跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李庭音
研究生(外文):Ting-Yin Lee
論文名稱:含三維結構五苯荑骨架之聚苯胺電極材料製備與作為超級電容器的應用
論文名稱(外文):Fabrication of the Three-dimensional Pentiptycene-incorporated Polyanilines for High Performance Supercapacitor Electrodes
指導教授:楊吉水
指導教授(外文):Jye-Shane Yang
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:173
中文關鍵詞:五苯荑聚苯胺超級電容器電化學循環穩定性
外文關鍵詞:pentiptycenepolyanilinesupercapacitorelectrochemistrycycling stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超級電容器除了擁有高於電池的功率密度及穩定性,相較於傳統電容器,能量密度大幅提升,因此成為近幾年最有潛力的新興儲能裝置。其中,聚苯胺具有合成簡易、對環境污染較少、成本價格低廉及較高的理論電容儲存量等特性,最常被用來作為電容器電極材料;然而,聚苯胺在連續的充放電過程中,薄膜體積膨脹 / 收縮的改變則破壞本身的結構,使電容量嚴重衰退,進而影響後續的應用。為了克服穩定度不佳的問題,我們預測五苯荑分子H形剛硬結構有助於高分子鏈的嵌入,並以「夾子」形式穩固聚苯胺鏈,使鏈彼此有良好的堆疊排列,形成有效的交聯網絡,進而提升電容量與循環穩定性等電化學表現。為了引入三維立體剛硬結構的五苯荑分子至聚苯胺骨架,我們分別以DP、MA、DA和TA為起始物與苯胺進行共聚合反應,以探討起始物官能基如何影響共聚反應之聚合物DP-p、MA-p、DA-p和TA-p的結構與性質。
結果顯示MA、DA及TA分子有效作為模板並參與聚合反應,由電子顯微鏡觀測其聚合物表面形態為球形堆疊結構,然而DP-p則相似於PANI顆粒團狀結構。於電化學表現上,球形堆疊之TA-p電容儲存量高達410 F / g,千圈穩定度為91 %;DA-p與MA-p電容量分別為330 F / g和250 F / g,穩定度亦提升至87 %左右,皆高於兩者顆粒團狀之DP-p與PANI聚合物,其電容量僅約220 F / g且電容保存率剩70 %左右。此表示五苯荑分子確能發揮「夾子」功用,使聚苯胺鏈間進行有效排列,亦能穩固聚苯胺鏈抑制其在長時間測試中骨架的裂解,進一步提升材料整體的電化學性質。
比較這四種系列的五苯荑對聚苯胺分子鏈在空間上的分佈與互相堆疊的影響,研究形成的聚合物在電化學上的表現,有助於日後超級電容器電極材料的改良,在儲能裝置上達到更有效的利用。
Supercapacitors, used as energy storage devices, have the feature of higher power density and durability than batteries and higher energy density than conventional dielectric capacitors. Polyaniline is one of the most useful conducting polymers as the supercapacitor electrode materials due to its high theoretical specific capacitance. During the charge / discharge processes, however, the PANI-based electrodes have poor long-term stability because of swelling / shrinkage.
To improve the stability, we reasoned that the rigid H-shaped pentiptycene scaffold will act as a “clip” for fixing polyaniline chains in plane, which promotes the formation of internal interlocking structure. Therefore, we have prepared a series of pentiptycene derivates, DP, MA, DA and TA to react with aniline to form pentiptycene-incorporated polyanilines, and then explored the relationship between the starting materials and the properties for the polymers.
Our results indicate that MA, DA and TA are good materials for the chemical oxidative polymerization. The polymer MA-p, DA-p and TA-p display spherical morphology, but DP-p is similar to the parent polyaniline (PANI), which shows a granular structure. Regarding the electrochemical performance, TA-p shows the best capacitance, 410 F / g, and retains 91 % capacity after 1000 charge-discharge cycles;MA-p and DA-p also indicate higher capacitance, 330 F / g and 250 F / g, respectively, than DP-p and PANI, and show about 87 % capacitance retention during long-term process.
The rigid H-shaped pentiptycene effect on the enhanced capacitive performance of polyanilines might stimulate the future modification and application of model polyanilines as the electrode materials of supercapacitors.
