跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃淳絹
研究生(外文):Chuen-Jiuan Huang
論文名稱:利用化學酵素合成法獲得路易士抗原衍生物以研究影響唾液酸環化之重要因子
論文名稱(外文):Chemoenzymatic Synthesis of 6-sulfo Sialyl Lewis X and Analogues to Examine Factors Affecting Sialic Acid Cyclization
指導教授:林俊宏林俊宏引用關係
指導教授(外文):Chun-Hung Lin
口試委員:吳世雄林俊成李宗璘游景晴徐翠玲
口試委員(外文):Shih-Hsiung WuChun-Cheng LinTsung-Lin LiChing-Ching YuTsui-Ling Hsu
口試日期:2017-01-16
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:168
中文關鍵詞:唾液酸化學酵素合成環化內醯胺化內酯化
外文關鍵詞:sialic acidchemoenzymatic synthesislactamizationlactonization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
唾液酸(Sialic acid)通常位於醣複合體(Glycoconjugate)的非還原端(Non-reducing end),例如位於細胞表面的醣蛋白(Glycoprotein)或醣脂質(Glycolipid)上;唾液酸路易士X(Sialyl Lewis X)或磺基化唾液酸路易士X(Sulfated sialyl Lewis X)已知為選擇素(Selectin)辨識所需要的四醣抗原決定位(Epitope),唾液酸6-O-磺基路易士X為表現在人體周圍淋巴結(Human peripheral lymph nodes)的高內皮小靜脈細胞表面(High Endothelial Venules;HEV),或人類皮膚歸巢輔助記憶T細胞(Skin-homing human helper memory T-cells)表面,它已知可與L-選擇素辨識而結合。然而,先前研究發現唾液酸的環化,也就是說唾液酸的五號N-乙醯胺基去乙醯化,而與一號的羰酸基結合成內醯胺(Lactam),使得相關的醣分子失去了與L-選擇素的結合力,而這樣的結合作用也曾被報導參與淋巴細胞的歸巢作用。
除此之外,有許多研究指出,負責修飾N-乙醯葡萄糖胺三號碳及六號碳上羥基,分別受到岩藻糖轉移酶或磺基化轉移酶的修飾,對於L-選擇素的辨識非常重要,而且它們調控著淋巴細胞的運輸(Lymphocyte trafficking);也就是說,這樣高度專一性的結合力是透過辨識不同結構之醣體來調控著下游的生物途徑(Biological processes)。為了進一步研究是什麼因素影響著醣體中唾液酸的環化作用,本論文中首先著重於合成一系列環化唾液酸6-O-磺基路易士X以及其衍生物。由於這些醣體分子過去透過化學全合成的方法製備,往往產生的低產率及繁瑣的反應步驟,我們發展以化學結合酵素的合成方法來簡化及加速目標醣體的製程,獲得令人滿意的產率。
在鑑定醣體分子結構後,我們分別建立了核磁共振光譜以及逆向液相層析儀的分析方法,測量各種醣體的環化速率,由實驗可以觀察到磺基化修飾可增加2.30倍,而岩藻糖化修飾則減緩反應速率至0.78倍,若同時修飾磺基與岩藻糖則為1.51倍,因此推測此兩種修飾對環化反應有著拮抗作用,而當由第二型醣鏈(1,4鍵結)置換為第一型醣鏈(1,3鍵結)後反應速率也隨之下降,為了更深入了解這些修飾是如何影響反應速率,分子模擬運算(Molecular Modeling)能提供一些線索,由電腦分析結果得知,磺基基團會與唾液酸支鏈上九號位置的羥基有交互作用,而使整個醣體分子偏好形成C構型,增加羰酸基暴露在外圍環境,後續實驗也證明活化羰酸基為醯胺鍵生成反應(Amide bond formation)的重要步驟,因此能加快環化的速率,由實驗結果得知官能基的修飾對於醣體在液態環境下會形成不同的立體結構,而這樣的改變是否為影響醣體在生物系統裡所執行的任務仍有待進一步實驗的觀察。
Sialic acids are often located in the non-reducing end of glycoproteins and glycolipids, on both the cell surface and intracellular membranes. Sialyl Lewis X or its sulfated derivatives are the essential tetrasaccharide epitopes for recognition by selectin glycoproteins. Sialyl 6-sulfo Lewis X was reported as an L-selectin ligand that is displayed on the surface of high endothelial venules (HEV) in human peripheral lymph nodes as well as skin-homing human helper memory T-cells. Interestingly, the selectin-binding activity of sialyl 6-sulfo Lewis X is abrogated due to the cyclization of its sialic acid moiety.
Serveral studies mediated that the O3 fucosylation and O6 sulfation on GlcNAc of sialyl LacNAc (Sia2-3Gal1-4GlcNAc) are crucial modifications for L-selectin binding to mediate the lymphocyte trafficking. That is to say, specific glycan structures may act as a marker to mediate this highly specific binding and the subsequent biological processes. To further investigate what factors (the presence of sulfate, L-fucose, etc) play a role in affecting the lactam formation, sialyl 6-sulfo Lewis X and its analogues needed to be synthesized in advance.
Since many reaction steps, low total yields and tedious protection/deprotection steps are major obstacles for the chemical synthesis of cyclic sialyl 6-sulfo Lewis X, chemoenzymatic synthesis is an atractive approach to obtain the desire glycans in higher yields. The total yields of 6 target glycans, (compounds 1-6), were greatly improved in this work. Lactonization and molecular dynamic simulations were carried out to discuss the cyclization of sialic acid. The results indicated that rate of lactamization was accelerated in the presence of O6 sulfate owing to the formation of a C-shaped conformation.
