunity: Host''s attempt to withhold iron from microbial invaders. JAMA 1975, 231 (1), 39-41. 27.Cairo, G.; Bernuzzi, F.; Recalcati, S., A precious metal: Iron, an essential nutrient for all cells. Genes Nutr. 2006, 1 (1), 25-39. 28.Andrews, S. C., Iron Storage in Bacteria. Adv. Microb. Physiol. 1998, 40, 281-351. 29.Andrews, S. C.; Robinson, A. K.; Rodríguez-Quiñones, F., Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27 (2-3), 215-237. 30.Cassat, James E.; Skaar, Eric P., Iron in Infection and Immunity. Cell Host Microbe 2013, 13 (5), 509-519. 31.Sheldon, J. R.; Heinrichs, D. E., Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol. Rev. 2015, 39 (4), 592-630. 32.Sheldon, J. R.; Laakso, H. A.; Heinrichs, D. E., Iron Acquisition Strategies of Bacterial Pathogens. Microbiol Spectr 2016, 4 (2). 33.Le, N. T. V.; Richardson, D. R., The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim. Biophys. Acta 2002, 1603 (1), 31-46. 34.Lukianova, O. A.; David, S. S., A role for iron–sulfur clusters in DNA repair. Curr. Opin. Chem. Biol. 2005, 9 (2), 145-151. 35.Miethke, M.; Marahiel, M. A., Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71 (3), 413-451. 36.Ratledge, C.; Dover, L. G., Iron Metabolism in Pathogenic Bacteria. Annu. Rev. Microbiol. 2000, 54 (1), 881-941. 37.Ratledge, C., Iron Metabolism and Infection. Food and Nutrition Bulletin 2007, 28, 515-523. 38.Cornelis, P.; Wei, Q.; Andrews, S. C.; Vinckx, T., Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 2011, 3 (6), 540-549. 39.Waldron, K. J.; Robinson, N. J., How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Micro 2009, 7 (1), 25-35. 40.Schaible, U. E.; Kaufmann, S. H. E., Iron and microbial infection. Nat Rev Micro 2004, 2 (12), 946-953. 41.Raymond, K. N.; Dertz, E. A.; Kim, S. S., Enterobactin: An archetype for microbial iron transport. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (7), 3584-3588. 42.Krewulak, K. D.; Vogel, H. J., Structural biology of bacterial iron uptake. Biochim. Biophys. Acta 2008, 1778 (9), 1781-1804. 43.Chu, B. C.; Garcia-Herrero, A.; Johanson, T. H.; Krewulak, K. D.; Lau, C. K.; Peacock, R. S.; Slavinskaya, Z.; Vogel, H. J., Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. BioMetals 2010, 23 (4), 601-611. 44.Skaar, E. P., The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathog. 2010, 6 (8), e1000949. 45.Contreras, H.; Chim, N.; Credali, A.; Goulding, C. W., Heme uptake in bacterial pathogens. Curr. Opin. Chem. Biol. 2014, 19, 34-41. 46.Kortman, G. A. M.; Raffatellu, M.; Swinkels, D. W.; Tjalsma, H., Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol. Rev. 2014, 38 (6), 1202-1234. 47.Papanikolaou, G.; Pantopoulos, K., Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 2005, 202 (2), 199-211. 48.Gray-Owen, S. D.; Schyvers, A. B., Bacterial transferrin and lactoferrin receptors. Trends Microbiol. 1996, 4 (5), 185-191. 49.Mazmanian, S. K.; Skaar, E. P.; Gaspar, A. H.; Humayun, M.; Gornicki, P.; Jelenska, J.; Joachmiak, A.; Missiakas, D. M.; Schneewind, O., Passage of Heme-Iron Across the Envelope of Staphylococcus aureus. Science 2003, 299 (5608), 906. 50.Laakso, H. A.; Marolda, C. L.; Pinter, T. B.; Stillman, M. J.; Heinrichs, D. E., A heme-responsive regulator controls synthesis of staphyloferrin B in Staphylococcus aureus. J. Biol. Chem. 2015. 51.Hider, R. C.; Kong, X., Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27 (5), 637-657. 52.Boukhalfa, H.; Crumbliss, A. L., Chemical aspects of siderophore mediated iron transport. Biometals 2002, 15 (4), 325-339. 53.Saha, R.; Saha, N.; Donofrio, R. S.; Bestervelt, L. L., Microbial siderophores: a mini review. J. Basic Microbiol. 2013, 53 (4), 303-317. 54.Dale, S. E.; Sebulsky, M. T.; Heinrichs, D. E., Involvement of SirABC in Iron-Siderophore Import in Staphylococcus aureus. J. Bacteriol. 2004, 186 (24), 8356-8362. 55.Ellermann, M.; Arthur, J. C., Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic. Biol. Med. 2017, 105, 68-78. 