謝誌......................................................i
摘要....................................................iii
Abstract.................................................iv
目錄......................................................v
圖目錄...................................................ix
表目錄..................................................xiv
附圖目錄..................................................xv
第一章 緒論................................................1
1-1 能源儲存...............................................1
1-2 超級電容器.............................................3
1-2-1 超級電容器原理.......................................3
1-2-2 超級電容種類.........................................4
1-2-3 超級電容器電極材料分析................................8
1-3 聚苯胺................................................9
1-3-1 聚苯胺簡介與導電原理..................................9
1-3-2 聚苯胺之聚合反應機制.................................13
1-3-3 聚苯胺的奈米結構....................................16
1-3-4 聚苯胺的合成方式....................................17
1-3-5 寡聚物添加對聚苯胺奈米結構的影響......................19
1-4 聚苯胺在超級電容上的應用...............................21
1-4-1 聚苯胺應用於超級電容器的限制.........................21
1-4-2 聚苯胺超級電容的改善方針.............................22
1-4-3 混合式超級電容器的應用...............................23
1-4-4 共軛導電高分子之奈米結構和表面性質的改善..............25
1-4-5 聚苯胺高分子鏈的本質改變.............................27
1-5 超級電容器的介面化學分析...............................28
1-5-1 介面化學分析........................................28
1-5-2 掃描式電子顯微鏡....................................28
1-5-3 穿透式電子顯微鏡....................................29
1-5-4 BET比表面積及孔徑分析儀.............................30
1-6 超級電容器的電化學分析.................................34
1-6-1 電化學分析介紹......................................34
1-6-2 循環伏安法..........................................34
1-6-3 恆電流充放電法......................................35
1-6-4 電化學阻抗頻譜法....................................36
1-6-5 四點探針之電阻測量..................................39
1-7 含五苯荑分子之共軛聚合物...............................42
1-7-1 苯荑分子及其衍生物..................................42
1-7-2 五苯荑分子合成與官能化發展...........................43
1-7-3 苯荑分子於共軛高分子之應用...........................44
1-8 研究動機..............................................49
第二章 結果與討論.........................................51
2-1 單體化合物之合成及電化學特性分析........................51
2-1-1 合成策略分析........................................51
2-1-2 五苯荑分子及其衍生物之合成...........................52
2-1-3 含五苯荑單體分子之電化學分析.........................55
2-2 含五苯荑骨架之聚苯胺的聚合及性質鑑定....................57
2-2-1 含五苯荑骨架之聚苯胺的聚合反應........................57
2-2-2 含五苯荑骨架之聚苯胺的結構鑑定........................61
2-2-3 含五苯荑骨架之聚苯胺的性質量測........................68
2-3 含五苯荑骨架之聚苯胺奈米結構與表面形態..................71
2-3-1 含五苯荑骨架之聚苯胺的SEM 掃描圖.....................71
2-3-2 含五苯荑骨架之聚苯胺的TEM 掃描圖.....................75
2-3-3 含五苯荑骨架之聚苯胺的奈米結構分析....................79
2-4 含五苯荑骨架之聚苯胺的表面分析..........................80
2-4-1含五苯荑骨架之聚苯胺的氮氣吸附-脫附等溫曲線與孔徑尺寸分佈 .........................................................80
2-5 含五苯荑骨架之聚苯胺的電化學分析........................82
2-5-1 含五苯荑骨架之聚苯胺的循環伏安法分析..................82
2-5-2 含五苯荑骨架之聚苯胺的恆電流充放電分析................86
2-5-3 含五苯荑骨架之聚苯胺的電化學阻抗光譜分析..............89
2-5-4 含五苯荑骨架之聚苯胺的循環穩定度分析..................91
2-5-5 含五苯荑骨架之聚苯胺的導電度量測......................93
2-5-6 含五苯荑骨架之聚苯胺的電化學分析比較..................95
第三章 結論...............................................96
第四章 實驗部分...........................................97
4-1實驗藥品與溶劑.........................................97
4-2 實驗儀器.............................................101
4-2-1 化合物/聚合物結構之鑑定.............................101
4-2-2 純化系統...........................................103
4-2-3 聚合物表面化學與熱穩定性質之量測.....................103
4-2-4 聚合物超級電容器電極材料之電化學性質量測.............105
4-3 實驗步驟............................................107
4-3-2 五苯荑及其衍生化合物之合成..........................107
4-3-2 聚苯胺及含五苯荑骨架聚合物之合成.....................119
參考資料.................................................123
附圖....................................................132
1.International Energy Outlook /U.S. Energy Information Administration, Total world energy consumption by energy source. 2016.