口試委員會審定書 #
誌謝 i
縮寫對照表 ii
中文摘要 iii
ABSTRACT v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xiii
Chapter 1 緒論 1
1.1 含有唾液酸的醣分子:結構及功能 1
1.2 唾液酸6-O-磺基路易士X的生合成 4
1.3 O-磺基化唾液酸路易士X具有重要的生理意義 7
1.4 利用酵素特性製備寡糖 9
1.5 以一鍋化(One-pot)的系統來合成核苷酸醣以及目標醣體 11
1.6 發展以一鍋化系統合成具有後醣化修飾的醣體 15
1.7 唾液酸轉移酶 17
1.8 酵素合成唾液酸6-O-磺基路易士X 19
1.9 化學合成環化唾液酸6-O-磺基路易士X 23
1.10 研究動機 26
Chapter 2 結果 28
2.1 製備環化唾液酸6-O-磺基路易士X衍生物 28
2.1.1 以酵素催化的方式製備雙醣7以及雙醣8 30
2.1.2 測試Neisseria gonorrheae的2,3-唾液酸轉移酶對非磺基化及6-O-磺基化基質的專一性 34
2.1.3 以酵素催化的方式製備N-三氟乙醯基修飾的唾液酸三醣9、10、15、16以及唾液酸四醣15、16 38
2.1.4 以化學合成的方式製備環化衍生物1至6 42
2.2 鑑定環化衍生物及建立環化速率測定的方法 45
2.2.1 鑑定環化衍生物1至6 47
2.2.2 以NMR方法偵測環化反應 50
2.2.3 以HPLC測定各環化衍生物之反應速率 51
2.3 透過內酯化反應及分子模擬來探討影響環化反應的決定性因子 55
2.3.1 唾液酸羰酸基的內酯化促進環化衍生物的生成 56
2.3.2 由分子模擬推測醣體的修飾對於環化作用的影響 60
Chapter 3 討論 64
3.1 以化學生物合成策略來製備醣複合體 64
3.2 以化學酵素法合成具有生物重要性之唾液酸苷 65
3.3 以唾液酸內酯化來看磺基化對於唾液酸醯胺化的影響 66
3.4 岩藻糖影響唾液酸環化的原因 67
3.5 自然界中自發性分子內醯胺鍵生成的案例 70
Chapter 4 實驗步驟 74
參考文獻 101
Appendix: 1H/ 13C NMR Spectra 124
1.Angata, T.; Varki, A., Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chemical Reviews 2002, 102 (2), 439-69.
2.Varki, A., Essentials of Glycobiology. 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y., 2009; p xxix, 784 p.
3.Wang, B., Sialic acid is an essential nutrient for brain development and cognition. Annual Review of Nutrition 2009, 29, 177-222.
4.Schauer, R., Achievements and challenges of sialic acid research. Glycoconjugate Journal 2000, 17 (7-9), 485-99.
5.Rosenberg, A., Biology of the Sialic Acids. Springer US: 2013.
6.Dino, K. R.; Robert, J. L., Sialic Acid Donors: Chemical Synthesis and Glycosylation. Current Organic Synthesis 2004, 1 (1), 31-46.
7.Traving, C.; Schauer, R., Structure, function and metabolism of sialic acids. Cellular and Molecular Life Sciences : CMLS 1998, 54 (12), 1330-49.
8.Baskurt, O. K.; Temiz, A.; Meiselman, H. J., Effect of superoxide anions on red blood cell rheologic properties. Free Radical Biology & Medicine 1998, 24 (1), 102-10.
9.(a) Schauer, R., Sialic acids: fascinating sugars in higher animals and man. Zoology 2004, 107 (1), 49-64; (b) Stencel-Baerenwald, J. E.; Reiss, K.; Reiter, D. M.; Stehle, T.; Dermody, T. S., The sweet spot: defining virus-sialic acid interactions. Nature Reviews Microbiology 2014, 12 (11), 739-749.
10.Gross, S. K.; Williams, M. A.; McCluer, R. H., Alkali-Labile, Sodium Borohydride-Reducible Ganglioside Sialic Acid Residues in Brain. Journal of Neurochemistry 1980, 34 (6), 1351-1361.
11.Riboni, L.; Sonnino, S.; Acquotti, D.; Malesci, A.; Ghidoni, R.; Egge, H.; Mingrino, S.; Tettamanti, G., Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. The Journal of Biological Chemistry 1986, 261 (18), 8514-9.
12.Nores, G. A.; Dohi, T.; Taniguchi, M.; Hakomori, S., Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen. Journal of Immunology 1987, 139 (9), 3171-6.
13.Razi, N.; Varki, A., Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 1998, 95 (13), 7469-74.
14.(a) Ohmori, K.; Fukui, F.; Kiso, M.; Imai, T.; Yoshie, O.; Hasegawa, H.; Matsushima, K.; Kannagi, R., Identification of cutaneous lymphocyte-associated antigen as sialyl 6-sulfo Lewis X, a selectin ligand expressed on a subset of skin-homing helper memory T cells. Blood 2006, 107 (8), 3197-204; (b) Mitsuoka, C.; Sawada-Kasugai, M.; Ando-Furui, K.; Izawa, M.; Nakanishi, H.; Nakamura, S.; Ishida, H.; Kiso, M.; Kannagi, R., Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis X. The Journal of Biological Chemistry 1998, 273 (18), 11225-33; (c) Kannagi, R.; Sakuma, K.; Ohmori, K., Cell-Surface Glycoconjugates Controlling Human T-Lymphocyte Homing: Implications for Bronchial Asthma and Atopic Dermatitis. In Chembiomolecular Science: At the Frontier of Chemistry and Biology, Shibasaki, M.; Iino, M.; Osada, H., Eds. Springer Japan: Tokyo, 2013; pp 167-176; (d) Mitsuoka, C.; Ohmori, K.; Kimura, N.; Kanamori, A.; Komba, S.; Ishida, H.; Kiso, M.; Kannagi, R., Regulation of selectin binding activity by cyclization of sialic acid moiety of carbohydrate ligands on human leukocytes. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (4), 1597-602.
15.(a) Stamenkovic, I., The L-selectin adhesion system. Current Opinion in Hematology 1995, 2 (1), 68-75; (b) Butcher, E. C., The regulation of lymphocyte traffic. Current topics in Microbiology and Immunology 1986, 128, 85-122.
16.Bowman, K. G.; Cook, B. N.; de Graffenried, C. L.; Bertozzi, C. R., Biosynthesis of L-selectin ligands: sulfation of sialyl Lewis x-related oligosaccharides by a family of GlcNAc-6-sulfotransferases. Biochemistry 2001, 40 (18), 5382-91.
17.Rosen, S. D., Ligands for L-selectin: homing, inflammation, and beyond. Annual Review of Immunology 2004, 22, 129-56.
18.(a) Tsang, Y. T.; Neelamegham, S.; Hu, Y.; Berg, E. L.; Burns, A. R.; Smith, C. W.; Simon, S. I., Synergy between L-selectin signaling and chemotactic activation during neutrophil adhesion and transmigration. Journal of Immunology 1997, 159 (9), 4566-77; (b) Waddell, T. K.; Fialkow, L.; Chan, C. K.; Kishimoto, T. K.; Downey, G. P., Signaling functions of L-selectin. Enhancement of tyrosine phosphorylation and activation of MAP kinase. The Journal of Biological Chemistry 1995, 270 (25), 15403-11; (c) Hwang, S. T.; Singer, M. S.; Giblin, P. A.; Yednock, T. A.; Bacon, K. B.; Simon, S. I.; Rosen, S. D., GlyCAM-1, a physiologic ligand for L-selectin, activates β2 integrins on naive peripheral lymphocytes. The Journal of Experimental Medicine 1996, 184 (4), 1343-8; (d) Giblin, P. A.; Hwang, S. T.; Katsumoto, T. R.; Rosen, S. D., Ligation of L-selectin on T lymphocytes activates β1 integrins and promotes adhesion to fibronectin. Journal of Immunology 1997, 159 (7), 3498-507.
