|
1.International Energy Outlook /U.S. Energy Information Administration, Total world energy consumption by energy source. 2016. 2.Sharma, P.; Bhatti, T. S., A Review on Electrochemical Double-layer Capacitors. Energy Convers. Manage. 2010, 51 (12), 2901-2912. 3.Becker, H. E., Low Voltage Electrolytic Capacitor. US Patent 2800616. 1957. 4.Halper, M. S. E., J. C. , Supercapacitors: A Brief Overview, MITRE Nanosystems Group. 2006. 5.González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R., Review on Supercapacitors: Technologies and Materials. Renew. Sust. Energ. Rev. 2016, 58, 1189-1206. 6.Endo, M. T. K., T.;Koshiba, Y. J.;K.; Ishii, K., High Power Electric Double Layer Capacitor (EDLC''s); from Operating Principle to Pore Size Control in Advanced Activated Carbons. Carbon Science 2001, 1, 117-128. 7.Wang, L. L., X.;Lei, S.;Song, Y. , Graphene-based Polyaniline Nanocomposites: Preparation, Properties and Applications. J. Mater. Chem. A 2014, 2, 4491-4509. 8.Emmenegger, C.; Mauron, P.; Sudan, P.; Wenger, P.; Hermann, V.; Gallay, R.; Züttel, A., Investigation of Electrochemical Double-layer (ECDL) Capacitors Electrodes Based on Carbon Nanotubes and Activated Carbon Materials. J. Power Sources. 2003, 124 (1), 321-329. 9.Liu, M. L., B.;Zhou, H.;Chen, C.;Liu, Y.;Liu, T. , Extraordinary Rate Capability Achieved by a 3D “Skeleton/skin” Carbon Aerogel–polyaniline Hybrid with Vertically Aligned Pores. Chem. Commun. 2017, 53, 2810-2813. 10.Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W., Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Lett. 2011, 11 (6), 2472-2477. 11.Obreja, V. V. N., On the Performance of Supercapacitors with Electrodes Based on Carbon Nanotubes and Carbon Activated Material—A Review. Physica E. 2008, 40 (7), 2596-2605. 12.Conway, B. E., Transition from “Supercapacitor” to Battery” Behavior in Electrochemical Energy Storage. J. Electrochem. Soc. 1991, 138 (6), 1539-1548. 13.Simon, P.; Gogotsi, Y., Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7 (11), 845-854. 14.Zheng, J.; Cygan, P.; Jow, T., Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc. 1995, 142 (8), 2699-2703. 15.Xia, H.; Meng, Y. S.; Yuan, G.; Cui, C.; Lu, L., A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte. Electrochem. Solid-State Lett. 2012, 15 (4), A60-A63. 16.Huang, M.; Li, F.; Dong, F.; Zhang, Y. X.; Zhang, L. L., MnO2-based Nanostructures for High-performance Supercapacitors. J. Mater. Chem. A 2015, 3 (43), 21380-21423. 17.Bastakoti, B. P.; Oveisi, H.; Hu, C. C.; Wu, K. C. W.; Suzuki, N.; Takai, K.; Kamachi, Y.; Imura, M.; Yamauchi, Y., Mesoporous Carbon Incorporated with In2O3 Nanoparticles as High‐Performance Supercapacitors. Eur. J. Inorg. Chem. 2013, 2013 (7), 1109-1112. 18.Ryu, K. S.; Kim, K. M.; Park, N.-G.; Park, Y. J.; Chang, S. H., Symmetric Redox Supercapacitor with Conducting Polyaniline Electrodes. J. Power Sources. 2002, 103 (2), 305-309. 19.De Oliveira, H. P.; Sydlik, S. A.; Swager, T. M., Supercapacitors from Free-standing Polypyrrole/graphene Nanocomposites. J. Phys. Chem. C 2013, 117 (20), 10270-10276. 20.Laforgue, A.; Simon, P.; Sarrazin, C.; Fauvarque, J.-F., Polythiophene-based Supercapacitors. J. Power Sources. 1999, 80 (1), 142-148. 