|
1.Angata, T.; Varki, A., Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chemical Reviews 2002, 102 (2), 439-69. 2.Varki, A., Essentials of Glycobiology. 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y., 2009; p xxix, 784 p. 3.Wang, B., Sialic acid is an essential nutrient for brain development and cognition. Annual Review of Nutrition 2009, 29, 177-222. 4.Schauer, R., Achievements and challenges of sialic acid research. Glycoconjugate Journal 2000, 17 (7-9), 485-99. 5.Rosenberg, A., Biology of the Sialic Acids. Springer US: 2013. 6.Dino, K. R.; Robert, J. L., Sialic Acid Donors: Chemical Synthesis and Glycosylation. Current Organic Synthesis 2004, 1 (1), 31-46. 7.Traving, C.; Schauer, R., Structure, function and metabolism of sialic acids. Cellular and Molecular Life Sciences : CMLS 1998, 54 (12), 1330-49. 8.Baskurt, O. K.; Temiz, A.; Meiselman, H. J., Effect of superoxide anions on red blood cell rheologic properties. Free Radical Biology & Medicine 1998, 24 (1), 102-10. 9.(a) Schauer, R., Sialic acids: fascinating sugars in higher animals and man. Zoology 2004, 107 (1), 49-64; (b) Stencel-Baerenwald, J. E.; Reiss, K.; Reiter, D. M.; Stehle, T.; Dermody, T. S., The sweet spot: defining virus-sialic acid interactions. Nature Reviews Microbiology 2014, 12 (11), 739-749. 10.Gross, S. K.; Williams, M. A.; McCluer, R. H., Alkali-Labile, Sodium Borohydride-Reducible Ganglioside Sialic Acid Residues in Brain. Journal of Neurochemistry 1980, 34 (6), 1351-1361. 11.Riboni, L.; Sonnino, S.; Acquotti, D.; Malesci, A.; Ghidoni, R.; Egge, H.; Mingrino, S.; Tettamanti, G., Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. The Journal of Biological Chemistry 1986, 261 (18), 8514-9. 12.Nores, G. A.; Dohi, T.; Taniguchi, M.; Hakomori, S., Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen. Journal of Immunology 1987, 139 (9), 3171-6. 13.Razi, N.; Varki, A., Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 1998, 95 (13), 7469-74. 14.(a) Ohmori, K.; Fukui, F.; Kiso, M.; Imai, T.; Yoshie, O.; Hasegawa, H.; Matsushima, K.; Kannagi, R., Identification of cutaneous lymphocyte-associated antigen as sialyl 6-sulfo Lewis X, a selectin ligand expressed on a subset of skin-homing helper memory T cells. Blood 2006, 107 (8), 3197-204; (b) Mitsuoka, C.; Sawada-Kasugai, M.; Ando-Furui, K.; Izawa, M.; Nakanishi, H.; Nakamura, S.; Ishida, H.; Kiso, M.; Kannagi, R., Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis X. The Journal of Biological Chemistry 1998, 273 (18), 11225-33; (c) Kannagi, R.; Sakuma, K.; Ohmori, K., Cell-Surface Glycoconjugates Controlling Human T-Lymphocyte Homing: Implications for Bronchial Asthma and Atopic Dermatitis. In Chembiomolecular Science: At the Frontier of Chemistry and Biology, Shibasaki, M.; Iino, M.; Osada, H., Eds. Springer Japan: Tokyo, 2013; pp 167-176; (d) Mitsuoka, C.; Ohmori, K.; Kimura, N.; Kanamori, A.; Komba, S.; Ishida, H.; Kiso, M.; Kannagi, R., Regulation of selectin binding activity by cyclization of sialic acid moiety of carbohydrate ligands on human leukocytes. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (4), 1597-602. 15.(a) Stamenkovic, I., The L-selectin adhesion system. Current Opinion in Hematology 1995, 2 (1), 68-75; (b) Butcher, E. C., The regulation of lymphocyte traffic. Current topics in Microbiology and Immunology 1986, 128, 85-122. 16.Bowman, K. G.; Cook, B. N.; de Graffenried, C. L.; Bertozzi, C. R., Biosynthesis of L-selectin ligands: sulfation of sialyl Lewis x-related oligosaccharides by a family of GlcNAc-6-sulfotransferases. Biochemistry 2001, 40 (18), 5382-91. 17.Rosen, S. D., Ligands for L-selectin: homing, inflammation, and beyond. Annual Review of Immunology 2004, 22, 129-56. 18.(a) Tsang, Y. T.; Neelamegham, S.; Hu, Y.; Berg, E. L.; Burns, A. R.; Smith, C. W.; Simon, S. I., Synergy between L-selectin signaling and chemotactic activation during neutrophil adhesion and transmigration. Journal of Immunology 1997, 159 (9), 4566-77; (b) Waddell, T. K.; Fialkow, L.; Chan, C. K.; Kishimoto, T. K.; Downey, G. P., Signaling functions of L-selectin. Enhancement of tyrosine phosphorylation and activation of MAP kinase. The Journal of Biological Chemistry 1995, 270 (25), 15403-11; (c) Hwang, S. T.; Singer, M. S.; Giblin, P. A.; Yednock, T. A.; Bacon, K. B.; Simon, S. I.; Rosen, S. D., GlyCAM-1, a physiologic ligand for L-selectin, activates β2 integrins on naive peripheral lymphocytes. The Journal of Experimental Medicine 1996, 184 (4), 1343-8; (d) Giblin, P. A.; Hwang, S. T.; Katsumoto, T. R.; Rosen, S. D., Ligation of L-selectin on T lymphocytes activates β1 integrins and promotes adhesion to fibronectin. Journal of Immunology 1997, 159 (7), 3498-507. 