56.Kurth, C.; Kage, H.; Nett, M., Siderophores as molecular tools in medical and environmental applications. Org. Biomol. Chem. 2016, 14 (35), 8212-8227. 57.Braun, V.; Pramanik, A.; Gwinner, T.; Köberle, M.; Bohn, E., Sideromycins: tools and antibiotics. BioMetals 2009, 22 (1), 3. 58.Möllmann, U.; Heinisch, L.; Bauernfeind, A.; Köhler, T.; Ankel-Fuchs, D., Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. BioMetals 2009, 22 (4), 615-624. 59.Zheng, T.; Nolan, E. M., Enterobactin-Mediated Delivery of β-Lactam Antibiotics Enhances Antibacterial Activity against Pathogenic Escherichia coli. J. Am. Chem. Soc. 2014, 136 (27), 9677-9691. 60.Wencewicz, T. A.; Möllmann, U.; Long, T. E.; Miller, M. J., Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates. BioMetals 2009, 22 (4), 633. 61.Schalk, I. J.; Mislin, G. L. A., Bacterial Iron Uptake Pathways: Gates for the Import of Bactericide Compounds. J. Med. Chem. 2017, 60 (11), 4573-4576. 62.Beasley, F. C.; Heinrichs, D. E., Siderophore-mediated iron acquisition in the staphylococci. Journal of Inorganic Biochemistry 2010, 104 (3), 282-288. 63.Drechsel, H.; Winkelmann, G., The configuration of the chiral carbon atoms in staphyloferrin A and analysis of the transport properties in Staphylococcus aureus. Biometals 2005, 18 (1), 75-81. 64.Cotton, J. L.; Tao, J.; Balibar, C. J., Identification and Characterization of the Staphylococcus aureus Gene Cluster Coding for Staphyloferrin A. Biochemistry 2009, 48 (5), 1025-1035. 65.Beasley, F. C.; Vinés, E. D.; Grigg, J. C.; Zheng, Q.; Liu, S.; Lajoie, G. A.; Murphy, M. E. P.; Heinrichs, D. E., Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol. Microbiol. 2009, 72 (4), 947-963. 66.Hammer, N. D.; Skaar, E. P., Molecular Mechanisms of Staphylococcus aureus Iron Acquisition. Annu. Rev. Microbiol. 2011, 65 (1), 129-147. 67.Hannauer, M.; Sheldon, J. R.; Heinrichs, D. E., Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus. FEBS Lett. 2015, 589 (6), 730-737. 68.Pandey, R. K.; Jarvis, G. G.; Low, P. S., Chemical synthesis of staphyloferrin A and its application for Staphylococcus aureus detection. Org. Biomol. Chem. 2014, 12 (11), 1707-1710. 69.Milner, S. J.; Seve, A.; Snelling, A. M.; Thomas, G. H.; Kerr, K. G.; Routledge, A.; Duhme-Klair, A.-K., Staphyloferrin A as siderophore-component in fluoroquinolone-based Trojan horse antibiotics. Org. Biomol. Chem. 2013, 11 (21), 3461-3468. 70.Grigg, J. C.; Cooper, J. D.; Cheung, J.; Heinrichs, D. E.; Murphy, M. E. P., The Staphylococcus aureus Siderophore Receptor HtsA Undergoes Localized Conformational Changes to Enclose Staphyloferrin A in an Arginine-rich Binding Pocket. J. Biol. Chem. 2010, 285 (15), 11162-11171. 71.Cooper, J. D.; Hannauer, M.; Marolda, C. L.; Briere, L.-A. K.; Heinrichs, D. E., Identification of a Positively Charged Platform in Staphylococcus aureus HtsA That Is Essential for Ferric Staphyloferrin A Transport. Biochemistry 2014, 53 (31), 5060-5069. 72.Konetschny-Rapp, S.; Jung, G.; Meiwes, J.; ZÄHner, H., Staphyloferrin A: a structurally new siderophore from staphylococci. Eur. J. Biochem. 1990, 191 (1), 65-74. 73.Carroll, C. S.; Grieve, C. L.; Murugathasan, I.; Bennet, A. J.; Czekster, C. M.; Liu, H.; Naismith, J.; Moore, M. M., The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family. Int. J. Biochem. Cell Biol. 2017, 89, 136-146. 74.Tomišić, V.; Blanc, S.; Elhabiri, M.; Expert, D.; Albrecht-Gary, A.-M., Iron(III) Uptake and Release by Chrysobactin, a Siderophore of the Phytophatogenic Bacterium Erwinia chrysanthemi. Inorg. Chem. 2008, 47 (20), 9419-9430. 75.Harris, W. R.; Carrano, C. J.; Raymond, K. N., Coordination chemistry of microbial iron transport compounds. 16. Isolation, characterization, and formation constants of ferric aerobactin. J. Am. Chem. Soc. 1979, 101 (10), 2722-2727. 76.Madsen, J. L. H.; Johnstone, T. C.; Nolan, E. M., Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus. J. Am. Chem. Soc. 2015, 137 (28), 9117-9127. 