21.Pieta, P.; Obraztsov, I.; D''Souza, F.; Kutner, W., Composites of Conducting Polymers and Various Carbon Nanostructures for Electrochemical Supercapacitors. ECS J. Solid State Sci. Technol. 2013, 2 (10), M3120-M3134. 22.Frackowiak, E.; Khomenko, V.; Jurewicz, K.; Lota, K.; Béguin, F., Supercapacitors Based on Conducting Polymers/Nanotubes Composites. J. Power Sources. 2006, 153 (2), 413-418. 23.Zhao, Y.-Q.; Zhao, D.-D.; Tang, P.-Y.; Wang, Y.-M.; Xu, C.-L.; Li, H.-L., MnO2/Graphene/Nickel Foam Composite as High Performance Supercapacitor Electrode via a Facile Electrochemical Deposition Strategy. Mater. Lett. 2012, 76, 127-130. 24.Li, L.; Loveday, D. C.; Mudigonda, D. S.; Ferraris, J. P., Effect of Electrolytes on Performance of Electrochemical Capacitors Based on Poly [3-(3, 4-difluorophenyl) thiophene]. J. Electrochem. Soc. 2002, 149 (9), A1201-A1207. 25.Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Belanger, D., Nanostructured Transition Metal Oxides for Aqueous Hybrid Electrochemical Supercapacitors. Appl. Phys. A 2006, 82 (4), 599-606. 26.Rao, C. V.; Rambabu, B., Nanocrystalline LiCrTiO 4 as Anode for Asymmetric Hybrid Supercapacitor. Solid State Ionics 2010, 181 (17), 839-843. 27.Snook, G. A.; Kao, P.; Best, A. S., Conducting-polymer-based Supercapacitor Devices and Electrodes. J. Power Sources 2011, 196 (1), 1-12. 28.Snook, G. A.; Chen, G. Z., The Measurement of Specific Capacitances of Conducting Polymers Using the Quartz Crystal Microbalance. J. Electroanal. Chem. 2008, 612 (1), 140-146. 29.Letheby, H., On the Production of a Blue Substance by the Electrolysis of Sulphate of Aniline. J. Chem. Soc. 1862, 15, 161-163. 30.Green, A. G. W., A., Aniline-black and Allied Compounds. J. Chem. Soc. 1910, 97, 2388-2403. 31.Langer, J., Unusual Properties of the Aniline Black: Does the Superconductivity Exist at Room Temperature? Solid State Commun. 1978, 26 (11), 839-844. 32.Macdiarmid, A. G.; Chiang, J.-C.; Halpern, M.; Huang, W.-S.; Mu, S.-L.; Nanaxakkara, L.; Wu, S. W.; Yaniger, S. I., “Polyaniline”: Interconversion of Metallic and Insulating Forms. Mol. Cryst. Liq. Cryst. 1985, 121 (1-4), 173-180. 33.MacDiarmid, A.; Chiang, J.; Richter, A.; Epstein; AJ, Polyaniline: a New Concept in Conducting Polymers. Synth. Met. 1987, 18 (1-3), 285-290. 34.Huang, J.; Kaner, R. B., The Intrinsic Nanofibrillar Morphology of Polyaniline. Chem. Commun. 2006, (4), 367-376. 35.Stafström, S.; Bredas, J.; Epstein, A.; Woo, H.; Tanner, D.; Huang, W.; MacDiarmid, A., Polaron Lattice in Highly Conducting Polyaniline: Theoretical and Optical Studies. Phys. Rev. Lett. 1987, 59 (13), 1464. 36.MacDiarmid, A.; Yang, L.; Huang, W.; Humphrey, B., Polyaniline: Electrochemistry and Application to Rechargeable Batteries. Synth. Met. 1987, 18 (1-3), 393-398. 37.Mohilner, D. M.; Adams, R. N.; Argersinger, W. J., Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode. J. Am. Chem. Soc. 1962, 84 (19), 3618-3622. 38.Sasaki, K.; Kaya, M.; Yano, J.; Kitani, A.; Kunai, A., Growth Mechanism in the Electropolymerization of Aniline and p-aminodiphenylamine. J. Electroanal. Chem. Interfac. 1986, 215 (1-2), 401-407. 39.Wei, Y.; Tang, X.; Sun, Y.; Focke, W. W., A Study of the Mechanism of Aniline Polymerization. J. Polym. Sci., Part A: Polym. Chem. 1989, 27 (7), 2385-2396. 