跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宥霖
研究生(外文):Yo-Lin Chen
論文名稱:結構方程模型多向度構念題目組合表徵之構念意涵
論文名稱(外文):Nature of Multidimensional Constructs Represented by Item Parcels in Structural Equation Modeling
指導教授:翁儷禎翁儷禎引用關係
口試日期:2017-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:多向度構念結構方程模型題目組合
外文關鍵詞:multidimensional constructsstructural equation modelingitem parcels
相關次數:
  • 被引用被引用:0
  • 點閱點閱:550
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
題目組合(item parcels)為題目分數之加總或平均,可於結構方程模型(structural equation modeling)分析中作為構念之指標。Little、Rhemtulla、Gibson、及Schoemann(2013)與Cole、Perkins、及Zelkowitz(2016)皆曾指出,多向度構念題目組合表徵之構念意涵可能不同於研究者原先之假設,致影響分析結果,故使用題目組合之前應先釐清其所反映之構念本質。多向度構念為涵蓋數個向度之構念,Cole等人以及Williams與O’Boyle(2008)皆指出許多心理學研究探討之構念乃為多向度,研究者並建構題目組合作為多向度構念之指標進行結構方程模型分析。本研究因之擴展Sterba與MacCallum(2010)之題目組合共變數矩陣推導,由單向度構念延伸至多向度構念,自多向度構念題目組合之共變數矩陣組成,提供一理論架構使研究者能檢視題目組合所表徵之多向度構念意涵。本研究並進一步以此架構論述不同題目組合策略、向度間相關,以及題目因素結構複雜度之題目組合所反映之多向度構念本質,亦以一模擬資料為例展示推導結果。實徵研究者可透過本研究推演之架構,檢視其所建構之多向度構念題目組合共變數矩陣,藉之釐清其所表徵之多向度構念意涵是否符合原先假設,以避免不當之結構方程模型分析結果。
Item parcels, represented as summation or average over items, can be used as indicators of latent variables in structural equation modeling (SEM). Little et al. (2013) and Cole et al. (2016) indicated that the nature of multidimensional constructs represented by parcels can be different from that assumed by the researchers and thus affects the results of SEM analysis. Researchers should therefore examine the nature of multidimensional constructs represented by parcels prior to the analysis. Cole et al. and Williams and O’Boyle (2008) indicated that many of the constructs investigated in psychological research are multidimensional, consisting of several facets, and item parcels have been frequently adopted to be indicators for these constructs in SEM. The present study therefore extended the algebraic derivation of the covariance matrix of item parcels in Sterba & MacCallum (2010) from unidimensional to multidimensional constructs to provide a theoretical framework for examining the nature of multidimensional constructs implied by parcels. The effects of parceling strategy, correlations among facets, and factorial complexity of items on the nature of multidimensional constructs represented by parcels were discussed using this framework and illustrated by a numerical simulation example. Researchers may apply the framework proposed in this study to clarify the nature of the multidimensional constructs inferred from item parcels through examining the covariance matrix among parcels so as to avoid misleading results from SEM analysis.
壹、緒論 01
貳、方法 15
參、結果 18
肆、討論 34
表 38
圖 46
參考文獻 49
Bagby, R. M., Parker, J. D., & Taylor, G. J. (1994). The twenty-item Toronto Alexithymia Scale: I. Item selection and cross-validation of the factor structure. Journal of Psychosomatic Research, 38, 23-32.
Bagozzi, R. P., & Edwards, J. R. (1998). A general approach to representing constructs in organizational research. Organizational Research Methods, 1, 45- 87.
Bagozzi, R. P., & Heatherton, T. F. (1994). A general approach to representing multifaceted personality constructs: Application to state self-esteem. Structural Equation Modeling, 1, 35-67.
Bandalos, D. L. (2002). The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling, 9, 78-102.
Bandalos, D. L. (2008). Is parceling really necessary? A comparison of results from item parceling and categorical variable methodology. Structural Equation Modeling, 15, 211-0240.
Bandalos, D. L., & Finney, S. J. (2001). Item parceling issues in structural equation modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 269-296). Mahwah, NJ: Lawrence Erlbaum Associates.
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.
Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate Software.
Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: John Wiley & Sons.
Cattell, R. B. (1956). Validation and intensification of the sixteen personality factors questionnaire. Journal of Clinical Psychology, 12, 205-214.
Cattell, R. B. (1974). Radial parcel factoring-vs-item factoring in defining personality structure in questionnaires: Theory and experimental checks. Australian Journal of Psychology, 26, 103-119.
Cattell, R. B., & Burdsal, C. A., Jr. (1975). The radial parcel double factoring design: A solution to the item-vs-parcel controversy. Multivariate Behavioral Research, 10, 165-179.
Coffman, D. L., & MacCallum, R. C. (2005). Using parcels to convert path analysis models into latent variable models. Multivariate Behavioral Research, 40, 235-259.