19.Butcher, E. C.; Picker, L. J., Lymphocyte homing and homeostasis. Science 1996, 272 (5258), 60-6.
20.(a) Maly, P.; Thall, A.; Petryniak, B.; Rogers, C. E.; Smith, P. L.; Marks, R. M.; Kelly, R. J.; Gersten, K. M.; Cheng, G.; Saunders, T. L.; Camper, S. A.; Camphausen, R. T.; Sullivan, F. X.; Isogai, Y.; Hindsgaul, O.; von Andrian, U. H.; Lowe, J. B., The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 1996, 86 (4), 643-53; (b) Scudder, P. R.; Shailubhai, K.; Duffin, K. L.; Streeter, P. R.; Jacob, G. S., Enzymatic synthesis of a 6''-sulphated sialyl-Lewisx which is an inhibitor of L-selectin binding to peripheral addressin. Glycobiology 1994, 4 (6), 929-32; (c) Chandrasekaran, E. V.; Jain, R. K.; Larsen, R. D.; Wlasichuk, K.; DiCioccio, R. A.; Matta, K. L., Specificity analysis of three clonal and five non-clonal α1,3-L-fucosyltransferases with sulfated, sialylated, or fucosylated synthetic carbohydrates as acceptors in relation to the assembly of 3''-sialyl-6''-sulfo Lewis x (the L-selectin ligand) and related complex structures. Biochemistry 1996, 35 (27), 8925-33.
21.(a) Spiro, R. G.; Yasumoto, Y.; Bhoyroo, V., Characterization of a rat liver Golgi sulphotransferase responsible for the 6-O-sulphation of N-acetylglucosamine residues in β-linkage to mannose: role in assembly of sialyl-galactosyl-N-acetylglucosamine 6-sulphate sequence of N-linked oligosaccharides. The Biochemical Journal 1996, 319, 209-16; (b) Degroote, S.; Lo-Guidice, J. M.; Strecker, G.; Ducourouble, M. P.; Roussel, P.; Lamblin, G., Characterization of an N-acetylglucosamine-6-O-sulfotransferase from human respiratory mucosa active on mucin carbohydrate chains. The Journal of Biological Chemistry 1997, 272 (47), 29493-501.
22.(a) Hooper, L. V.; Manzella, S. M.; Baenziger, J. U., From legumes to leukocytes: biological roles for sulfated carbohydrates. The Federation of American Societies for Experimental Biology 1996, 10 (10), 1137-46; (b) Bowman, K. G.; Bertozzi, C. R., Carbohydrate sulfotransferases: mediators of extracellular communication. Chemistry & Biology 1999, 6 (1), R9-R22; (c) Habuchi, O., Diversity and functions of glycosaminoglycan sulfotransferases. Biochimica et Biophysica Acta 2000, 1474 (2), 115-27.
23.(a) Homeister, J. W.; Thall, A. D.; Petryniak, B.; Maly, P.; Rogers, C. E.; Smith, P. L.; Kelly, R. J.; Gersten, K. M.; Askari, S. W.; Cheng, G.; Smithson, G.; Marks, R. M.; Misra, A. K.; Hindsgaul, O.; von Andrian, U. H.; Lowe, J. B., The α(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 2001, 15 (1), 115-26; (b) Kawashima, H.; Petryniak, B.; Hiraoka, N.; Mitoma, J.; Huckaby, V.; Nakayama, J.; Uchimura, K.; Kadomatsu, K.; Muramatsu, T.; Lowe, J. B.; Fukuda, M., N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nature Immunology 2005, 6 (11), 1096-104; (c) Kimura, N.; Mitsuoka, C.; Kanamori, A.; Hiraiwa, N.; Uchimura, K.; Muramatsu, T.; Tamatani, T.; Kansas, G. S.; Kannagi, R., Reconstitution of functional L-selectin ligands on a cultured human endothelial cell line by cotransfection of α1→3 fucosyltransferase VII and newly cloned GlcNAcβ:6-sulfotransferase cDNA. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (8), 4530-5; (d) Kawashima, H.; Fukuda, M., Sulfated glycans control lymphocyte homing. Annals of the New York Academy of Sciences 2012, 1253, 112-21.
24.Somers, W. S.; Tang, J.; Shaw, G. D.; Camphausen, R. T., Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 2000, 103 (3), 467-79.
25.(a) Revelle, B. M.; Scott, D.; Kogan, T. P.; Zheng, J.; Beck, P. J., Structure-function analysis of P-selectin-sialyl LewisX binding interactions. Mutagenic alteration of ligand binding specificity. The Journal of Biological Chemistry 1996, 271 (8), 4289-97; (b) Bertozzi, C. R., Cracking the carbohydrate code for selectin recognition. Chemistry & biology 1995, 2 (11), 703-8; (c) Erbe, D. V.; Wolitzky, B. A.; Presta, L. G.; Norton, C. R.; Ramos, R. J.; Burns, D. K.; Rumberger, J. M.; Rao, B. N.; Foxall, C.; Brandley, B. K.; et al., Identification of an E-selectin region critical for carbohydrate recognition and cell adhesion. The Journal of Cell Biology 1992, 119 (1), 215-27.
26.(a) Kobzdej, M. M.; Leppanen, A.; Ramachandran, V.; Cummings, R. D.; McEver, R. P., Discordant expression of selectin ligands and sialyl Lewis x-related epitopes on murine myeloid cells. Blood 2002, 100 (13), 4485-94; (b) Silva, Z.; Tong, Z.; Cabral, M. G.; Martins, C.; Castro, R.; Reis, C.; Trindade, H.; Konstantopoulos, K.; Videira, P. A., Sialyl Lewisx-dependent binding of human monocyte-derived dendritic cells to selectins. Biochemical and Biophysical Research Communications 2011, 409 (3), 459-64; (c) Shiozaki, K.; Yamaguchi, K.; Takahashi, K.; Moriya, S.; Miyagi, T., Regulation of sialyl Lewis antigen expression in colon cancer cells by sialidase NEU4. The Journal of Biological Chemistry 2011, 286 (24), 21052-61.
27.Kobayashi, M.; Lee, H.; Nakayama, J.; Fukuda, M., Carbohydrate-dependent defense mechanisms against Helicobacter pylori infection. Current Drug Metabolism 2009, 10 (1), 29-40.