40.Wei, Y.; Hariharan, R.; Patel, S. A., Chemical and Electrochemical Copolymerization of Aniline with Alkyl Ring-substituted Anilines. Macromolecules 1990, 23 (3), 758-764. 41.Sapurina, I.; Stejskal, J., The Mechanism of the Oxidative Polymerization of Aniline and the Formation of Supramolecular Polyaniline Structures. Polym. Int. 2008, 57 (12), 1295-1325. 42.Stejskal, J.; Sapurina, I.; Trchová, M., Polyaniline Nanostructures and the Role of Aniline Oligomers in their Formation. Prog. Polym. Sci. 2010, 35 (12), 1420-1481. 43.Sapurina, I.; Tenkovtsev, A. V.; Stejskal, J., Conjugated Polyaniline as a Result of the Benzidine Rearrangement. Polym. Int. 2015, 64 (4), 453-465. 44.Genies, E.; Lapkowski, M.; Penneau, J., Cyclic Voltammetry of Polyaniline: Interpretation of the Middle Peak. J. Electroanal. Chem. 1988, 249 (1-2), 97-107. 45.Ahmed, S. M., Mechanistic Investigation of the Oxidative Polymerization of Aniline Hydrochloride in Different Media. Polym. Degrad. Stab. 2004, 85 (1), 605-614. 46.Ghigo, G.; Osella, S.; Maranzana, A.; Tonachini, G., The Mechanism of the Acid‐Catalyzed Benzidine Rearrangement of Hydrazobenzene: A Theoretical Study. Eur. J. Org. Chem. 2011, 2011 (12), 2326-2333. 47.Li, X.-G.; Huang, M.-R.; Duan, W.; Yang, Y.-L., Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations. Chem. Rev. 2002, 102 (9), 2925-3030. 48.Wang, Z. W., Y.;Hao, X.;Liu, S.;Guan, G.;Abudula, A., An all Cis-polyaniline Nanotube Film: Facile Synthesis and Applications. Electrochim. Acta 2013, 99, 38-45. 49.Wei, Y.; Jang, G. W.; Chan, C. C.; Hsueh, K. F.; Hariharan, R.; Patel, S. A.; Whitecar, C. K., Polymerization of Aniline and Alkyl Ring-substituted Anilines in the Presence of Aromatic Additives. J. Phys. Chem. 1990, 94 (19), 7716-7721. 50.Zujovic, Z. D.; Wang, Y.; Bowmaker, G. A.; Kaner, R. B., Structure of Ultralong Polyaniline Nanofibers Using Initiators. Macromolecules 2011, 44 (8), 2735-2742. 51.Lizarraga, L.; Andrade, E. M. a.; Molina, F. V., Swelling and Volume Changes of Polyaniline upon Redox Switching. J. Electroanal. Chem. 2004, 561, 127-135. 52.Olad, A.; Gharekhani, H., Preparation and Electrochemical Investigation of the Polyaniline/Activated Carbon Nanocomposite for Supercapacitor Applications. Prog. Org. Coat. 2015, 81, 19-26. 53.Sharma, R.; Rastogi, A.; Desu, S., Manganese Oxide Embedded Polypyrrole Nanocomposites for Electrochemical Supercapacitor. Electrochim. Acta 2008, 53 (26), 7690-7695. 54.Wang, G.; Zhang, L.; Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41 (2), 797-828. 55.Ghenaatian, H.; Mousavi, M.; Rahmanifar, M., High Performance Battery–supercapacitor Hybrid Energy Storage System Based on Self-doped Polyaniline Nanofibers. Synth. Met. 2011, 161 (17), 2017-2023. 56.Ke, F.; Tang, J.; Guang, S.; Xu, H., Controlling the Morphology and Property of Carbon Fiber/Polyaniline Composites for Supercapacitor Electrode Materials by Surface Functionalization. RSC. Adv. 2016, 6 (18), 14712-14719. 57.Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L.-C., Polyaniline-coated Electro-etched Carbon Fiber Cloth Electrodes for Supercapacitors. J. Phys. Chem. C 2011, 115 (47), 23584-23590. 58.Pan, L.; Yu, G.; Zhai, D.; Lee, H. R.; Zhao, W.; Liu, N.; Wang, H.; Tee, B. C.