19.Butcher, E. C.; Picker, L. J., Lymphocyte homing and homeostasis. Science 1996, 272 (5258), 60-6. 20.(a) Maly, P.; Thall, A.; Petryniak, B.; Rogers, C. E.; Smith, P. L.; Marks, R. M.; Kelly, R. J.; Gersten, K. M.; Cheng, G.; Saunders, T. L.; Camper, S. A.; Camphausen, R. T.; Sullivan, F. X.; Isogai, Y.; Hindsgaul, O.; von Andrian, U. H.; Lowe, J. B., The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 1996, 86 (4), 643-53; (b) Scudder, P. R.; Shailubhai, K.; Duffin, K. L.; Streeter, P. R.; Jacob, G. S., Enzymatic synthesis of a 6''-sulphated sialyl-Lewisx which is an inhibitor of L-selectin binding to peripheral addressin. Glycobiology 1994, 4 (6), 929-32; (c) Chandrasekaran, E. V.; Jain, R. K.; Larsen, R. D.; Wlasichuk, K.; DiCioccio, R. A.; Matta, K. L., Specificity analysis of three clonal and five non-clonal α1,3-L-fucosyltransferases with sulfated, sialylated, or fucosylated synthetic carbohydrates as acceptors in relation to the assembly of 3''-sialyl-6''-sulfo Lewis x (the L-selectin ligand) and related complex structures. Biochemistry 1996, 35 (27), 8925-33. 21.(a) Spiro, R. G.; Yasumoto, Y.; Bhoyroo, V., Characterization of a rat liver Golgi sulphotransferase responsible for the 6-O-sulphation of N-acetylglucosamine residues in β-linkage to mannose: role in assembly of sialyl-galactosyl-N-acetylglucosamine 6-sulphate sequence of N-linked oligosaccharides. The Biochemical Journal 1996, 319, 209-16; (b) Degroote, S.; Lo-Guidice, J. M.; Strecker, G.; Ducourouble, M. P.; Roussel, P.; Lamblin, G., Characterization of an N-acetylglucosamine-6-O-sulfotransferase from human respiratory mucosa active on mucin carbohydrate chains. The Journal of Biological Chemistry 1997, 272 (47), 29493-501. 22.(a) Hooper, L. V.; Manzella, S. M.; Baenziger, J. U., From legumes to leukocytes: biological roles for sulfated carbohydrates. The Federation of American Societies for Experimental Biology 1996, 10 (10), 1137-46; (b) Bowman, K. G.; Bertozzi, C. R., Carbohydrate sulfotransferases: mediators of extracellular communication. Chemistry & Biology 1999, 6 (1), R9-R22; (c) Habuchi, O., Diversity and functions of glycosaminoglycan sulfotransferases. Biochimica et Biophysica Acta 2000, 1474 (2), 115-27. 23.(a) Homeister, J. W.; Thall, A. D.; Petryniak, B.; Maly, P.; Rogers, C. E.; Smith, P. L.; Kelly, R. J.; Gersten, K. M.; Askari, S. W.; Cheng, G.; Smithson, G.; Marks, R. M.; Misra, A. K.; Hindsgaul, O.; von Andrian, U. H.; Lowe, J. B., The α(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 2001, 15 (1), 115-26; (b) Kawashima, H.; Petryniak, B.; Hiraoka, N.; Mitoma, J.; Huckaby, V.; Nakayama, J.; Uchimura, K.; Kadomatsu, K.; Muramatsu, T.; Lowe, J. B.; Fukuda, M., N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nature Immunology 2005, 6 (11), 1096-104; (c) Kimura, N.; Mitsuoka, C.; Kanamori, A.; Hiraiwa, N.; Uchimura, K.; Muramatsu, T.; Tamatani, T.; Kansas, G. S.; Kannagi, R., Reconstitution of functional L-selectin ligands on a cultured human endothelial cell line by cotransfection of α1→3 fucosyltransferase VII and newly cloned GlcNAcβ:6-sulfotransferase cDNA. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (8), 4530-5; (d) Kawashima, H.; Fukuda, M., Sulfated glycans control lymphocyte homing. Annals of the New York Academy of Sciences 2012, 1253, 112-21. 24.Somers, W. S.; Tang, J.; Shaw, G. D.; Camphausen, R. T., Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 2000, 103 (3), 467-79. 25.(a) Revelle, B. M.; Scott, D.; Kogan, T. P.; Zheng, J.; Beck, P. J., Structure-function analysis of P-selectin-sialyl LewisX binding interactions. Mutagenic alteration of ligand binding specificity. The Journal of Biological Chemistry 1996, 271 (8), 4289-97; (b) Bertozzi, C. R., Cracking the carbohydrate code for selectin recognition. Chemistry & biology 1995, 2 (11), 703-8; (c) Erbe, D. V.; Wolitzky, B. A.; Presta, L. G.; Norton, C. R.; Ramos, R. J.; Burns, D. K.; Rumberger, J. M.; Rao, B. N.; Foxall, C.; Brandley, B. K.; et al., Identification of an E-selectin region critical for carbohydrate recognition and cell adhesion. The Journal of Cell Biology 1992, 119 (1), 215-27. 26.(a) Kobzdej, M. M.; Leppanen, A.; Ramachandran, V.; Cummings, R. D.; McEver, R. P., Discordant expression of selectin ligands and sialyl Lewis x-related epitopes on murine myeloid cells. Blood 2002, 100 (13), 4485-94; (b) Silva, Z.; Tong, Z.; Cabral, M. G.; Martins, C.; Castro, R.; Reis, C.; Trindade, H.; Konstantopoulos, K.; Videira, P. A., Sialyl Lewisx-dependent binding of human monocyte-derived dendritic cells to selectins. Biochemical and Biophysical Research Communications 2011, 409 (3), 459-64; (c) Shiozaki, K.; Yamaguchi, K.; Takahashi, K.; Moriya, S.; Miyagi, T., Regulation of sialyl Lewis antigen expression in colon cancer cells by sialidase NEU4. The Journal of Biological Chemistry 2011, 286 (24), 21052-61. 