28.(a) Kiwamoto, T.; Kawasaki, N.; Paulson, J. C.; Bochner, B. S., Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacology & Therapeutics 2012, 135 (3), 327-36; (b) Macauley, M. S.; Crocker, P. R.; Paulson, J. C., Siglec-mediated regulation of immune cell function in disease. Nature Reviews. Immunology 2014, 14 (10), 653-66; (c) Campanero-Rhodes, M. A.; Childs, R. A.; Kiso, M.; Komba, S.; Le Narvor, C.; Warren, J.; Otto, D.; Crocker, P. R.; Feizi, T., Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochemical and Biophysical Research Communications 2006, 344 (4), 1141-6.
29.(a) Bochner, B. S.; Alvarez, R. A.; Mehta, P.; Bovin, N. V.; Blixt, O.; White, J. R.; Schnaar, R. L., Glycan array screening reveals a candidate ligand for Siglec-8. The Journal of Biological Chemistry 2005, 280 (6), 4307-12; (b) Kiwamoto, T.; Brummet, M. E.; Wu, F.; Motari, M. G.; Smith, D. F.; Schnaar, R. L.; Zhu, Z.; Bochner, B. S., Mice deficient in the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. The Journal of Allergy and Clinical Immunology 2014, 133 (1), 240-7 e1-3; (c) Tateno, H.; Crocker, P. R.; Paulson, J. C., Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6''-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 2005, 15 (11), 1125-35.
30.(a) Bochner, B. S., Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 2009, 39 (3), 317-24; (b) Hudson, S. A.; Bovin, N. V.; Schnaar, R. L.; Crocker, P. R.; Bochner, B. S., Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6''-sulfated sialyl Lewis x. The Journal of Pharmacology and Experimental Therapeutics 2009, 330 (2), 608-12; (c) Kiwamoto, T.; Katoh, T.; Evans, C. M.; Janssen, W. J.; Brummet, M. E.; Hudson, S. A.; Zhu, Z.; Tiemeyer, M.; Bochner, B. S., Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. The Journal of Allergy and Clinical Immunology 2015, 135 (5), 1329-40 e1-9.
31.Galustian, C.; Park, C. G.; Chai, W.; Kiso, M.; Bruening, S. A.; Kang, Y. S.; Steinman, R. M.; Feizi, T., High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. International Immunology 2004, 16 (6), 853-66.
32.(a) Lasky, L. A.; Singer, M. S.; Dowbenko, D.; Imai, Y.; Henzel, W. J.; Grimley, C.; Fennie, C.; Gillett, N.; Watson, S. R.; Rosen, S. D., An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 1992, 69 (6), 927-38; (b) Hemmerich, S.; Rosen, S. D., 6''-sulfated sialyl Lewis x is a major capping group of GlyCAM-1. Biochemistry 1994, 33 (16), 4830-5; (c) Hemmerich, S.; Bertozzi, C. R.; Leffler, H.; Rosen, S. D., Identification of the sulfated monosaccharides of GlyCAM-1, an endothelial-derived ligand for L-selectin. Biochemistry 1994, 33 (16), 4820-9.
33.Bistrup, A.; Bhakta, S.; Lee, J. K.; Belov, Y. Y.; Gunn, M. D.; Zuo, F. R.; Huang, C. C.; Kannagi, R.; Rosen, S. D.; Hemmerich, S., Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. The Journal of Cell Biology 1999, 145 (4), 899-910.
34.(a) Halcomb, R. L.; Wong, C. H., Synthesis of Oligosaccharides, Glycopeptides, and Glycolipids. Current Opinion Structure Biology 1993, 3 (5), 694-700; (b) Klefel, M. J.; von Itzstein, M., Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. Chemical Reviews 2002, 102 (2), 471-490; (c) Boons, G.-J.; Demchenko, A. V., Recent Advances in O-Sialylation. Chemical Reviews 2000, 100 (12), 4539-4566; (d) Adak, A. K.; Yu, C.-C.; Liang, C.-F.; Lin, C.-C., Synthesis of sialic acid-containing saccharides. Current Opinion in Chemical Biology 2013, 17 (6), 1030-1038.
35.(a) Cummings, R. D.; Pierce, J. M., The challenge and promise of glycomics. Chemistry & biology 2014, 21 (1), 1-15; (b) Shriver, Z.; Raguram, S.; Sasisekharan, R., Glycomics: a pathway to a class of new and improved therapeutics. Nature Reviews. Drug discovery 2004, 3 (10), 863-73; (c) Paulson, J. C.; Blixt, O.; Collins, B. E., Sweet spots in functional glycomics. Nature Chemical Biology 2006, 2 (5), 238-48.
36.(a) Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409 (6817), 232-40; (b) Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial biocatalysis today and tomorrow. Nature 2001, 409 (6817), 258-68; (c) Schoemaker, H. E.; Mink, D.; Wubbolts, M. G., Dispelling the myths--biocatalysis in industrial synthesis. Science 2003, 299 (5613), 1694-7.
37.Chokhawala, H. A.; Chen, X., 1.11 - Enzymatic Approaches to O-Glycoside Introduction: Glycosyltransferases - Kamerling, Hans. In Comprehensive Glycoscience, Elsevier: Oxford, 2007; pp 415-451.
38.(a) Chen, X.; Varki, A., Advances in the biology and chemistry of sialic acids. ACS chemical biology 2010, 5 (2), 163-76; (b) Yu, H.; Chen, X., Carbohydrate post-glycosylational modifications. Organic & Biomolecular Chemistry 2007, 5 (6), 865-72.
39.Cai, L., Recent Progress in Enzymatic Synthesis of Sugar Nucleotides. Journal of Carbohydrate Chemistry 2012, 31 (7), 535-552.
40.Brockhausen, I., Crossroads between Bacterial and Mammalian Glycosyltransferases. Frontiers in Immunology 2014, 5, 492.
41.Yu, H.; Chen, X., One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Organic & Biomolecular Chemistry 2016, 14 (10), 2809-18.
42.Wong, C. H.; Haynie, S. L.; Whitesides, G. M., Enzyme-catalyzed synthesis of N-acetyllactosamine with in situ regeneration of uridine 5''-diphosphate glucose and uridine 5''-diphosphate galactose. The Journal of Organic Chemistry 1982, 47 (27), 5416-5418.
43.Chen, X., Fermenting next generation glycosylated therapeutics. ACS Chemical Biology 2011, 6 (1), 14-7.
44.Yu, H.; Chokhawala, H. A.; Huang, S.; Chen, X., One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nature Protocols 2006, 1 (5), 2485-92.
45.(a) Ichikawa, Y.; Look, G. C.; Wong, C. H., Enzyme-catalyzed oligosaccharide synthesis. Analytical biochemistry 1992, 202 (2), 215-38; (b) Koeller, K. M.; Wong, C. H., Complex carbohydrate synthesis tools for glycobiologists: enzyme-based approach and programmable one-pot strategies. Glycobiology 2000, 10 (11), 1157-69.