2.Sharma, P.; Bhatti, T. S., A Review on Electrochemical Double-layer Capacitors. Energy Convers. Manage. 2010, 51 (12), 2901-2912.
3.Becker, H. E., Low Voltage Electrolytic Capacitor. US Patent 2800616. 1957.
4.Halper, M. S. E., J. C. , Supercapacitors: A Brief Overview, MITRE Nanosystems Group. 2006.
5.González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R., Review on Supercapacitors: Technologies and Materials. Renew. Sust. Energ. Rev. 2016, 58, 1189-1206.
6.Endo, M. T. K., T.;Koshiba, Y. J.;K.; Ishii, K., High Power Electric Double Layer Capacitor (EDLC''s); from Operating Principle to Pore Size Control in Advanced Activated Carbons. Carbon Science 2001, 1, 117-128.
7.Wang, L. L., X.;Lei, S.;Song, Y. , Graphene-based Polyaniline Nanocomposites: Preparation, Properties and Applications. J. Mater. Chem. A 2014, 2, 4491-4509.
8.Emmenegger, C.; Mauron, P.; Sudan, P.; Wenger, P.; Hermann, V.; Gallay, R.; Züttel, A., Investigation of Electrochemical Double-layer (ECDL) Capacitors Electrodes Based on Carbon Nanotubes and Activated Carbon Materials. J. Power Sources. 2003, 124 (1), 321-329.
9.Liu, M. L., B.;Zhou, H.;Chen, C.;Liu, Y.;Liu, T. , Extraordinary Rate Capability Achieved by a 3D “Skeleton/skin” Carbon Aerogel–polyaniline Hybrid with Vertically Aligned Pores. Chem. Commun. 2017, 53, 2810-2813.
10.Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W., Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Lett. 2011, 11 (6), 2472-2477.
11.Obreja, V. V. N., On the Performance of Supercapacitors with Electrodes Based on Carbon Nanotubes and Carbon Activated Material—A Review. Physica E. 2008, 40 (7), 2596-2605.
12.Conway, B. E., Transition from “Supercapacitor” to Battery” Behavior in Electrochemical Energy Storage. J. Electrochem. Soc. 1991, 138 (6), 1539-1548.
13.Simon, P.; Gogotsi, Y., Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7 (11), 845-854.
14.Zheng, J.; Cygan, P.; Jow, T., Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc. 1995, 142 (8), 2699-2703.
15.Xia, H.; Meng, Y. S.; Yuan, G.; Cui, C.; Lu, L., A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte. Electrochem. Solid-State Lett. 2012, 15 (4), A60-A63.
16.Huang, M.; Li, F.; Dong, F.; Zhang, Y. X.; Zhang, L. L., MnO2-based Nanostructures for High-performance Supercapacitors. J. Mater. Chem. A 2015, 3 (43), 21380-21423.
17.Bastakoti, B. P.; Oveisi, H.; Hu, C. C.; Wu, K. C. W.; Suzuki, N.; Takai, K.; Kamachi, Y.; Imura, M.; Yamauchi, Y., Mesoporous Carbon Incorporated with In2O3 Nanoparticles as High‐Performance Supercapacitors. Eur. J. Inorg. Chem. 2013, 2013 (7), 1109-1112.
18.Ryu, K. S.; Kim, K. M.; Park, N.-G.; Park, Y. J.; Chang, S. H., Symmetric Redox Supercapacitor with Conducting Polyaniline Electrodes. J. Power Sources. 2002, 103 (2), 305-309.
19.De Oliveira, H. P.; Sydlik, S. A.; Swager, T. M., Supercapacitors from Free-standing Polypyrrole/graphene Nanocomposites. J. Phys. Chem. C 2013, 117 (20), 10270-10276.
20.Laforgue, A.; Simon, P.; Sarrazin, C.; Fauvarque, J.-F., Polythiophene-based Supercapacitors. J. Power Sources. 1999, 80 (1), 142-148.