27.Kobayashi, M.; Lee, H.; Nakayama, J.; Fukuda, M., Carbohydrate-dependent defense mechanisms against Helicobacter pylori infection. Current Drug Metabolism 2009, 10 (1), 29-40. 28.(a) Kiwamoto, T.; Kawasaki, N.; Paulson, J. C.; Bochner, B. S., Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacology & Therapeutics 2012, 135 (3), 327-36; (b) Macauley, M. S.; Crocker, P. R.; Paulson, J. C., Siglec-mediated regulation of immune cell function in disease. Nature Reviews. Immunology 2014, 14 (10), 653-66; (c) Campanero-Rhodes, M. A.; Childs, R. A.; Kiso, M.; Komba, S.; Le Narvor, C.; Warren, J.; Otto, D.; Crocker, P. R.; Feizi, T., Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochemical and Biophysical Research Communications 2006, 344 (4), 1141-6. 29.(a) Bochner, B. S.; Alvarez, R. A.; Mehta, P.; Bovin, N. V.; Blixt, O.; White, J. R.; Schnaar, R. L., Glycan array screening reveals a candidate ligand for Siglec-8. The Journal of Biological Chemistry 2005, 280 (6), 4307-12; (b) Kiwamoto, T.; Brummet, M. E.; Wu, F.; Motari, M. G.; Smith, D. F.; Schnaar, R. L.; Zhu, Z.; Bochner, B. S., Mice deficient in the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. The Journal of Allergy and Clinical Immunology 2014, 133 (1), 240-7 e1-3; (c) Tateno, H.; Crocker, P. R.; Paulson, J. C., Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6''-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 2005, 15 (11), 1125-35. 30.(a) Bochner, B. S., Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 2009, 39 (3), 317-24; (b) Hudson, S. A.; Bovin, N. V.; Schnaar, R. L.; Crocker, P. R.; Bochner, B. S., Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6''-sulfated sialyl Lewis x. The Journal of Pharmacology and Experimental Therapeutics 2009, 330 (2), 608-12; (c) Kiwamoto, T.; Katoh, T.; Evans, C. M.; Janssen, W. J.; Brummet, M. E.; Hudson, S. A.; Zhu, Z.; Tiemeyer, M.; Bochner, B. S., Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. The Journal of Allergy and Clinical Immunology 2015, 135 (5), 1329-40 e1-9. 31.Galustian, C.; Park, C. G.; Chai, W.; Kiso, M.; Bruening, S. A.; Kang, Y. S.; Steinman, R. M.; Feizi, T., High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. International Immunology 2004, 16 (6), 853-66. 32.(a) Lasky, L. A.; Singer, M. S.; Dowbenko, D.; Imai, Y.; Henzel, W. J.; Grimley, C.; Fennie, C.; Gillett, N.; Watson, S. R.; Rosen, S. D., An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 1992, 69 (6), 927-38; (b) Hemmerich, S.; Rosen, S. D., 6''-sulfated sialyl Lewis x is a major capping group of GlyCAM-1. Biochemistry 1994, 33 (16), 4830-5; (c) Hemmerich, S.; Bertozzi, C. R.; Leffler, H.; Rosen, S. D., Identification of the sulfated monosaccharides of GlyCAM-1, an endothelial-derived ligand for L-selectin. Biochemistry 1994, 33 (16), 4820-9. 33.Bistrup, A.; Bhakta, S.; Lee, J. K.; Belov, Y. Y.; Gunn, M. D.; Zuo, F. R.; Huang, C. C.; Kannagi, R.; Rosen, S. D.; Hemmerich, S., Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. The Journal of Cell Biology 1999, 145 (4), 899-910. 34.(a) Halcomb, R. L.; Wong, C. H., Synthesis of Oligosaccharides, Glycopeptides, and Glycolipids. Current Opinion Structure Biology 1993, 3 (5), 694-700; (b) Klefel, M. J.; von Itzstein, M., Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. Chemical Reviews 2002, 102 (2), 471-490; (c) Boons, G.-J.; Demchenko, A. V., Recent Advances in O-Sialylation. Chemical Reviews 2000, 100 (12), 4539-4566; (d) Adak, A. K.; Yu, C.-C.; Liang, C.-F.; Lin, C.-C., Synthesis of sialic acid-containing saccharides. Current Opinion in Chemical Biology 2013, 17 (6), 1030-1038. 35.(a) Cummings, R. D.; Pierce, J. M., The challenge and promise of glycomics. Chemistry & biology 2014, 21 (1), 1-15; (b) Shriver, Z.; Raguram, S.; Sasisekharan, R., Glycomics: a pathway to a class of new and improved therapeutics. Nature Reviews. Drug discovery 2004, 3 (10), 863-73; (c) Paulson, J. C.; Blixt, O.; Collins, B. E., Sweet spots in functional glycomics. Nature Chemical Biology 2006, 2 (5), 238-48. 36.(a) Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409 (6817), 232-40; (b) Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial biocatalysis today and tomorrow. Nature 2001, 409 (6817), 258-68; (c) Schoemaker, H. E.; Mink, D.; Wubbolts, M. G., Dispelling the myths--biocatalysis in industrial synthesis. Science 2003, 299 (5613), 1694-7. 37.Chokhawala, H. A.; Chen, X., 1.11 - Enzymatic Approaches to O-Glycoside Introduction: Glycosyltransferases - Kamerling, Hans. In Comprehensive Glycoscience, Elsevier: Oxford, 2007; pp 415-451. 38.