-K.; Shi, Y.; Cui, Y., Hierarchical Nanostructured Conducting Polymer Hydrogel with High Electrochemical Activity. PNAS. 2012, 109 (24), 9287-9292. 59.Gawli, Y.; Banerjee, A.; Dhakras, D.; Deo, M.; Bulani, D.; Wadgaonkar, P.; Shelke, M.; Ogale, S., 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance. Sci. Rep. 2016, 6. 60.Lin, W.; Xu, K.; Xin, M.; Peng, J.; Xing, Y.; Chen, M., Hierarchical Porous Polyaniline–silsesquioxane Conjugated Hybrids with Enhanced Electrochemical Capacitance. RSC. Adv. 2014, 4 (74), 39508-39518. 61.Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M., Octa (aminophenyl) Silsesquioxane as a Nanoconstruction Site. J. Am. Chem. Soc. 2001, 123 (49), 12416-12417. 62.Reimer, L. K., Transmission Electron Microscopy: Physics of Image Formation. Springer 2008, 36. 63.Haider, M.; Uhlemann, S.; Schwan, E.; Rose, H.; Kabius, B.; Urban, K., Electron Microscopy Image Enhanced. Nature 1998, 392 (6678), 768. 64.Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60 (2), 309-319. 65.Sing, K. S., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57 (4), 603-619. 66.Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73 (1), 373-380. 67.Peng, C.; Hu, D.; Chen, G. Z., Theoretical Specific Capacitance Based on Charge Storage Mechanisms of Conducting Polymers: Comment on ‘Vertically Oriented Arrays of Polyaniline Nanorods and their Super Electrochemical Properties’. Chem. Commun. 2011, 47 (14), 4105-4107. 68.Stoller, M. D.; Ruoff, R. S., Best Practice Methods for Determining an Electrode Material''s Performance for Ultracapacitors. Energy Environ. Sci. 2010, 3 (9), 1294-1301. 69.Vellacheri, R.; Al-Haddad, A.; Zhao, H.; Wang, W.; Wang, C.; Lei, Y., High Performance Supercapacitor for Efficient Energy Storage Under Extreme Environmental Temperatures. Nano Energy 2014, 8, 231-237. 70.Stoller, M. D.; Ruoff, R. S., Best Practice Methods for Determining an Electrode Material''s Performance for Ultracapacitors. Energy Environ. Sci. 2010, 3 (9), 1294-1301. 71.Subramanian, V.; Zhu, H.; Wei, B., Synthesis and Electrochemical Characterizations of Amorphous Manganese Oxide and Single Walled Carbon Nanotube Composites as Supercapacitor Electrode Materials. Electrochem. Commun. 2006, 8 (5), 827-832. 72.Rubinson, J. F.; Kayinamura, Y. P., Charge Transport in Conducting Polymers: Insights from Impedance Spectroscopy. Chem. Soc. Rev. 2009, 38 (12), 3339-3347. 73.Hu, Y.; Gu, D.; Jiang, H.; Wang, L.; Sun, H.; Wang, J.; Shen, L., Electrochemical Performance of LiFePO4/C via Coaxial and Uniaxial Electrospinning Method. Adv. Chem. Eng. Sci. 2016, 6 (02), 149. 74.Schroder, D. K., Semiconductor Material and Device Characterization. Wiley 1998, 1-17. 75.Smits, F. M., Measurement of Sheet Resistivities with the Four‐point Probe. Bell Labs Tech. J. 1958, 37 (3), 711-718. 76.Weller, R. A., An algorithm for computing linear four-point probe thickness correction factors. Rev. Sci. Instrum. 2001, 72 (9), 3580-3586. 77.Albert, M.; Combs, J., Correction factors for radial resistivity gradient evaluation of semiconductor slices. IEEE Trans. Electron Dev. 1964, 11 (4), 148-151. 78.Uhlir, A., The potentials of infinite systems of sources and numerical solutions of problems in semiconductor engineering. Bell syst. Tech. J. 1955, 34 (1), 105-128. 