21.Pieta, P.; Obraztsov, I.; D''Souza, F.; Kutner, W., Composites of Conducting Polymers and Various Carbon Nanostructures for Electrochemical Supercapacitors. ECS J. Solid State Sci. Technol. 2013, 2 (10), M3120-M3134.
22.Frackowiak, E.; Khomenko, V.; Jurewicz, K.; Lota, K.; Béguin, F., Supercapacitors Based on Conducting Polymers/Nanotubes Composites. J. Power Sources. 2006, 153 (2), 413-418.
23.Zhao, Y.-Q.; Zhao, D.-D.; Tang, P.-Y.; Wang, Y.-M.; Xu, C.-L.; Li, H.-L., MnO2/Graphene/Nickel Foam Composite as High Performance Supercapacitor Electrode via a Facile Electrochemical Deposition Strategy. Mater. Lett. 2012, 76, 127-130.
24.Li, L.; Loveday, D. C.; Mudigonda, D. S.; Ferraris, J. P., Effect of Electrolytes on Performance of Electrochemical Capacitors Based on Poly [3-(3, 4-difluorophenyl) thiophene]. J. Electrochem. Soc. 2002, 149 (9), A1201-A1207.
25.Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Belanger, D., Nanostructured Transition Metal Oxides for Aqueous Hybrid Electrochemical Supercapacitors. Appl. Phys. A 2006, 82 (4), 599-606.
26.Rao, C. V.; Rambabu, B., Nanocrystalline LiCrTiO 4 as Anode for Asymmetric Hybrid Supercapacitor. Solid State Ionics 2010, 181 (17), 839-843.
27.Snook, G. A.; Kao, P.; Best, A. S., Conducting-polymer-based Supercapacitor Devices and Electrodes. J. Power Sources 2011, 196 (1), 1-12.
28.Snook, G. A.; Chen, G. Z., The Measurement of Specific Capacitances of Conducting Polymers Using the Quartz Crystal Microbalance. J. Electroanal. Chem. 2008, 612 (1), 140-146.
29.Letheby, H., On the Production of a Blue Substance by the Electrolysis of Sulphate of Aniline. J. Chem. Soc. 1862, 15, 161-163.
30.Green, A. G. W., A., Aniline-black and Allied Compounds. J. Chem. Soc. 1910, 97, 2388-2403.
31.Langer, J., Unusual Properties of the Aniline Black: Does the Superconductivity Exist at Room Temperature? Solid State Commun. 1978, 26 (11), 839-844.
32.Macdiarmid, A. G.; Chiang, J.-C.; Halpern, M.; Huang, W.-S.; Mu, S.-L.; Nanaxakkara, L.; Wu, S. W.; Yaniger, S. I., “Polyaniline”: Interconversion of Metallic and Insulating Forms. Mol. Cryst. Liq. Cryst. 1985, 121 (1-4), 173-180.
33.MacDiarmid, A.; Chiang, J.; Richter, A.; Epstein; AJ, Polyaniline: a New Concept in Conducting Polymers. Synth. Met. 1987, 18 (1-3), 285-290.
34.Huang, J.; Kaner, R. B., The Intrinsic Nanofibrillar Morphology of Polyaniline. Chem. Commun. 2006, (4), 367-376.
35.Stafström, S.; Bredas, J.; Epstein, A.; Woo, H.; Tanner, D.; Huang, W.; MacDiarmid, A., Polaron Lattice in Highly Conducting Polyaniline: Theoretical and Optical Studies. Phys. Rev. Lett. 1987, 59 (13), 1464.
36.MacDiarmid, A.; Yang, L.; Huang, W.; Humphrey, B., Polyaniline: Electrochemistry and Application to Rechargeable Batteries. Synth. Met. 1987, 18 (1-3), 393-398.
37.Mohilner, D. M.; Adams, R. N.; Argersinger, W. J., Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode. J. Am. Chem. Soc. 1962, 84 (19), 3618-3622.
38.Sasaki, K.; Kaya, M.; Yano, J.; Kitani, A.; Kunai, A., Growth Mechanism in the Electropolymerization of Aniline and p-aminodiphenylamine. J. Electroanal. Chem. Interfac. 1986, 215 (1-2), 401-407.
39.Wei, Y.; Tang, X.; Sun, Y.; Focke, W. W., A Study of the Mechanism of Aniline Polymerization. J. Polym. Sci., Part A: Polym. Chem. 1989, 27 (7), 2385-2396.