(a) Chen, X.; Varki, A., Advances in the biology and chemistry of sialic acids. ACS chemical biology 2010, 5 (2), 163-76; (b) Yu, H.; Chen, X., Carbohydrate post-glycosylational modifications. Organic & Biomolecular Chemistry 2007, 5 (6), 865-72. 39.Cai, L., Recent Progress in Enzymatic Synthesis of Sugar Nucleotides. Journal of Carbohydrate Chemistry 2012, 31 (7), 535-552. 40.Brockhausen, I., Crossroads between Bacterial and Mammalian Glycosyltransferases. Frontiers in Immunology 2014, 5, 492. 41.Yu, H.; Chen, X., One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Organic & Biomolecular Chemistry 2016, 14 (10), 2809-18. 42.Wong, C. H.; Haynie, S. L.; Whitesides, G. M., Enzyme-catalyzed synthesis of N-acetyllactosamine with in situ regeneration of uridine 5''-diphosphate glucose and uridine 5''-diphosphate galactose. The Journal of Organic Chemistry 1982, 47 (27), 5416-5418. 43.Chen, X., Fermenting next generation glycosylated therapeutics. ACS Chemical Biology 2011, 6 (1), 14-7. 44.Yu, H.; Chokhawala, H. A.; Huang, S.; Chen, X., One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nature Protocols 2006, 1 (5), 2485-92. 45.(a) Ichikawa, Y.; Look, G. C.; Wong, C. H., Enzyme-catalyzed oligosaccharide synthesis. Analytical biochemistry 1992, 202 (2), 215-38; (b) Koeller, K. M.; Wong, C. H., Complex carbohydrate synthesis tools for glycobiologists: enzyme-based approach and programmable one-pot strategies. Glycobiology 2000, 10 (11), 1157-69. 46.Yu, H.; Lau, K.; Li, Y.; Sugiarto, G.; Chen, X., One-pot multienzyme synthesis of Lewis x and sialyl Lewis x antigens. Current Protocols in Chemical Biology 2012, 4, 233-247. 47.(a) Sugiarto, G.; Lau, K.; Li, Y.; Khedri, Z.; Yu, H.; Le, D. T.; Chen, X., Decreasing the sialidase activity of multifunctional Pasteurella multocida α2-3-sialyltransferase 1 (PmST1) by site-directed mutagenesis. Molecular BioSystems 2011, 7 (11), 3021-7; (b) Sugiarto, G.; Lau, K.; Qu, J.; Li, Y.; Lim, S.; Mu, S.; Ames, J. B.; Fisher, A. J.; Chen, X., A sialyltransferase mutant with decreased donor hydrolysis and reduced sialidase activities for directly sialylating LewisX. ACS Chemical Biology 2012, 7 (7), 1232-40; (c) Ding, L.; Zhao, C.; Qu, J.; Li, Y.; Sugiarto, G.; Yu, H.; Wang, J.; Chen, X., A Photobacterium sp. α2-6-sialyltransferase (Psp2,6ST) mutant with an increased expression level and improved activities in sialylating Tn antigens. Carbohydrate Research 2015, 408, 127-33. 48.Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. Journal of the American Chemical Society 2005, 127 (50), 17618-9. 49.(a) Ni, L.; Sun, M.; Yu, H.; Chokhawala, H.; Chen, X.; Fisher, A. J., Cytidine 5''-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. Biochemistry 2006, 45 (7), 2139-48; (b) Ni, L.; Chokhawala, H. A.; Cao, H.; Henning, R.; Ng, L.; Huang, S.; Yu, H.; Chen, X.; Fisher, A. J., Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. Biochemistry 2007, 46 (21), 6288-98. 50.(a) Campbell, J. A.; Davies, G. J.; Bulone, V.; Henrissat, B., A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. The Biochemical Journal 1997, 326 ( Pt 3), 929-39; (b) Coutinho, P. M.; Deleury, E.; Davies, G. J.; Henrissat, B., An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology 2003, 328 (2), 307-17; (c) Rao, F. V.; Rich, J. R.; Rakic, B.; Buddai, S.; Schwartz, M. F.; Johnson, K.; Bowe, C.; Wakarchuk, W. W.; DeFrees, S.; Withers, S. G.; Strynadka, N. C. J., Structural insight into mammalian sialyltransferases. Nature Structural & Molecular Biology 2009, 16 (11), 1186-1188; (d) Audry, M.; Jeanneau, C.; Imberty, A.; Harduin-Lepers, A.; Delannoy, P.; Breton, C., Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 2011, 21 (6), 716-26. 51.(a) Cheng, J.; Huang, S.; Yu, H.; Li, Y.; Lau, K.; Chen, X., Trans-sialidase activity of Photobacterium damsela α2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 2010, 20 (2), 260-8; (b) Mine, T.; Katayama, S.; Kajiwara, H.; Tsunashima, M.; Tsukamoto, H.; Takakura, Y.; Yamamoto, T., An α2,6-sialyltransferase cloned from Photobacterium leiognathi strain JT-SHIZ-119 shows both sialyltransferase and neuraminidase activity. Glycobiology 2010, 20 (2), 158-65; (c) Cheng, J.; Yu, H.; Lau, K.; Huang, S.; Chokhawala, H. A.; Li, Y.; Tiwari, V. K.; Chen, X., Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 2008, 18 (9), 686-97. 52.(a) Yamamoto, T.; Nakashizuka, M.; Kodama, H.; Kajihara, Y.; Terada, I., Purification and characterization of a marine bacterial β-galactoside α 2,6-sialyltransferase from Photobacterium damsela JT0160. Journal of Biochemistry 1996, 120 (1), 104-10; (b) Yamamoto, T.; Nakashizuka, M.; Terada, I., Cloning and expression of a marine bacterial β-galactoside α2,6-sialyltransferase gene from Photobacterium damsela JT0160. Journal of Biochemistry 1998, 123 (1), 94-100. 53.