79.Bartlett, P. D.; Ryan, M. J.; Cohen, S. G., Triptycene1 (9, 10-o-benzenoanthracene). J. Am. Chem. Soc. 1942, 64 (11), 2649-2653. 80.Hart, H.; Shamouilian, S.; Takehira, Y., Generalization of the Triptycene Concept. Use of Diaryne Equivalents in the Synthesis of Iptycenes. J. Org. Chem. 1981, 46 (22), 4427-4432. 81.Clar, E., Zur Kenntnis mehrkerniger aromatischer Kohlenwasserstoffe und ihrer Abkömmlinge, XI. Mitteil.: Über die Konstitution des Anthracens, II.: Bemerkungen zu einer Arbeit von Otto Diels und Kurt Alder. Chem. Ber. 1931, 64 (8), 2194-2200. 82.Yang, J.-S.; Swager, T. M., Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120 (46), 11864-11873. 83.Yang, J.-S.; Ko, C.-W., Pentiptycene Chemistry: New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem. 2006, 71 (2), 844-847. 84.Yang, J.-S.; Yan, J.-L.; Jin, Y.-X.; Sun, W.-T.; Yang, M.-C., Synthesis of New Halogenated Pentiptycene Building Blocks. Org. lett. 2009, 11 (6), 1429-1432. 85.Kundu, S. K.; Tan, W. S.; Yan, J.-L.; Yang, J.-S., Pentiptycene Building Blocks Derived from Nucleophilic Aromatic Substitution of Pentiptycene Triflates and Halides. J. Org. Chem. 2010, 75 (13), 4640-4643. 86.Swager, T. M., Iptycenes in the Design of High Performance Polymers. Acc. Chem. Res. 2008, 41 (9), 1181-1189. 87.Rose, A.; Zhu, Z.; Madigan, C. F.; Swager, T. M.; Bulović, V., Sensitivity Gains in Chemosensing by Lasing Action in Organic Polymers. Nature 2005, 434 (7035), 876-879. 88.Zhu, Z.; Swager, T. M., Conjugated Polymer Liquid Crystal Solutions: Control of Conformation and Alignment. J. Am. Chem. Soc. 2002, 124 (33), 9670-9671. 89.Nesterov, E. E.; Zhu, Z.; Swager, T. M., Conjugation Enhancement of Intramolecular Exciton Migration in Poly (p-phenylene ethynylene) s. J. Am. Chem. Soc. 2005, 127 (28), 10083-10088. 90.Thomas, S. W.; Long, T. M.; Pate, B. D.; Kline, S. R.; Thomas, E. L.; Swager, T. M., Perpendicular Organization of Macromolecules: Synthesis and Alignment Studies of a Soluble Poly (iptycene). J. Am. Chem. Soc. 2005, 127 (51), 17976-17977. 91.Tsui, N. T.; Paraskos, A. J.; Torun, L.; Swager, T. M.; Thomas, E. L., Minimization of Internal Molecular Free Volume: A Mechanism for the Simultaneous Enhancement of Polymer Stiffness, Strength, and Ductility. Macromolecules 2006, 39 (9), 3350-3358. 92.Tseng, S.-F. Synthesis of Pentiptycene-incorporated Polyanilines for Application as the Electrode Materials of Supercapacitors. Master Thesis, National Taiwan University, 2015. 93.Tsai, J.-Y. Synthesis of Pentiptycene-incorporated Polyanilines for Application as the Electrode Materials of Supercapacitors. Master Thesis, National Taiwan Universiry, 2014. 94.Stejskala, M. T. I. S. E. T. J., FTIR Spectroscopic and Conductivity Study of the Thermal Degradation of Polyaniline Flms. Polymer Degradation and Stability. 2004, 86, 179-185. 95.Trchová, M.; Šeděnková, I.; Tobolková, E.; Stejskal, J., FTIR Spectroscopic and Conductivity Study of the Thermal Degradation of Polyaniline Films. Polym. Degrad. Stab. 2004, 86 (1), 179-185. 96.Hjertberg, T.; Salaneck, W.; Lundstrom, I.; Somasiri, N.; MacDiarmid, A., A 13C CP‐MAS NMR Investigation of Polyaniline. J. Polym. Sci. Polym. Lett. Edit. 1985, 23 (10), 503-508. 