46.Yu, H.; Lau, K.; Li, Y.; Sugiarto, G.; Chen, X., One-pot multienzyme synthesis of Lewis x and sialyl Lewis x antigens. Current Protocols in Chemical Biology 2012, 4, 233-247.
47.(a) Sugiarto, G.; Lau, K.; Li, Y.; Khedri, Z.; Yu, H.; Le, D. T.; Chen, X., Decreasing the sialidase activity of multifunctional Pasteurella multocida α2-3-sialyltransferase 1 (PmST1) by site-directed mutagenesis. Molecular BioSystems 2011, 7 (11), 3021-7; (b) Sugiarto, G.; Lau, K.; Qu, J.; Li, Y.; Lim, S.; Mu, S.; Ames, J. B.; Fisher, A. J.; Chen, X., A sialyltransferase mutant with decreased donor hydrolysis and reduced sialidase activities for directly sialylating LewisX. ACS Chemical Biology 2012, 7 (7), 1232-40; (c) Ding, L.; Zhao, C.; Qu, J.; Li, Y.; Sugiarto, G.; Yu, H.; Wang, J.; Chen, X., A Photobacterium sp. α2-6-sialyltransferase (Psp2,6ST) mutant with an increased expression level and improved activities in sialylating Tn antigens. Carbohydrate Research 2015, 408, 127-33.
48.Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. Journal of the American Chemical Society 2005, 127 (50), 17618-9.
49.(a) Ni, L.; Sun, M.; Yu, H.; Chokhawala, H.; Chen, X.; Fisher, A. J., Cytidine 5''-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. Biochemistry 2006, 45 (7), 2139-48; (b) Ni, L.; Chokhawala, H. A.; Cao, H.; Henning, R.; Ng, L.; Huang, S.; Yu, H.; Chen, X.; Fisher, A. J., Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. Biochemistry 2007, 46 (21), 6288-98.
50.(a) Campbell, J. A.; Davies, G. J.; Bulone, V.; Henrissat, B., A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. The Biochemical Journal 1997, 326 ( Pt 3), 929-39; (b) Coutinho, P. M.; Deleury, E.; Davies, G. J.; Henrissat, B., An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology 2003, 328 (2), 307-17; (c) Rao, F. V.; Rich, J. R.; Rakic, B.; Buddai, S.; Schwartz, M. F.; Johnson, K.; Bowe, C.; Wakarchuk, W. W.; DeFrees, S.; Withers, S. G.; Strynadka, N. C. J., Structural insight into mammalian sialyltransferases. Nature Structural & Molecular Biology 2009, 16 (11), 1186-1188; (d) Audry, M.; Jeanneau, C.; Imberty, A.; Harduin-Lepers, A.; Delannoy, P.; Breton, C., Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 2011, 21 (6), 716-26.
51.(a) Cheng, J.; Huang, S.; Yu, H.; Li, Y.; Lau, K.; Chen, X., Trans-sialidase activity of Photobacterium damsela α2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 2010, 20 (2), 260-8; (b) Mine, T.; Katayama, S.; Kajiwara, H.; Tsunashima, M.; Tsukamoto, H.; Takakura, Y.; Yamamoto, T., An α2,6-sialyltransferase cloned from Photobacterium leiognathi strain JT-SHIZ-119 shows both sialyltransferase and neuraminidase activity. Glycobiology 2010, 20 (2), 158-65; (c) Cheng, J.; Yu, H.; Lau, K.; Huang, S.; Chokhawala, H. A.; Li, Y.; Tiwari, V. K.; Chen, X., Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 2008, 18 (9), 686-97.
52.(a) Yamamoto, T.; Nakashizuka, M.; Kodama, H.; Kajihara, Y.; Terada, I., Purification and characterization of a marine bacterial β-galactoside α 2,6-sialyltransferase from Photobacterium damsela JT0160. Journal of Biochemistry 1996, 120 (1), 104-10; (b) Yamamoto, T.; Nakashizuka, M.; Terada, I., Cloning and expression of a marine bacterial β-galactoside α2,6-sialyltransferase gene from Photobacterium damsela JT0160. Journal of Biochemistry 1998, 123 (1), 94-100.
53.(a) Gilbert, M.; Brisson, J. R.; Karwaski, M. F.; Michniewicz, J.; Cunningham, A. M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis. The Journal of Biological Chemistry 2000, 275 (6), 3896-906; (b) Chiu, C. P.; Watts, A. G.; Lairson, L. L.; Gilbert, M.; Lim, D.; Wakarchuk, W. W.; Withers, S. G.; Strynadka, N. C., Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nature Structural & Molecular Biology 2004, 11 (2), 163-70.
54.Gilbert, M.; Cunningham, A. M.; Watson, D. C.; Martin, A.; Richards, J. C.; Wakarchuk, W. W., Characterization of a recombinant Neisseria meningitidis α-2,3-sialyltransferase and its acceptor specificity. European Journal of Biochemistry 1997, 249 (1), 187-94.
55.(a) Sujino, K.; Jackson, R. J.; Chan, N. W.; Tsuji, S.; Palcic, M. M., A novel viral α2,3-sialyltransferase (v-ST3Gal I): transfer of sialic acid to fucosylated acceptors. Glycobiology 2000, 10 (3), 313-20; (b) Sugiarto, G.; Lau, K.; Yu, H.; Vuong, S.; Thon, V.; Li, Y.; Huang, S.; Chen, X., Cloning and characterization of a viral α2-3-sialyltransferase (vST3Gal-I) for the synthesis of sialyl Lewisx. Glycobiology 2011, 21 (3), 387-96.
56.Izumi, M.; Shen, G. J.; Wacowich-Sgarbi, S.; Nakatani, T.; Plettenburg, O.; Wong, C. H., Microbial glycosyltransferases for carbohydrate synthesis: α-2,3-sialyltransferase from Neisseria gonorrheae. Journal of the American Chemical Society 2001, 123 (44), 10909-18.
57.Tanner, M. E., The enzymes of sialic acid biosynthesis. Bioorganic chemistry 2005, 33 (3), 216-28.
58.Pratt, M. R.; Bertozzi, C. R., Syntheses of 6-sulfo sialyl Lewis X glycans corresponding to the L-selectin ligand "sulfoadhesin". Organic Letters 2004, 6 (14), 2345-8.
59.Yeh, J. C.; Hiraoka, N.; Petryniak, B.; Nakayama, J.; Ellies, L. G.; Rabuka, D.; Hindsgaul, O.; Marth, J. D.; Lowe, J. B.; Fukuda, M., Novel sulfated lymphocyte homing receptors and their control by a Core1 extension β 1,3-N-acetylglucosaminyltransferase. Cell 2001, 105 (7), 957-69.