(a) Gilbert, M.; Brisson, J. R.; Karwaski, M. F.; Michniewicz, J.; Cunningham, A. M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis. The Journal of Biological Chemistry 2000, 275 (6), 3896-906; (b) Chiu, C. P.; Watts, A. G.; Lairson, L. L.; Gilbert, M.; Lim, D.; Wakarchuk, W. W.; Withers, S. G.; Strynadka, N. C., Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nature Structural & Molecular Biology 2004, 11 (2), 163-70. 54.Gilbert, M.; Cunningham, A. M.; Watson, D. C.; Martin, A.; Richards, J. C.; Wakarchuk, W. W., Characterization of a recombinant Neisseria meningitidis α-2,3-sialyltransferase and its acceptor specificity. European Journal of Biochemistry 1997, 249 (1), 187-94. 55.(a) Sujino, K.; Jackson, R. J.; Chan, N. W.; Tsuji, S.; Palcic, M. M., A novel viral α2,3-sialyltransferase (v-ST3Gal I): transfer of sialic acid to fucosylated acceptors. Glycobiology 2000, 10 (3), 313-20; (b) Sugiarto, G.; Lau, K.; Yu, H.; Vuong, S.; Thon, V.; Li, Y.; Huang, S.; Chen, X., Cloning and characterization of a viral α2-3-sialyltransferase (vST3Gal-I) for the synthesis of sialyl Lewisx. Glycobiology 2011, 21 (3), 387-96. 56.Izumi, M.; Shen, G. J.; Wacowich-Sgarbi, S.; Nakatani, T.; Plettenburg, O.; Wong, C. H., Microbial glycosyltransferases for carbohydrate synthesis: α-2,3-sialyltransferase from Neisseria gonorrheae. Journal of the American Chemical Society 2001, 123 (44), 10909-18. 57.Tanner, M. E., The enzymes of sialic acid biosynthesis. Bioorganic chemistry 2005, 33 (3), 216-28. 58.Pratt, M. R.; Bertozzi, C. R., Syntheses of 6-sulfo sialyl Lewis X glycans corresponding to the L-selectin ligand "sulfoadhesin". Organic Letters 2004, 6 (14), 2345-8. 59.Yeh, J. C.; Hiraoka, N.; Petryniak, B.; Nakayama, J.; Ellies, L. G.; Rabuka, D.; Hindsgaul, O.; Marth, J. D.; Lowe, J. B.; Fukuda, M., Novel sulfated lymphocyte homing receptors and their control by a Core1 extension β 1,3-N-acetylglucosaminyltransferase. Cell 2001, 105 (7), 957-69. 60.Yu, H.; Lau, K.; Thon, V.; Autran, C. A.; Jantscher-Krenn, E.; Xue, M.; Li, Y.; Sugiarto, G.; Qu, J.; Mu, S.; Ding, L.; Bode, L.; Chen, X., Synthetic disialyl hexasaccharides protect neonatal rats from necrotizing enterocolitis. Angewandte Chemie International Edition 2014, 53 (26), 6687-91. 61.Malekan, H.; Fung, G.; Thon, V.; Khedri, Z.; Yu, H.; Qu, J.; Li, Y.; Ding, L.; Lam, K. S.; Chen, X., One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorganic & Medicinal Chemistry 2013, 21 (16), 4778-85. 62.(a) Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X., Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural α-2,6-linked sialosides: a P. damsela α-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angewandte Chemie International Edition 2006, 45 (24), 3938-44; (b) Sun, M.; Li, Y.; Chokhawala, H. A.; Henning, R.; Chen, X., N-Terminal 112 amino acid residues are not required for the sialyltransferase activity of Photobacterium damsela α2,6-sialyltransferase. Biotechnology Letters 2008, 30 (4), 671-6; (c) Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X., Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chemical Communications 2011, 47 (30), 8691-3. 63.Zhang, L.; Lau, K.; Cheng, J.; Yu, H.; Li, Y.; Sugiarto, G.; Huang, S.; Ding, L.; Thon, V.; Wang, P. G.; Chen, X., Helicobacter hepaticus Hh0072 gene encodes a novel α1-3-fucosyltransferase belonging to CAZy GT11 family. Glycobiology 2010, 20 (9), 1077-88. 64.(a) Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorganic & Medicinal Chemistry 2004, 12 (24), 6427-35; (b) Li, Y.; Yu, H.; Cao, H.; Lau, K.; Muthana, S.; Tiwari, V. K.; Son, B.; Chen, X., Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Applied Microbiology and Biotechnology 2008, 79 (6), 963-70; (c) Thon, V.; Lau, K.; Yu, H.; Tran, B. K.; Chen, X., PmST2: a novel Pasteurella multocida glycolipid α2-3-sialyltransferase. Glycobiology 2011, 21 (9), 1206-16; (d) Thon, V.; Li, Y.; Yu, H.; Lau, K.; Chen, X., PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional α2-3-sialyltransferase. Applied Microbiology and Biotechnology 2012, 94 (4), 977-85. 65.Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X., Highly efficient chemoenzymatic synthesis of β1-4-linked galactosides with promiscuous bacterial β1-4-galactosyltransferases. Chemical Communications 2010, 46 (33), 6066-8. 66.Yu, H.; Li, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. The Journal of Organic Chemistry 2016, 81 (22), 10809-10824. 67.(a) Muthana, M. M.; Qu, J.; Li, Y.; Zhang, L.; Yu, H.; Ding, L.; Malekan, H.; Chen, X., Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chemical Communications 2012, 48 (21), 2728-30; (b) Chen, X.; Fang, J.; Zhang, J.; Liu, Z.; Shao, J.; Kowal, P.; Andreana, P.; Wang, P. G., Sugar nucleotide regeneration beads (superbeads): a versatile tool for the practical synthesis of oligosaccharides. Journal of the American Chemical Society 2001, 123 (9), 2081-2. 