40.Wei, Y.; Hariharan, R.; Patel, S. A., Chemical and Electrochemical Copolymerization of Aniline with Alkyl Ring-substituted Anilines. Macromolecules 1990, 23 (3), 758-764.
41.Sapurina, I.; Stejskal, J., The Mechanism of the Oxidative Polymerization of Aniline and the Formation of Supramolecular Polyaniline Structures. Polym. Int. 2008, 57 (12), 1295-1325.
42.Stejskal, J.; Sapurina, I.; Trchová, M., Polyaniline Nanostructures and the Role of Aniline Oligomers in their Formation. Prog. Polym. Sci. 2010, 35 (12), 1420-1481.
43.Sapurina, I.; Tenkovtsev, A. V.; Stejskal, J., Conjugated Polyaniline as a Result of the Benzidine Rearrangement. Polym. Int. 2015, 64 (4), 453-465.
44.Genies, E.; Lapkowski, M.; Penneau, J., Cyclic Voltammetry of Polyaniline: Interpretation of the Middle Peak. J. Electroanal. Chem. 1988, 249 (1-2), 97-107.
45.Ahmed, S. M., Mechanistic Investigation of the Oxidative Polymerization of Aniline Hydrochloride in Different Media. Polym. Degrad. Stab. 2004, 85 (1), 605-614.
46.Ghigo, G.; Osella, S.; Maranzana, A.; Tonachini, G., The Mechanism of the Acid‐Catalyzed Benzidine Rearrangement of Hydrazobenzene: A Theoretical Study. Eur. J. Org. Chem. 2011, 2011 (12), 2326-2333.
47.Li, X.-G.; Huang, M.-R.; Duan, W.; Yang, Y.-L., Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations. Chem. Rev. 2002, 102 (9), 2925-3030.
48.Wang, Z. W., Y.;Hao, X.;Liu, S.;Guan, G.;Abudula, A., An all Cis-polyaniline Nanotube Film: Facile Synthesis and Applications. Electrochim. Acta 2013, 99, 38-45.
49.Wei, Y.; Jang, G. W.; Chan, C. C.; Hsueh, K. F.; Hariharan, R.; Patel, S. A.; Whitecar, C. K., Polymerization of Aniline and Alkyl Ring-substituted Anilines in the Presence of Aromatic Additives. J. Phys. Chem. 1990, 94 (19), 7716-7721.
50.Zujovic, Z. D.; Wang, Y.; Bowmaker, G. A.; Kaner, R. B., Structure of Ultralong Polyaniline Nanofibers Using Initiators. Macromolecules 2011, 44 (8), 2735-2742.
51.Lizarraga, L.; Andrade, E. M. a.; Molina, F. V., Swelling and Volume Changes of Polyaniline upon Redox Switching. J. Electroanal. Chem. 2004, 561, 127-135.
52.Olad, A.; Gharekhani, H., Preparation and Electrochemical Investigation of the Polyaniline/Activated Carbon Nanocomposite for Supercapacitor Applications. Prog. Org. Coat. 2015, 81, 19-26.
53.Sharma, R.; Rastogi, A.; Desu, S., Manganese Oxide Embedded Polypyrrole Nanocomposites for Electrochemical Supercapacitor. Electrochim. Acta 2008, 53 (26), 7690-7695.
54.Wang, G.; Zhang, L.; Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41 (2), 797-828.
55.Ghenaatian, H.; Mousavi, M.; Rahmanifar, M., High Performance Battery–supercapacitor Hybrid Energy Storage System Based on Self-doped Polyaniline Nanofibers. Synth. Met. 2011, 161 (17), 2017-2023.
56.Ke, F.; Tang, J.; Guang, S.; Xu, H., Controlling the Morphology and Property of Carbon Fiber/Polyaniline Composites for Supercapacitor Electrode Materials by Surface Functionalization. RSC. Adv. 2016, 6 (18), 14712-14719.
57.Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L.-C., Polyaniline-coated Electro-etched Carbon Fiber Cloth Electrodes for Supercapacitors. J. Phys. Chem. C 2011, 115 (47), 23584-23590.