60.Yu, H.; Lau, K.; Thon, V.; Autran, C. A.; Jantscher-Krenn, E.; Xue, M.; Li, Y.; Sugiarto, G.; Qu, J.; Mu, S.; Ding, L.; Bode, L.; Chen, X., Synthetic disialyl hexasaccharides protect neonatal rats from necrotizing enterocolitis. Angewandte Chemie International Edition 2014, 53 (26), 6687-91.
61.Malekan, H.; Fung, G.; Thon, V.; Khedri, Z.; Yu, H.; Qu, J.; Li, Y.; Ding, L.; Lam, K. S.; Chen, X., One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorganic & Medicinal Chemistry 2013, 21 (16), 4778-85.
62.(a) Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X., Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural α-2,6-linked sialosides: a P. damsela α-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angewandte Chemie International Edition 2006, 45 (24), 3938-44; (b) Sun, M.; Li, Y.; Chokhawala, H. A.; Henning, R.; Chen, X., N-Terminal 112 amino acid residues are not required for the sialyltransferase activity of Photobacterium damsela α2,6-sialyltransferase. Biotechnology Letters 2008, 30 (4), 671-6; (c) Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X., Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chemical Communications 2011, 47 (30), 8691-3.
63.Zhang, L.; Lau, K.; Cheng, J.; Yu, H.; Li, Y.; Sugiarto, G.; Huang, S.; Ding, L.; Thon, V.; Wang, P. G.; Chen, X., Helicobacter hepaticus Hh0072 gene encodes a novel α1-3-fucosyltransferase belonging to CAZy GT11 family. Glycobiology 2010, 20 (9), 1077-88.
64.(a) Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorganic & Medicinal Chemistry 2004, 12 (24), 6427-35; (b) Li, Y.; Yu, H.; Cao, H.; Lau, K.; Muthana, S.; Tiwari, V. K.; Son, B.; Chen, X., Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Applied Microbiology and Biotechnology 2008, 79 (6), 963-70; (c) Thon, V.; Lau, K.; Yu, H.; Tran, B. K.; Chen, X., PmST2: a novel Pasteurella multocida glycolipid α2-3-sialyltransferase. Glycobiology 2011, 21 (9), 1206-16; (d) Thon, V.; Li, Y.; Yu, H.; Lau, K.; Chen, X., PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional α2-3-sialyltransferase. Applied Microbiology and Biotechnology 2012, 94 (4), 977-85.
65.Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X., Highly efficient chemoenzymatic synthesis of β1-4-linked galactosides with promiscuous bacterial β1-4-galactosyltransferases. Chemical Communications 2010, 46 (33), 6066-8.
66.Yu, H.; Li, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. The Journal of Organic Chemistry 2016, 81 (22), 10809-10824.
67.(a) Muthana, M. M.; Qu, J.; Li, Y.; Zhang, L.; Yu, H.; Ding, L.; Malekan, H.; Chen, X., Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chemical Communications 2012, 48 (21), 2728-30; (b) Chen, X.; Fang, J.; Zhang, J.; Liu, Z.; Shao, J.; Kowal, P.; Andreana, P.; Wang, P. G., Sugar nucleotide regeneration beads (superbeads): a versatile tool for the practical synthesis of oligosaccharides. Journal of the American Chemical Society 2001, 123 (9), 2081-2.
68.Yi, W.; Liu, X.; Li, Y.; Li, J.; Xia, C.; Zhou, G.; Zhang, W.; Zhao, W.; Chen, X.; Wang, P. G., Remodeling bacterial polysaccharides by metabolic pathway engineering. Proceedings of the National Academy of Sciences of the United States of America 2009, 106 (11), 4207-12.
69.Santra, A.; Yu, H.; Tasnima, N.; Muthana, M. M.; Li, Y.; Zeng, J.; Kenyon, N. J.; Louie, A. Y.; Chen, X., Systematic chemoenzymatic synthesis of O-sulfated sialyl Lewis x antigens. Chemical Science 2016, 7 (4), 2827-2831.
70.Komba, S.; Galustian, C.; Ishida, H.; Feizi, T.; Kannagi, R.; Kiso, M., The First Total Synthesis of 6-Sulfo-de-N-acetylsialyl Lewis(x) Ganglioside: A Superior Ligand for Human L-Selectin. Angewandte Chemie International Edition 1999, 38 (8), 1131-3.
71.(a) Murase, T.; Ishida, H.; Kiso, M.; Hasegawa, A., A facile regio- and stereo-selective synthesis of α-glycosides of N-acetylneuraminic acid. Carbohydrate Research 1988, 184, c1-4; (b) Baker, D. C., Preparative Carbohydrate Chemistry Edited by Stephen Hanessian (University of Montreal). Marcel Dekker:  New York. 1997. xiii + 648 pp. ISBN 0-8247-9802-3. Journal of the American Chemical Society 1997, 119 (49), 12028-12029; (c) Hasegawa, A.; Nagahama, T.; Ohki, H.; Hotta, K.; Ishida, H.; Kiso, M., Communication: Synthetic Studies on Sialoglycoconjugates 25: Reactivity of Glycosyl Promoters in α-Glycosylation of N-Acetyl-Neuraminic Acid with the Primary and Secondary Hydroxyl Groups in the Suitably Protected Galactose and Lactose Derivatives. Journal of Carbohydrate Chemistry 1991, 10 (3), 493-498.
72.Komba, S.; Ishida, H.; Kiso, M.; Hasegawa, A., Synthesis and biological activities of three sulfated sialyl Le(x) ganglioside analogues for clarifying the real carbohydrate ligand structure of L-selectin. Bioorganic & Medicinal Chemistry 1996, 4 (11), 1833-47.
73.(a) Galustian, C.; Lawson, A. M.; Komba, S.; Ishida, H.; Kiso, M.; Feizi, T., Sialyl-Lewis(x) sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochemical and Biophysical Research Communications 1997, 240 (3), 748-51; (b) Kameyama, A.; Ishida, H.; Kiso, M.; Hasegawa, A., Synthetic Studies on Sialoglycoconjugates 22: Total Synthesis of Tumor-Associated Ganglioside, Sialyl Lewis X. Journal of Carbohydrate Chemistry 1991, 10 (4), 549-560.
74.Yamaguchi, M.; Ishida, H.; Kanamori, A.; Kannagi, R.; Kiso, M., 6-O-sulfo sialylparagloboside and sialyl Lewis X neo-glycolipids containing lactamized neuraminic acid: synthesis and antigenic reactivity against G159 monoclonal antibody. Glycoconjugate Journal 2005, 22 (3), 95-108.