68.Yi, W.; Liu, X.; Li, Y.; Li, J.; Xia, C.; Zhou, G.; Zhang, W.; Zhao, W.; Chen, X.; Wang, P. G., Remodeling bacterial polysaccharides by metabolic pathway engineering. Proceedings of the National Academy of Sciences of the United States of America 2009, 106 (11), 4207-12. 69.Santra, A.; Yu, H.; Tasnima, N.; Muthana, M. M.; Li, Y.; Zeng, J.; Kenyon, N. J.; Louie, A. Y.; Chen, X., Systematic chemoenzymatic synthesis of O-sulfated sialyl Lewis x antigens. Chemical Science 2016, 7 (4), 2827-2831. 70.Komba, S.; Galustian, C.; Ishida, H.; Feizi, T.; Kannagi, R.; Kiso, M., The First Total Synthesis of 6-Sulfo-de-N-acetylsialyl Lewis(x) Ganglioside: A Superior Ligand for Human L-Selectin. Angewandte Chemie International Edition 1999, 38 (8), 1131-3. 71.(a) Murase, T.; Ishida, H.; Kiso, M.; Hasegawa, A., A facile regio- and stereo-selective synthesis of α-glycosides of N-acetylneuraminic acid. Carbohydrate Research 1988, 184, c1-4; (b) Baker, D. C., Preparative Carbohydrate Chemistry Edited by Stephen Hanessian (University of Montreal). Marcel Dekker: New York. 1997. xiii + 648 pp. ISBN 0-8247-9802-3. Journal of the American Chemical Society 1997, 119 (49), 12028-12029; (c) Hasegawa, A.; Nagahama, T.; Ohki, H.; Hotta, K.; Ishida, H.; Kiso, M., Communication: Synthetic Studies on Sialoglycoconjugates 25: Reactivity of Glycosyl Promoters in α-Glycosylation of N-Acetyl-Neuraminic Acid with the Primary and Secondary Hydroxyl Groups in the Suitably Protected Galactose and Lactose Derivatives. Journal of Carbohydrate Chemistry 1991, 10 (3), 493-498. 72.Komba, S.; Ishida, H.; Kiso, M.; Hasegawa, A., Synthesis and biological activities of three sulfated sialyl Le(x) ganglioside analogues for clarifying the real carbohydrate ligand structure of L-selectin. Bioorganic & Medicinal Chemistry 1996, 4 (11), 1833-47. 73.(a) Galustian, C.; Lawson, A. M.; Komba, S.; Ishida, H.; Kiso, M.; Feizi, T., Sialyl-Lewis(x) sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochemical and Biophysical Research Communications 1997, 240 (3), 748-51; (b) Kameyama, A.; Ishida, H.; Kiso, M.; Hasegawa, A., Synthetic Studies on Sialoglycoconjugates 22: Total Synthesis of Tumor-Associated Ganglioside, Sialyl Lewis X. Journal of Carbohydrate Chemistry 1991, 10 (4), 549-560. 74.Yamaguchi, M.; Ishida, H.; Kanamori, A.; Kannagi, R.; Kiso, M., 6-O-sulfo sialylparagloboside and sialyl Lewis X neo-glycolipids containing lactamized neuraminic acid: synthesis and antigenic reactivity against G159 monoclonal antibody. Glycoconjugate Journal 2005, 22 (3), 95-108. 75.(a) Hamada, T.; Hirota, H.; Yokoyama, S.; Otsubo, N.; Ishida, H.; Kiso, M.; Kanamori, A.; Kannagi, R., NMR analysis of novel ganglioside GM4 analogues containing de-N-acetyl and lactamized sialic acid: probes for searching new ligand structures for human L-selectin. Magnetic Resonance in Chemistry 2002, 40 (8), 517-523; (b) Hamada, T.; Hirota, H.; Yokoyama, S.; Yamaguchi, M.; Otsubo, N.; Ishida, H.; Kiso, M.; Kanamori, A.; Kannagi, R., NMR structure elucidation of cyclic sialyl 6-sulfo Lewis x, a biologically dormant form of L-selectin ligand. Tetrahedron Letters 2003, 44 (6), 1167-1170. 76.Otsubo, N.; Ishida, H.; Kiso, M., Synthesis of novel ganglioside GM4 analogues containing N-deacetylated and lactamized sialic acid: probes for searching new ligand structures for human L-selectin. Carbohydrate Research 2001, 330 (1), 1-5. 77.Yamaguchi, M.; Ishida, H.; Kanamori, A.; Kannagi, R.; Kiso, M., Studies on the endogenous L-selectin ligands: systematic and highly efficient total synthetic routes to lactamized-sialyl 6-O-sulfo Lewis X and other novel gangliosides containing lactamized neuraminic acid. Carbohydrate Research 2003, 338 (24), 2793-812. 78.Tu, Z.; Hsieh, H. W.; Tsai, C. M.; Hsu, C. W.; Wang, S. G.; Wu, K. J.; Lin, K. I.; Lin, C. H., Synthesis and characterization of sulfated Gal-β-1,3/4-GlcNAc disaccharides through consecutive protection/glycosylation steps. Chemistry, an Asian Journal 2013, 8 (7), 1536-50. 79.Namdjou, D. J.; Chen, H. M.; Vinogradov, E.; Brochu, D.; Withers, S. G.; Wakarchuk, W. W., A β-1,4-galactosyltransferase from Helicobacter pylori is an efficient and versatile biocatalyst displaying a novel activity for thioglycoside synthesis. Chembiochem : a European Journal of Chemical Biology 2008, 9 (10), 1632-40. 80.(a) Yang, J.; Fu, X.; Liao, J.; Liu, L.; Thorson, J. S., Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization. Chemistry & Biology 2005, 12 (6), 657-64; (b) Hoffmeister, D.; Thorson, J. S., Mechanistic implications of Escherichia coli galactokinase structure-based engineering. Chembiochem : a European Journal of Chemical Biology 2004, 5 (7), 989-92; (c) Yang, J.; Fu, X.; Jia, Q.; Shen, J.; Biggins, J. B.; Jiang, J.; Zhao, J.; Schmidt, J. J.; Wang, P. G.; Thorson, J. S., Studies on the substrate specificity of Escherichia coli galactokinase. Organic Letters 2003, 5 (13), 2223-6. 