58.Pan, L.; Yu, G.; Zhai, D.; Lee, H. R.; Zhao, W.; Liu, N.; Wang, H.; Tee, B. C.-K.; Shi, Y.; Cui, Y., Hierarchical Nanostructured Conducting Polymer Hydrogel with High Electrochemical Activity. PNAS. 2012, 109 (24), 9287-9292.
59.Gawli, Y.; Banerjee, A.; Dhakras, D.; Deo, M.; Bulani, D.; Wadgaonkar, P.; Shelke, M.; Ogale, S., 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance. Sci. Rep. 2016, 6.
60.Lin, W.; Xu, K.; Xin, M.; Peng, J.; Xing, Y.; Chen, M., Hierarchical Porous Polyaniline–silsesquioxane Conjugated Hybrids with Enhanced Electrochemical Capacitance. RSC. Adv. 2014, 4 (74), 39508-39518.
61.Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M., Octa (aminophenyl) Silsesquioxane as a Nanoconstruction Site. J. Am. Chem. Soc. 2001, 123 (49), 12416-12417.
62.Reimer, L. K., Transmission Electron Microscopy: Physics of Image Formation. Springer 2008, 36.
63.Haider, M.; Uhlemann, S.; Schwan, E.; Rose, H.; Kabius, B.; Urban, K., Electron Microscopy Image Enhanced. Nature 1998, 392 (6678), 768.
64.Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60 (2), 309-319.
65.Sing, K. S., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57 (4), 603-619.
66.Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73 (1), 373-380.
67.Peng, C.; Hu, D.; Chen, G. Z., Theoretical Specific Capacitance Based on Charge Storage Mechanisms of Conducting Polymers: Comment on ‘Vertically Oriented Arrays of Polyaniline Nanorods and their Super Electrochemical Properties’. Chem. Commun. 2011, 47 (14), 4105-4107.
68.Stoller, M. D.; Ruoff, R. S., Best Practice Methods for Determining an Electrode Material''s Performance for Ultracapacitors. Energy Environ. Sci. 2010, 3 (9), 1294-1301.
69.Vellacheri, R.; Al-Haddad, A.; Zhao, H.; Wang, W.; Wang, C.; Lei, Y., High Performance Supercapacitor for Efficient Energy Storage Under Extreme Environmental Temperatures. Nano Energy 2014, 8, 231-237.
70.Stoller, M. D.; Ruoff, R. S., Best Practice Methods for Determining an Electrode Material''s Performance for Ultracapacitors. Energy Environ. Sci. 2010, 3 (9), 1294-1301.
71.Subramanian, V.; Zhu, H.; Wei, B., Synthesis and Electrochemical Characterizations of Amorphous Manganese Oxide and Single Walled Carbon Nanotube Composites as Supercapacitor Electrode Materials. Electrochem. Commun. 2006, 8 (5), 827-832.
72.Rubinson, J. F.; Kayinamura, Y. P., Charge Transport in Conducting Polymers: Insights from Impedance Spectroscopy. Chem. Soc. Rev. 2009, 38 (12), 3339-3347.
73.Hu, Y.; Gu, D.; Jiang, H.; Wang, L.; Sun, H.; Wang, J.; Shen, L., Electrochemical Performance of LiFePO4/C via Coaxial and Uniaxial Electrospinning Method. Adv. Chem. Eng. Sci. 2016, 6 (02), 149.
74.Schroder, D. K., Semiconductor Material and Device Characterization. Wiley 1998, 1-17.
75.Smits, F. M., Measurement of Sheet Resistivities with the Four‐point Probe. Bell Labs Tech. J. 1958, 37 (3), 711-718.
76.Weller, R. A., An algorithm for computing linear four-point probe thickness correction factors. Rev. Sci. Instrum. 2001, 72 (9), 3580-3586.
77.Albert, M.; Combs, J., Correction factors for radial resistivity gradient evaluation of semiconductor slices. IEEE Trans. Electron Dev. 1964, 11 (4), 148-151.
78.Uhlir, A., The potentials of infinite systems of sources and numerical solutions of problems in semiconductor engineering. Bell syst. Tech. J. 1955, 34 (1), 105-128.
79.Bartlett, P. D.; Ryan, M. J.; Cohen, S. G., Triptycene1 (9, 10-o-benzenoanthracene). J. Am. Chem. Soc. 1942, 64 (11), 2649-2653.