75.(a) Hamada, T.; Hirota, H.; Yokoyama, S.; Otsubo, N.; Ishida, H.; Kiso, M.; Kanamori, A.; Kannagi, R., NMR analysis of novel ganglioside GM4 analogues containing de-N-acetyl and lactamized sialic acid: probes for searching new ligand structures for human L-selectin. Magnetic Resonance in Chemistry 2002, 40 (8), 517-523; (b) Hamada, T.; Hirota, H.; Yokoyama, S.; Yamaguchi, M.; Otsubo, N.; Ishida, H.; Kiso, M.; Kanamori, A.; Kannagi, R., NMR structure elucidation of cyclic sialyl 6-sulfo Lewis x, a biologically dormant form of L-selectin ligand. Tetrahedron Letters 2003, 44 (6), 1167-1170.
76.Otsubo, N.; Ishida, H.; Kiso, M., Synthesis of novel ganglioside GM4 analogues containing N-deacetylated and lactamized sialic acid: probes for searching new ligand structures for human L-selectin. Carbohydrate Research 2001, 330 (1), 1-5.
77.Yamaguchi, M.; Ishida, H.; Kanamori, A.; Kannagi, R.; Kiso, M., Studies on the endogenous L-selectin ligands: systematic and highly efficient total synthetic routes to lactamized-sialyl 6-O-sulfo Lewis X and other novel gangliosides containing lactamized neuraminic acid. Carbohydrate Research 2003, 338 (24), 2793-812.
78.Tu, Z.; Hsieh, H. W.; Tsai, C. M.; Hsu, C. W.; Wang, S. G.; Wu, K. J.; Lin, K. I.; Lin, C. H., Synthesis and characterization of sulfated Gal-β-1,3/4-GlcNAc disaccharides through consecutive protection/glycosylation steps. Chemistry, an Asian Journal 2013, 8 (7), 1536-50.
79.Namdjou, D. J.; Chen, H. M.; Vinogradov, E.; Brochu, D.; Withers, S. G.; Wakarchuk, W. W., A β-1,4-galactosyltransferase from Helicobacter pylori is an efficient and versatile biocatalyst displaying a novel activity for thioglycoside synthesis. Chembiochem : a European Journal of Chemical Biology 2008, 9 (10), 1632-40.
80.(a) Yang, J.; Fu, X.; Liao, J.; Liu, L.; Thorson, J. S., Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization. Chemistry & Biology 2005, 12 (6), 657-64; (b) Hoffmeister, D.; Thorson, J. S., Mechanistic implications of Escherichia coli galactokinase structure-based engineering. Chembiochem : a European Journal of Chemical Biology 2004, 5 (7), 989-92; (c) Yang, J.; Fu, X.; Jia, Q.; Shen, J.; Biggins, J. B.; Jiang, J.; Zhao, J.; Schmidt, J. J.; Wang, P. G.; Thorson, J. S., Studies on the substrate specificity of Escherichia coli galactokinase. Organic Letters 2003, 5 (13), 2223-6.
81.(a) Jiang, J.; Biggins, J. B.; Thorson, J. S., A General Enzymatic Method for the Synthesis of Natural and “Unnatural” UDP- and TDP-Nucleotide Sugars. Journal of the American Chemical Society 2000, 122 (28), 6803-6804; (b) Moretti, R.; Thorson, J. S., Enhancing the latent nucleotide triphosphate flexibility of the glucose-1-phosphate thymidylyltransferase RmlA. The Journal of Biological Chemistry 2007, 282 (23), 16942-7; (c) Jakeman, D. L.; Young, J. L.; Huestis, M. P.; Peltier, P.; Daniellou, R.; Nugier-Chauvin, C.; Ferrieres, V., Engineering ribonucleoside triphosphate specificity in a thymidylyltransferase. Biochemistry 2008, 47 (33), 8719-25; (d) Moretti, R.; Chang, A.; Peltier-Pain, P.; Bingman, C. A.; Phillips, G. N., Jr.; Thorson, J. S., Expanding the nucleotide and sugar 1-phosphate promiscuity of nucleotidyltransferase RmlA via directed evolution. The Journal of Biological Chemistry 2011, 286 (15), 13235-43; (e) Beaton, S. A.; Huestis, M. P.; Sadeghi-Khomami, A.; Thomas, N. R.; Jakeman, D. L., Enzyme-catalyzed synthesis of isosteric phosphono-analogues of sugar nucleotides. Chemical Communications 2009, (2), 238-240.
82.Mizanur, R. M.; Zea, C. J.; Pohl, N. L., Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. Journal of the American Chemical Society 2004, 126 (49), 15993-8.
83.Zhang, Y.; Meng, C.; Jin, L.; Chen, X.; Wang, F.; Cao, H., Chemoenzymatic synthesis of α-dystroglycan core M1 O-mannose glycans. Chemical Communications 2015, 51 (58), 11654-7.
84.Chen, C.; Zhang, Y.; Xue, M.; Liu, X. W.; Li, Y.; Chen, X.; Wang, P. G.; Wang, F.; Cao, H., Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chemical Communications 2015, 51 (36), 7689-92.
85.Pudelko, M.; Lindgren, A.; Tengel, T.; Reis, C. A.; Elofsson, M.; Kihlberg, J., Formation of lactones from sialylated MUC1 glycopeptides. Organic & Biomolecular Chemistry 2006, 4 (4), 713-20.
86.Yu, R. K.; Koerner, T. A.; Ando, S.; Yohe, H. C.; Prestegard, J. H., High-resolution proton NMR studies of gangliosides. III. Elucidation of the structure of ganglioside GM3 lactone. Journal of Biochemistry 1985, 98 (5), 1367-73.
87.Varki, A.; Schauer, R., Sialic Acids. In Essentials of Glycobiology, 2nd ed.; Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E., Eds. Cold Spring Harbor (NY), 2009.
88.Ilieva, S.; Galabov, B.; Musaev, D. G.; Morokuma, K.; Schaefer, H. F., 3rd, Computational study of the aminolysis of esters. The reaction of methylformate with ammonia. The Journal of Organic Chemistry 2003, 68 (4), 1496-502.
89.de Lima, E. C.; de Souza, C. C.; Soares, R. O.; Vaz, B. G.; Eberlin, M. N.; Dias, A. G.; Costa, P. R. R., DBU as a catalyst for the synthesis of amides via aminolysis of methyl esters. Journal of the Brazilian Chemical Society 2011, 22, 2186-2190.
90.Battistel, M. D.; Azurmendi, H. F.; Frank, M.; Freedberg, D. I., Uncovering Nonconventional and Conventional Hydrogen Bonds in Oligosaccharides through NMR Experiments and Molecular Modeling: Application to Sialyl Lewis-X. Journal of the American Chemical Society 2015, 137 (42), 13444-7.
91.(a) Hudak, J. E.; Bertozzi, C. R., Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chemistry & Biology 2014, 21 (1), 16-37; (b) Muthana, S. M.; Campbell, C. T.; Gildersleeve, J. C., Modifications of glycans: biological significance and therapeutic opportunities. ACS Chemical Biology 2012, 7 (1), 31-43.