81.(a) Jiang, J.; Biggins, J. B.; Thorson, J. S., A General Enzymatic Method for the Synthesis of Natural and “Unnatural” UDP- and TDP-Nucleotide Sugars. Journal of the American Chemical Society 2000, 122 (28), 6803-6804; (b) Moretti, R.; Thorson, J. S., Enhancing the latent nucleotide triphosphate flexibility of the glucose-1-phosphate thymidylyltransferase RmlA. The Journal of Biological Chemistry 2007, 282 (23), 16942-7; (c) Jakeman, D. L.; Young, J. L.; Huestis, M. P.; Peltier, P.; Daniellou, R.; Nugier-Chauvin, C.; Ferrieres, V., Engineering ribonucleoside triphosphate specificity in a thymidylyltransferase. Biochemistry 2008, 47 (33), 8719-25; (d) Moretti, R.; Chang, A.; Peltier-Pain, P.; Bingman, C. A.; Phillips, G. N., Jr.; Thorson, J. S., Expanding the nucleotide and sugar 1-phosphate promiscuity of nucleotidyltransferase RmlA via directed evolution. The Journal of Biological Chemistry 2011, 286 (15), 13235-43; (e) Beaton, S. A.; Huestis, M. P.; Sadeghi-Khomami, A.; Thomas, N. R.; Jakeman, D. L., Enzyme-catalyzed synthesis of isosteric phosphono-analogues of sugar nucleotides. Chemical Communications 2009, (2), 238-240. 82.Mizanur, R. M.; Zea, C. J.; Pohl, N. L., Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. Journal of the American Chemical Society 2004, 126 (49), 15993-8. 83.Zhang, Y.; Meng, C.; Jin, L.; Chen, X.; Wang, F.; Cao, H., Chemoenzymatic synthesis of α-dystroglycan core M1 O-mannose glycans. Chemical Communications 2015, 51 (58), 11654-7. 84.Chen, C.; Zhang, Y.; Xue, M.; Liu, X. W.; Li, Y.; Chen, X.; Wang, P. G.; Wang, F.; Cao, H., Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chemical Communications 2015, 51 (36), 7689-92. 85.Pudelko, M.; Lindgren, A.; Tengel, T.; Reis, C. A.; Elofsson, M.; Kihlberg, J., Formation of lactones from sialylated MUC1 glycopeptides. Organic & Biomolecular Chemistry 2006, 4 (4), 713-20. 86.Yu, R. K.; Koerner, T. A.; Ando, S.; Yohe, H. C.; Prestegard, J. H., High-resolution proton NMR studies of gangliosides. III. Elucidation of the structure of ganglioside GM3 lactone. Journal of Biochemistry 1985, 98 (5), 1367-73. 87.Varki, A.; Schauer, R., Sialic Acids. In Essentials of Glycobiology, 2nd ed.; Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E., Eds. Cold Spring Harbor (NY), 2009. 88.Ilieva, S.; Galabov, B.; Musaev, D. G.; Morokuma, K.; Schaefer, H. F., 3rd, Computational study of the aminolysis of esters. The reaction of methylformate with ammonia. The Journal of Organic Chemistry 2003, 68 (4), 1496-502. 89.de Lima, E. C.; de Souza, C. C.; Soares, R. O.; Vaz, B. G.; Eberlin, M. N.; Dias, A. G.; Costa, P. R. R., DBU as a catalyst for the synthesis of amides via aminolysis of methyl esters. Journal of the Brazilian Chemical Society 2011, 22, 2186-2190. 90.Battistel, M. D.; Azurmendi, H. F.; Frank, M.; Freedberg, D. I., Uncovering Nonconventional and Conventional Hydrogen Bonds in Oligosaccharides through NMR Experiments and Molecular Modeling: Application to Sialyl Lewis-X. Journal of the American Chemical Society 2015, 137 (42), 13444-7. 91.(a) Hudak, J. E.; Bertozzi, C. R., Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chemistry & Biology 2014, 21 (1), 16-37; (b) Muthana, S. M.; Campbell, C. T.; Gildersleeve, J. C., Modifications of glycans: biological significance and therapeutic opportunities. ACS Chemical Biology 2012, 7 (1), 31-43. 92.Bishop, J. R.; Schuksz, M.; Esko, J. D., Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007, 446 (7139), 1030-7. 93.(a) Lee, J. C.; Lu, X. A.; Kulkarni, S. S.; Wen, Y. S.; Hung, S. C., Synthesis of heparin oligosaccharides. Journal of the American Chemical Society 2004, 126 (2), 476-7; (b) Linhardt, R. J.; Dordick, J. S.; Deangelis, P. L.; Liu, J., Enzymatic synthesis of glycosaminoglycan heparin. Seminars in Thrombosis and Hemostasis 2007, 33 (5), 453-65; (c) Dulaney, S. B.; Huang, X., Strategies in synthesis of heparin/heparan sulfate oligosaccharides: 2000-present. Advances in Carbohydrate Chemistry and Biochemistry 2012, 67, 95-136. 94.(a) Kahn, S. R.; Lim, W.; Dunn, A. S.; Cushman, M.; Dentali, F.; Akl, E. A.; Cook, D. J.; Balekian, A. A.; Klein, R. C.; Le, H.; Schulman, S.; Murad, M. H.; Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141 (2 Suppl), e195S-226S; (b) Linhardt, R. J., 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. Journal of Medicinal Chemistry 2003, 46 (13), 2551-64. 95.Liu, J.; Linhardt, R. J., Chemoenzymatic synthesis of heparan sulfate and heparin. Natural Product Reports 2014, 31 (12), 1676-85. 