80.Hart, H.; Shamouilian, S.; Takehira, Y., Generalization of the Triptycene Concept. Use of Diaryne Equivalents in the Synthesis of Iptycenes. J. Org. Chem. 1981, 46 (22), 4427-4432.
81.Clar, E., Zur Kenntnis mehrkerniger aromatischer Kohlenwasserstoffe und ihrer Abkömmlinge, XI. Mitteil.: Über die Konstitution des Anthracens, II.: Bemerkungen zu einer Arbeit von Otto Diels und Kurt Alder. Chem. Ber. 1931, 64 (8), 2194-2200.
82.Yang, J.-S.; Swager, T. M., Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120 (46), 11864-11873.
83.Yang, J.-S.; Ko, C.-W., Pentiptycene Chemistry: New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem. 2006, 71 (2), 844-847.
84.Yang, J.-S.; Yan, J.-L.; Jin, Y.-X.; Sun, W.-T.; Yang, M.-C., Synthesis of New Halogenated Pentiptycene Building Blocks. Org. lett. 2009, 11 (6), 1429-1432.
85.Kundu, S. K.; Tan, W. S.; Yan, J.-L.; Yang, J.-S., Pentiptycene Building Blocks Derived from Nucleophilic Aromatic Substitution of Pentiptycene Triflates and Halides. J. Org. Chem. 2010, 75 (13), 4640-4643.
86.Swager, T. M., Iptycenes in the Design of High Performance Polymers. Acc. Chem. Res. 2008, 41 (9), 1181-1189.
87.Rose, A.; Zhu, Z.; Madigan, C. F.; Swager, T. M.; Bulović, V., Sensitivity Gains in Chemosensing by Lasing Action in Organic Polymers. Nature 2005, 434 (7035), 876-879.
88.Zhu, Z.; Swager, T. M., Conjugated Polymer Liquid Crystal Solutions: Control of Conformation and Alignment. J. Am. Chem. Soc. 2002, 124 (33), 9670-9671.
89.Nesterov, E. E.; Zhu, Z.; Swager, T. M., Conjugation Enhancement of Intramolecular Exciton Migration in Poly (p-phenylene ethynylene) s. J. Am. Chem. Soc. 2005, 127 (28), 10083-10088.
90.Thomas, S. W.; Long, T. M.; Pate, B. D.; Kline, S. R.; Thomas, E. L.; Swager, T. M., Perpendicular Organization of Macromolecules: Synthesis and Alignment Studies of a Soluble Poly (iptycene). J. Am. Chem. Soc. 2005, 127 (51), 17976-17977.
91.Tsui, N. T.; Paraskos, A. J.; Torun, L.; Swager, T. M.; Thomas, E. L., Minimization of Internal Molecular Free Volume: A Mechanism for the Simultaneous Enhancement of Polymer Stiffness, Strength, and Ductility. Macromolecules 2006, 39 (9), 3350-3358.
92.Tseng, S.-F. Synthesis of Pentiptycene-incorporated Polyanilines for Application as the Electrode Materials of Supercapacitors. Master Thesis, National Taiwan University, 2015.
93.Tsai, J.-Y. Synthesis of Pentiptycene-incorporated Polyanilines for Application as the Electrode Materials of Supercapacitors. Master Thesis, National Taiwan Universiry, 2014.
94.Stejskala, M. T. I. S. E. T. J., FTIR Spectroscopic and Conductivity Study of the Thermal Degradation of Polyaniline Flms. Polymer Degradation and Stability. 2004, 86, 179-185.
95.Trchová, M.; Šeděnková, I.; Tobolková, E.; Stejskal, J., FTIR Spectroscopic and Conductivity Study of the Thermal Degradation of Polyaniline Films. Polym. Degrad. Stab. 2004, 86 (1), 179-185.
96.Hjertberg, T.; Salaneck, W.; Lundstrom, I.; Somasiri, N.; MacDiarmid, A., A 13C CP‐MAS NMR Investigation of Polyaniline. J. Polym. Sci. Polym. Lett. Edit. 1985, 23 (10), 503-508.
97.Kaplan, S.; Conwell, E.; Richter, A.; MacDiarmid, A., A Solid-state NMR Investigation of the Structure and Dynamics of Polyanilines. Synth. Met. 1989, 29 (1), 235-242.