97.Kaplan, S.; Conwell, E.; Richter, A.; MacDiarmid, A., A Solid-state NMR Investigation of the Structure and Dynamics of Polyanilines. Synth. Met. 1989, 29 (1), 235-242. 98.Zengin, H.; Zhou, W.; Jin, J.; Czerw, R.; Smith, D. W.; Echegoyen, L.; Carroll, D. L.; Foulger, S. H.; Ballato, J., Carbon Nanotube Doped Polyaniline. Adv. Mater. 2002, 14 (20), 1480-1483. 99.Sengupta, P. P.; Adhikari, B., Influence of Polymerization Condition on the Electrical Conductivity and Gas Sensing Properties of Polyaniline. Mater. Sci. Eng. A. 2007, 459 (1), 278-285. 100.Abell, L.; Pomfret, S.; Adams, P.; Monkman, A., Thermal Studies of Doped Polyaniline. Synth. Met. 1997, 84 (1-3), 127-128. 101.Han, M. G.; Lee, Y. J.; Byun, S. W.; Im, S. S., Physical Properties and Thermal Transition of Polyaniline Film. Synth. Met. 2001, 124 (2), 337-343. 102.Malmonge, L. F.; Langiano, S. d. C.; Cordeiro, J. M. M.; Mattoso, L. H. C.; Malmonge, J. A., Thermal and Mechanical Properties of PVDF/PANI Blends. Mater. Res. 2010, 13 (4), 465-470. 103.Cardoso, M. J. R.; Lima, M. F. S.; Lenz, D. M., Polyaniline Synthesized with Functionalized Sulfonic Acids for Blends Manufacture. Mater. Res. 2007, 10 (4), 425-429. 104.Sinha, S.; Bhadra, S.; Khastgir, D., Effect of Dopant Type on the Properties of Polyaniline. J. Appl. Polym. Sci. 2009, 112 (5), 3135-3140. 105.Chan, H.; Ng, S.; Sim, W.; Tan, K.; Tan, B., Preparation and Characterization of Electrically Conducting Copolymers of Aniline and Anthranilic Acid: Evidence for Self-doping by x-ray Photoelectron Spectroscopy. Macromolecules 1992, 25 (22), 6029-6034. 106.Elnaggar, E. M.; Kabel, K. I.; Farag, A. A.; Al-Gamal, A. G., Comparative Study on Doping of Polyaniline with Graphene and Multi-walled Carbon Nanotubes. J. Nanostruct. Chem. 2017, 7 (1), 75-83. 107.Li, Y.; Zhang, Q.; Zhao, X.; Yu, P.; Wu, L.; Chen, D., Enhanced Electrochemical Performance of Polyaniline/Sulfonated Polyhedral Oligosilsesquioxane Nanocomposites with Porous and Ordered Hierarchical Nanostructure. J. Mater. Chem. 2012, 22 (5), 1884-1892. 108.Zhang, D.; Wang, Y., Synthesis and Applications of One-dimensional Nano-structured Polyaniline: An Overview. Mater. Sci. Eng., B 2006, 134 (1), 9-19. 109.Li, Z.-F.; Zhang, H.; Liu, Q.; Sun, L.; Stanciu, L.; Xie, J., Fabrication of High-surface-area Graphene/Polyaniline Nanocomposites and their Application in Supercapacitors. ACS Appl. Mater. Interfaces. 2013, 5 (7), 2685-2691. 110.Fusalba, F.; Gouérec, P.; Villers, D.; Bélanger, D., Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and its Evaluation as Electrode Material for Electrochemical Supercapacitors. J. Electrochem. Soc. 2001, 148 (1), A1-A6. 111.Pruneanu, S.; Veress, E.; Marian, I.; Oniciu, L., Characterization of Polyaniline by Cyclic Voltammetry and UV-Vis Absorption Spectroscopy. J. Mater. Sci. 1999, 34 (11), 2733-2739. 112.Lapkowski, M.; Berrada, K.; Quillard, S.; Louarn, G.; Lefrant, S.; Pron, A., Electrochemical Oxidation of Polyaniline in Nonaqueous Electrolytes:" In Situ" Raman Spectroscopic Studies. Macromolecules 1995, 28 (4), 1233-1238. 113.Tai, Z.; Yan, X.; Xue, Q., Three-dimensional Graphene/Polyaniline Composite Hydrogel as Supercapacitor Electrode. J. Electrochem. Soc. 2012, 159 (10), A1702-A1709.
|