96.(a) Ge, Z.; Chan, N. W.; Palcic, M. M.; Taylor, D. E., Cloning and heterologous expression of an α1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. The Journal of Biological Chemistry 1997, 272 (34), 21357-63; (b) Martin, S. L.; Edbrooke, M. R.; Hodgman, T. C.; van den Eijnden, D. H.; Bird, M. I., Lewis X biosynthesis in Helicobacter pylori. Molecular cloning of an α(1,3)-fucosyltransferase gene. The Journal of Biological Chemistry 1997, 272 (34), 21349-56; (c) Rabbani, S.; Miksa, V.; Wipf, B.; Ernst, B., Molecular cloning and functional expression of a novel Helicobacter pylori α-1,4 fucosyltransferase. Glycobiology 2005, 15 (11), 1076-83; (d) Rasko, D. A.; Wang, G.; Palcic, M. M.; Taylor, D. E., Cloning and characterization of the α(1,3/4) fucosyltransferase of Helicobacter pylori. The Journal of Biological Chemistry 2000, 275 (7), 4988-94; (e) Wang, G.; Boulton, P. G.; Chan, N. W.; Palcic, M. M.; Taylor, D. E., Novel Helicobacter pylori α1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology 1999, 145 ( Pt 11), 3245-53. 97.Dumon, C.; Samain, E.; Priem, B., Assessment of the two Helicobacter pylori α-1,3-fucosyltransferase ortholog genes for the large-scale synthesis of LewisX human milk oligosaccharides by metabolically engineered Escherichia coli. Biotechnology Progress 2004, 20 (2), 412-9. 98.Lin, S. W.; Yuan, T. M.; Li, J. R.; Lin, C. H., Carboxyl terminus of Helicobacter pylori α1,3-fucosyltransferase determines the structure and stability. Biochemistry 2006, 45 (26), 8108-16. 99.(a) Feng, D.; Shaikh, A. S.; Wang, F., Recent Advance in Tumor-associated Carbohydrate Antigens (TACAs)-based Antitumor Vaccines. ACS Chemical Biology 2016, 11 (4), 850-63; (b) Xu, Y.; Sette, A.; Sidney, J.; Gendler, S. J.; Franco, A., Tumor-associated carbohydrate antigens: a possible avenue for cancer prevention. Immunology and Cell Biology 2005, 83 (4), 440-8; (c) Liu, C. C.; Ye, X. S., Carbohydrate-based cancer vaccines: target cancer with sugar bullets. Glycoconjugate Journal 2012, 29 (5-6), 259-71. 100.Drickamer, K., C-type lectin-like domains. Current Opinion in Structural Biology 1999, 9 (5), 585-90. 101.Dimitroff, C. J.; Lee, J. Y.; Rafii, S.; Fuhlbrigge, R. C.; Sackstein, R., CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. The Journal of Cell Biology 2001, 153 (6), 1277-86. 102.Kang, H. J.; Coulibaly, F.; Clow, F.; Proft, T.; Baker, E. N., Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 2007, 318 (5856), 1625-8. 103.Kang, H. J.; Baker, E. N., Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes. The Journal of Biological Chemistry 2009, 284 (31), 20729-37. 104.Zakeri, B.; Howarth, M., Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. Journal of the American Chemical Society 2010, 132 (13), 4526-7. 105.Cummings, R. D., Structure and function of the selectin ligand PSGL-1. Brazilian journal of medical and biological research 1999, 32 (5), 519-28. 106.Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; Gonzalez-Outeirino, J.; Daniels, C. R.; Foley, B. L.; Woods, R. J., GLYCAM06: a generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry 2008, 29 (4), 622-55. 107.(a) Li, P.; Merz, K. M., Jr., Taking into Account the Ion-induced Dipole Interaction in the Nonbonded Model of Ions. Journal of Chemical Theory and Computation 2014, 10 (1), 289-297; (b) Li, P.; Roberts, B. P.; Chakravorty, D. K.; Merz, K. M., Jr., Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. Journal of Chemical Theory and Computation 2013, 9 (6), 2733-2748. 108.Roe, D. R.; Cheatham, T. E., 3rd, PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation 2013, 9 (7), 3084-95. 109.Basma, M.; Sundara, S.; Calgan, D.; Vernali, T.; Woods, R. J., Solvated ensemble averaging in the calculation of partial atomic charges. Journal of Computational Chemistry 2001, 22 (11), 1125-37. 110.Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J. C.; Cieplak, P.; Dupradeau, F. Y., R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research 2011, 39 (Web Server issue), W511-7. 111.Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A., Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling 2006, 25 (2), 247-60. 112.Bernal-García, J. M.; Guzmán-López, A.; Cabrales-Torres, A.; Estrada-Baltazar, A.; Iglesias-Silva, G. A., Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K. Journal of Chemical & Engineering Data 2008, 53 (4), 1024-1027. 113.Miyamoto, S.; Kollman, P. A., Settle - an Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. Journal of Computational Chemistry 1992, 13 (8), 952-962. 114.Loncharich, R. J.; Brooks, B. R.; Pastor, R. W., Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N''-methylamide. Biopolymers 1992, 32 (5), 523-35.
|