98.Zengin, H.; Zhou, W.; Jin, J.; Czerw, R.; Smith, D. W.; Echegoyen, L.; Carroll, D. L.; Foulger, S. H.; Ballato, J., Carbon Nanotube Doped Polyaniline. Adv. Mater. 2002, 14 (20), 1480-1483.
99.Sengupta, P. P.; Adhikari, B., Influence of Polymerization Condition on the Electrical Conductivity and Gas Sensing Properties of Polyaniline. Mater. Sci. Eng. A. 2007, 459 (1), 278-285.
100.Abell, L.; Pomfret, S.; Adams, P.; Monkman, A., Thermal Studies of Doped Polyaniline. Synth. Met. 1997, 84 (1-3), 127-128.
101.Han, M. G.; Lee, Y. J.; Byun, S. W.; Im, S. S., Physical Properties and Thermal Transition of Polyaniline Film. Synth. Met. 2001, 124 (2), 337-343.
102.Malmonge, L. F.; Langiano, S. d. C.; Cordeiro, J. M. M.; Mattoso, L. H. C.; Malmonge, J. A., Thermal and Mechanical Properties of PVDF/PANI Blends. Mater. Res. 2010, 13 (4), 465-470.
103.Cardoso, M. J. R.; Lima, M. F. S.; Lenz, D. M., Polyaniline Synthesized with Functionalized Sulfonic Acids for Blends Manufacture. Mater. Res. 2007, 10 (4), 425-429.
104.Sinha, S.; Bhadra, S.; Khastgir, D., Effect of Dopant Type on the Properties of Polyaniline. J. Appl. Polym. Sci. 2009, 112 (5), 3135-3140.
105.Chan, H.; Ng, S.; Sim, W.; Tan, K.; Tan, B., Preparation and Characterization of Electrically Conducting Copolymers of Aniline and Anthranilic Acid: Evidence for Self-doping by x-ray Photoelectron Spectroscopy. Macromolecules 1992, 25 (22), 6029-6034.
106.Elnaggar, E. M.; Kabel, K. I.; Farag, A. A.; Al-Gamal, A. G., Comparative Study on Doping of Polyaniline with Graphene and Multi-walled Carbon Nanotubes. J. Nanostruct. Chem. 2017, 7 (1), 75-83.
107.Li, Y.; Zhang, Q.; Zhao, X.; Yu, P.; Wu, L.; Chen, D., Enhanced Electrochemical Performance of Polyaniline/Sulfonated Polyhedral Oligosilsesquioxane Nanocomposites with Porous and Ordered Hierarchical Nanostructure. J. Mater. Chem. 2012, 22 (5), 1884-1892.
108.Zhang, D.; Wang, Y., Synthesis and Applications of One-dimensional Nano-structured Polyaniline: An Overview. Mater. Sci. Eng., B 2006, 134 (1), 9-19.
109.Li, Z.-F.; Zhang, H.; Liu, Q.; Sun, L.; Stanciu, L.; Xie, J., Fabrication of High-surface-area Graphene/Polyaniline Nanocomposites and their Application in Supercapacitors. ACS Appl. Mater. Interfaces. 2013, 5 (7), 2685-2691.
110.Fusalba, F.; Gouérec, P.; Villers, D.; Bélanger, D., Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and its Evaluation as Electrode Material for Electrochemical Supercapacitors. J. Electrochem. Soc. 2001, 148 (1), A1-A6.
111.Pruneanu, S.; Veress, E.; Marian, I.; Oniciu, L., Characterization of Polyaniline by Cyclic Voltammetry and UV-Vis Absorption Spectroscopy. J. Mater. Sci. 1999, 34 (11), 2733-2739.
112.Lapkowski, M.; Berrada, K.; Quillard, S.; Louarn, G.; Lefrant, S.; Pron, A., Electrochemical Oxidation of Polyaniline in Nonaqueous Electrolytes:" In Situ" Raman Spectroscopic Studies. Macromolecules 1995, 28 (4), 1233-1238.
113.Tai, Z.; Yan, X.; Xue, Q., Three-dimensional Graphene/Polyaniline Composite Hydrogel as Supercapacitor Electrode. J. Electrochem. Soc. 2012, 159 (10), A1702-A1709.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