92.Bishop, J. R.; Schuksz, M.; Esko, J. D., Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007, 446 (7139), 1030-7.
93.(a) Lee, J. C.; Lu, X. A.; Kulkarni, S. S.; Wen, Y. S.; Hung, S. C., Synthesis of heparin oligosaccharides. Journal of the American Chemical Society 2004, 126 (2), 476-7; (b) Linhardt, R. J.; Dordick, J. S.; Deangelis, P. L.; Liu, J., Enzymatic synthesis of glycosaminoglycan heparin. Seminars in Thrombosis and Hemostasis 2007, 33 (5), 453-65; (c) Dulaney, S. B.; Huang, X., Strategies in synthesis of heparin/heparan sulfate oligosaccharides: 2000-present. Advances in Carbohydrate Chemistry and Biochemistry 2012, 67, 95-136.
94.(a) Kahn, S. R.; Lim, W.; Dunn, A. S.; Cushman, M.; Dentali, F.; Akl, E. A.; Cook, D. J.; Balekian, A. A.; Klein, R. C.; Le, H.; Schulman, S.; Murad, M. H.; Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141 (2 Suppl), e195S-226S; (b) Linhardt, R. J., 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. Journal of Medicinal Chemistry 2003, 46 (13), 2551-64.
95.Liu, J.; Linhardt, R. J., Chemoenzymatic synthesis of heparan sulfate and heparin. Natural Product Reports 2014, 31 (12), 1676-85.
96.(a) Ge, Z.; Chan, N. W.; Palcic, M. M.; Taylor, D. E., Cloning and heterologous expression of an α1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. The Journal of Biological Chemistry 1997, 272 (34), 21357-63; (b) Martin, S. L.; Edbrooke, M. R.; Hodgman, T. C.; van den Eijnden, D. H.; Bird, M. I., Lewis X biosynthesis in Helicobacter pylori. Molecular cloning of an α(1,3)-fucosyltransferase gene. The Journal of Biological Chemistry 1997, 272 (34), 21349-56; (c) Rabbani, S.; Miksa, V.; Wipf, B.; Ernst, B., Molecular cloning and functional expression of a novel Helicobacter pylori α-1,4 fucosyltransferase. Glycobiology 2005, 15 (11), 1076-83; (d) Rasko, D. A.; Wang, G.; Palcic, M. M.; Taylor, D. E., Cloning and characterization of the α(1,3/4) fucosyltransferase of Helicobacter pylori. The Journal of Biological Chemistry 2000, 275 (7), 4988-94; (e) Wang, G.; Boulton, P. G.; Chan, N. W.; Palcic, M. M.; Taylor, D. E., Novel Helicobacter pylori α1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology 1999, 145 ( Pt 11), 3245-53.
97.Dumon, C.; Samain, E.; Priem, B., Assessment of the two Helicobacter pylori α-1,3-fucosyltransferase ortholog genes for the large-scale synthesis of LewisX human milk oligosaccharides by metabolically engineered Escherichia coli. Biotechnology Progress 2004, 20 (2), 412-9.
98.Lin, S. W.; Yuan, T. M.; Li, J. R.; Lin, C. H., Carboxyl terminus of Helicobacter pylori α1,3-fucosyltransferase determines the structure and stability. Biochemistry 2006, 45 (26), 8108-16.
99.(a) Feng, D.; Shaikh, A. S.; Wang, F., Recent Advance in Tumor-associated Carbohydrate Antigens (TACAs)-based Antitumor Vaccines. ACS Chemical Biology 2016, 11 (4), 850-63; (b) Xu, Y.; Sette, A.; Sidney, J.; Gendler, S. J.; Franco, A., Tumor-associated carbohydrate antigens: a possible avenue for cancer prevention. Immunology and Cell Biology 2005, 83 (4), 440-8; (c) Liu, C. C.; Ye, X. S., Carbohydrate-based cancer vaccines: target cancer with sugar bullets. Glycoconjugate Journal 2012, 29 (5-6), 259-71.
100.Drickamer, K., C-type lectin-like domains. Current Opinion in Structural Biology 1999, 9 (5), 585-90.
101.Dimitroff, C. J.; Lee, J. Y.; Rafii, S.; Fuhlbrigge, R. C.; Sackstein, R., CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. The Journal of Cell Biology 2001, 153 (6), 1277-86.
102.Kang, H. J.; Coulibaly, F.; Clow, F.; Proft, T.; Baker, E. N., Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 2007, 318 (5856), 1625-8.
103.Kang, H. J.; Baker, E. N., Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes. The Journal of Biological Chemistry 2009, 284 (31), 20729-37.
104.Zakeri, B.; Howarth, M., Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. Journal of the American Chemical Society 2010, 132 (13), 4526-7.
105.Cummings, R. D., Structure and function of the selectin ligand PSGL-1. Brazilian journal of medical and biological research 1999, 32 (5), 519-28.
106.Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; Gonzalez-Outeirino, J.; Daniels, C. R.; Foley, B. L.; Woods, R. J., GLYCAM06: a generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry 2008, 29 (4), 622-55.
107.(a) Li, P.; Merz, K. M., Jr., Taking into Account the Ion-induced Dipole Interaction in the Nonbonded Model of Ions. Journal of Chemical Theory and Computation 2014, 10 (1), 289-297; (b) Li, P.; Roberts, B. P.; Chakravorty, D. K.; Merz, K. M., Jr., Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. Journal of Chemical Theory and Computation 2013, 9 (6), 2733-2748.
108.Roe, D. R.; Cheatham, T. E., 3rd, PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation 2013, 9 (7), 3084-95.
109.Basma, M.; Sundara, S.; Calgan, D.; Vernali, T.; Woods, R. J., Solvated ensemble averaging in the calculation of partial atomic charges. Journal of Computational Chemistry 2001, 22 (11), 1125-37.
110.Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J. C.; Cieplak, P.; Dupradeau, F. Y., R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research 2011, 39 (Web Server issue), W511-7.
111.Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A., Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling 2006, 25 (2), 247-60.
112.Bernal-García, J. M.; Guzmán-López, A.; Cabrales-Torres, A.; Estrada-Baltazar, A.; Iglesias-Silva, G. A., Densities and Viscosities of (N,N-Dimethylformamide + Water) at Atmospheric Pressure from (283.15 to 353.15) K. Journal of Chemical & Engineering Data 2008, 53 (4), 1024-1027.
113.Miyamoto, S.; Kollman, P. A., Settle - an Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. Journal of Computational Chemistry 1992, 13 (8), 952-962.
114.Loncharich, R. J.; Brooks, B. R.; Pastor, R. W., Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N''-methylamide. Biopolymers 1992, 32 (5), 523-35.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top