77.Abergel, R. J.; Zawadzka, A. M.; Raymond, K. N., Petrobactin-Mediated Iron Transport in Pathogenic Bacteria: Coordination Chemistry of an Unusual 3,4-Catecholate/Citrate Siderophore. J. Am. Chem. Soc. 2008, 130 (7), 2124-2125. 78.Küpper, F. C.; Carrano, C. J.; Kuhn, J.-U.; Butler, A., Photoreactivity of Iron(III)−Aerobactin: Photoproduct Structure and Iron(III) Coordination. Inorg. Chem. 2006, 45 (15), 6028-6033. 79.Bickel, H.; Gäumann, E.; Nussberger, G.; Reusser, P.; Vischer, E.; Voser, W.; Wettstein, A.; Zähner, H., Stoffwechselprodukte von Actinomyceten. 25. Mitteilung. Über die Isolierung und Charakterisierung der Ferrimycine A1 und A2, neuer Antibiotika der Sideromycin-Gruppe. Helv. Chim. Acta 1960, 43 (7), 2105-2118. 80.Smith, R. M.; Martell, A. E., Critical stability constants. Springer: 1989. 81.Rzhepishevska, O.; Ekstrand-Hammarström, B.; Popp, M.; Björn, E.; Bucht, A.; Sjöstedt, A.; Antti, H.; Ramstedt, M., The Antibacterial Activity of Ga3+ Is Influenced by Ligand Complexation as Well as the Bacterial Carbon Source. Antimicrob. Agents Chemother. 2011, 55 (12), 5568-5580. 82.Takeuchi, Y.; Nagao, Y.; Toma, K.; Yoshikawa, Y.; Akiyama, T.; Nishioka, H.; Abe, H.; Harayama, T.; Yamamoto, S., Synthesis and Siderophore Activity of Vibrioferrin and One of Its Diastereomeric Isomers. Chem. Pharm. Bull. 1999, 47 (9), 1284-1287. 83.Bugdahn, N.; Oberthür, M., Syntheses and Iron Binding Affinities of the Bacillus anthracis Siderophore Petrobactin and Sidechain-Modified Analogues. Eur. J. Org. Chem. 2014, 2014 (2), 426-435. 84.Gardner, R. A.; Kinkade, R.; Wang, C.; Phanstiel, Total Synthesis of Petrobactin and Its Homologues as Potential Growth Stimuli for Marinobacter hydrocarbonoclasticus, an Oil-Degrading Bacteria. J. Org. Chem. 2004, 69 (10), 3530-3537. 85.Raymond, K. N.; Dertz, E. A., Biochemical and Physical Properties of Siderophores. In Iron Transport in Bacteria, American Society of Microbiology: 2004. 86.Seyedsayamdost, M. R.; Traxler, M. F.; Zheng, S.-L.; Kolter, R.; Clardy, J., Structure and Biosynthesis of Amychelin, an Unusual Mixed-Ligand Siderophore from Amycolatopsis sp. AA4. J. Am. Chem. Soc. 2011, 133 (30), 11434-11437. 87.Amin, S. A.; Green, D. H.; Küpper, F. C.; Carrano, C. J., Vibrioferrin, an Unusual Marine Siderophore: Iron Binding, Photochemistry, and Biological Implications. Inorg. Chem. 2009, 48 (23), 11451-11458. 88.Cheung, J.; Beasley, F. C.; Liu, S.; Lajoie, G. A.; Heinrichs, D. E., Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol. Microbiol. 2009, 74 (3), 594-608. 89.Ji, C.; Miller, M. J., Siderophore–fluoroquinolone conjugates containing potential reduction-triggered linkers for drug release: synthesis and antibacterial activity. BioMetals 2015, 28 (3), 541-551. 90.Sassone-Corsi, M.; Chairatana, P.; Zheng, T.; Perez-Lopez, A.; Edwards, R. A.; George, M. D.; Nolan, E. M.; Raffatellu, M., Siderophore-based immunization strategy to inhibit growth of enteric pathogens. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (47), 13462-13467. 91.Jakobsche, C. E.; McEnaney, P. J.; Zhang, A. X.; Spiegel, D. A., Reprogramming Urokinase into an Antibody-Recruiting Anticancer Agent. ACS Chem. Biol. 2012, 7 (2), 316-321. 92.McEnaney, P. J.; Fitzgerald, K. J.; Zhang, A. X.; Douglass, E. F.; Shan, W.; Balog, A.; Kolesnikova, M. D.; Spiegel, D. A., Chemically Synthesized Molecules with the Targeting and Effector Functions of Antibodies. J. Am. Chem. Soc. 2014, 136 (52), 18034-18043. 93.Sebulsky, M. T.; Speziali, C. D.; Shilton, B. H.; Edgell, D. R.; Heinrichs, D. E., FhuD1, a Ferric Hydroxamate-binding Lipoprotein in Staphylococcus aureus: A CASE OF GENE DUPLICATION AND LATERAL TRANSFER. J. Biol. Chem. 2004, 279 (51), 53152-53159. 94.Schwyn, B.; Neilands, J. B., Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160 (1), 47-56. 95.Persmark, M.; Expert, D.; Neilands, J. B., Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. J. Biol. Chem. 1989, 264 (6), 3187-3193.
|