Cole, D. A., Perkins, C. E., & Zelkowitz, R. L. (2016). Impact of homogeneous and heterogeneous parceling strategies when latent variables represent multidimensional constructs. Psychological Methods, 21, 164-174.
Gignac, G. E. (2006). Self-reported emotional intelligence and life satisfaction: Testing incremental predictive validity hypotheses via structural equation modeling (SEM) in a small sample. Personality and Individual Differences, 40, 1569-1577.
Hall, R. J., Snell, A. F., & Foust, M. S. (1999). Item parceling strategies in SEM: Investigating the subtle effects of unmodeled secondary constructs. Organizational Research Methods, 2, 233-256.
Jackson, D. L., Gillaspy, J. A., & Pure-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14, 6-23.
Kim, S., & Hagtvet, K. A. (2003). The impact of misspecified item parceling on representing latent variables in covariance structure modeling: A simulation study. Structural Equation Modeling, 10, 101-127.
Kishton, J. M., & Widaman, K. F. (1994). Unidimensional versus domain representative parceling of questionnaire items: An empirical example. Educational and Psychological Measurement, 54, 757-765.
Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). New York, NY: The Guilford Press.
Komsta, L. & Novomestky, F. (2015). Moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. Retrieved from https://cran.r-project.org/web/packages/moments/index.html.
Kooiman, C. G., Spinhoven, P., & Trijsburg, R. W. (2002). The assessment of alexithymia: A critical review of the literature and a psychometric study of the Toronto Alexithymia Scale-20. Journal of Psychosomatic Research, 53, 1083-1090.
Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9, 151-173.
Little, T. D., Rhemtulla, M., Gibson, K., & Schoemann, A. M. (2013). Why the items versus parcels controversy needn’t be one. Psychological Methods, 18, 285-300.
MacCallum, R. C., & Tucker, L. R. (1991). Representing sources of error in the common-factor model: Implications for theory and practice. Psychological Bulletin, 109, 502–511.
MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–89.
Marsh, H. W., Hau, K.-T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33, 181-220.
Marsh, H. W., Ludtke, O., Nagengast, B., Morin, A. J. S., & Von Davier, M. (2013). Why item parcels are (almost) never appropriate: Two wrongs do not make a right – Camouflaging misspecification with item parcels in CFA models. Psychological Methods, 18, 257-284.
Marsh, H. W., & O’Neill, R. (1984). Self Description Questionnaire III (SDQ III): The construct validity of multidimensional self-concept ratings by late adolescents. Journal of Educational Measurement, 21, 153-174.
Moriguchi, Y., Maeda, M., Igarashi, T., Ishikawa, T., Shoji, M., Kubo, C., & Komaki, G. (2007). Age and gender effect on alexithymia in large, Japanese community and clinical samples: A cross-validation study of the Toronto Alexithymia Scale (TAS-20). Biopsychosocial Medicine, 1, 1-15.
Nasser, F., & Wisenbaker, J. (2003). A Monte Carlo study investigating the impact of item parceling on measures of fit in confirmatory factor analysis. Educational and Psychological Measurement, 63, 729-757.
Nasser, F., & Wisenbaker, J. (2006). A Monte Carlo study investigating the impact of item parceling strategies on parameter estimates and their standard errors in CFA. Structural Equation Modeling, 13, 204-228.
R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rhemtulla, M. (2016). Population performance of SEM parceling strategies under measurement and structural model misspecification. Psychological Methods, 21, 348-368.
Rogers, W. M., & Schmitt, N. (2004). Parameter recovery and model fit using multidimensional composites: A comparison of four empirical parceling algorithms. Multivariate Behavioral Research, 39, 379-412.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36.
Sass, D. A., & Smith, P. L. (2006). The effects of parceling unidimensional scales on structural parameter estimates in structural equation modeling. Structural Equation Modeling, 13, 566-586.
Schreiber, J. B. (2008). Core reporting practices in structural equation modeling. Research in Social and Administrative Pharmacy, 4, 83-97.
Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of common factors. Paper presented at the annual Spring meeting of the Psychometric Society, Iowa City, IA.
Sterba, S. K. (2011). Implications of parcel-allocation variability for comparing fit of item-solutions and parcel-solutions. Structural Equation Modeling, 18, 554-577.
Sterba, S. K., & MacCallum, R. C. (2010). Variability in parameter estimates and model fit across repeated allocations of items to parcels. Multivariate Behavioral Research, 45, 322-358.
Sterba, S. K., & Rights, J. D. (2016). Accounting for parcel-allocation variability in practice: Combining sources of uncertainty and choosing the number of allocations. Multivariate Behavioral Research, 51, 296-313.
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1-10.
Venables, W. N. & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York, NY: Springer.
Williams, L. J., & O’Boyle, E. H., Jr. (2008). Measurement models for linking latent variables and indicators: A review of human resource management research using parcels. Human Resource Management Review, 18, 233-242.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top