|
1.Maragakis, L. L. & Perl, T. M. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis.46, 1254-1263 (2008). 2.Antunes, L. C. S., Visca, P. & Towner, K. J. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 71, 292-301 (2014). 3.Vila, J. & Pachon, J. Therapeutic options for Acintobacter baumannii infections : an update. Expert Opin. Pharmacother. 13, 2319-2336 (2012). 4.Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538-582, (2008). 5.McConnell, M. J., Actis, L. & Pachon, J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev. 37, 130-155, (2013). 6.Antunes, L. C., Imperi, F., Carattoli, A. & Visca, P. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PloS one 6, e22674 (2011) 7.Fournier, P. E. et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS genetics 2, e7(2006). 8.Qureshi, Z. A. et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 60, 1295-1303 (2015). 9.Gonzalez-Villoria, A. M. & Valverde-Garduno, V. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen. J. Patho. 2016, 7318075(2016). 10.Rice, L. B. Mechanisms of resistance and clinical relevance of resistance to beta-lactams, glycopeptides, and fluoroquinolones. Mayo Clin. Proceed. 87, 198-208 (2012). 11.Aghazadeh, M. et al. Dissemination of aminoglycoside-modifying enzymes and 16S rRNA methylases among acinetobacter baumannii and Pseudomonas aeruginosa isolates. Microb. Drug Resist. 19, 282-288 (2013) 12.Xu, J., Sun, Z., Li, Y. & Zhou, Q. Surveillance and correlation of antibiotic consumption and resistance of Acinetobacter baumannii complex in a tertiary care hospital in northeast China, 2003-2011. International journal of environmental research and public health 10, 1462-1473 (2013) 13.S-C., Kuo et al. Emergence of extensively drug resistance Acinetobcter baumannii complex over 10 years: Nationwide data from Taiwan surveillance of antimicrobiol resistance program BMC Infe. Disea. 12, 200-209 (2012) 14.Xu, T. et al. A 4-year surveillance of antimicrobial resistance patterns of Acinetobacter baumanni in a university-affiliated hospital in China. Journal of thoracic disease 5, 506-512 (2013) 15.CDC of United state Report in 2013 16.Moffatt, J. H. et al. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect.Immun. 81, 684-689 (2013). 17.De Castro, C., Parrilli, M., Holst, O. & Molinaro, A. Microbe-Associated Molecular Patterns in Innate Immunity. Method Enzymol. 480, 89-115 (2010). 18.Jones, G. & Jiang H. Detection of lipopolysaccharide and lipid A employing a spermine-pyrene conjugate. Bioconjugate Chem. 16, 621-625 (2005). 19.Kenyon, J. J. & Hall, R. M. Variation in the complex carbohydrate synthesis loci of Acinetobacter baumannii geneomes. Plos One 8, e62160-e62172 (2013) 20.Hu, D. et al. Diversity in the major polysaccharide antigen of Acinetobacter baumannii assessed DNA sequencing, and development of a molecular serotyping scheme. Plos One 8, e70329-e70342 (2013) 21.Mahdavi, J. et al. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open biology 4, 130202 (2014). 22.Vinogradov, E., Maclean, L., Xu, H. H. & Chen, W. The structure of the polysaccharide isolated from Acinetobacter baumannii strain LAC-4. Carbohyd. Res. 390, 42-45 (2014). 23.Fregolino, E. et al. Identification and structural determination of the capsular polysaccharides from two Acinetobacter baumannii clinical isolates, MG1 and SMAL. Carbohyd. Res.346, 973-977 (2011). 24.Vinogradov, E. et al. The struture of carbohydrate backbone of the lipopolysaccharide from Acinetobacter baumannii strain ATCC 19606. Eur. J. Biochem. 269, 422-430 (2002). 25.Russo, T. A. et al. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect.Immun. 78, 3993-4000 (2010). 26.Choi, A. H., Slamti, L., Avci, F. Y., Pier, G. B. & Maira-Litran, T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol 191, 5953-5963 (2009) 27.Iwashkiw, J. A. et al. Identification of a genernal O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. Plos Pathogen 8, e1002758-e1002772 (2012). 28.Bentancor, L. V., O''Malley, J. M., Bozkurt-Guzel, C., Pier, G. B. & Maira-Litran, T. Poly-N-acetyl-beta-(1-6)-glucosamine is a target for protective immunity against Acinetobacter baumannii infections. Infect.Immun. 80, 651-656 (2012). 29.Gening, M. L. et al. Synthetic {beta}-(1->6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infect.Immun. 78, 764-772 (2010). 30.Parent, K. N. et al. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol. Microb. 92, 47-60 (2014). 31.Fanos, V., Kacet, N. & Mosconi, G. A review of teicoplanin in the treatment of serious neonatal infections. Eur. J. Pediatr. 156, 423-427 (1997) 32.Knirel, Y. A., Shashkov, A. S., Tsvetkov, Y. E., Jansson, P.-E. & Zähringer, U. 5,7-Diamino-3,5,7,9-Tetradeoxynon-2-Ulosonic Acids in Bacterial Glycopolymers: Chemistry and Biochemistry. Adv. Carbohydr. Chem. Biochem. 58, 371-417 (2003). 33.Elbreki, M. et al. Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment. Journal of Viruses 2014, 1-20 (2014). 34.Haq, I. U., Chaudhry, W. N., Akhtar, M. N., Andleeb, S. & Qadri, I. Bacteriophages and their implications on future biotechnology: a review. Virol. J. 9, 9 (2012). 35.Salmond, G. P. & Fineran, P. C. A century of the phage: past, present and future. Nat. Rev. Microb. 13, 777-786 (2015). 36.Chaturongakul, S. & Ounjai, P. Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Frontiers in microbiology 5, 442 (2014). 37.Andres, D. et al. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J. Biol. Chem. 285, 36768-36775 (2010). 38.Jepson, C. D. & March, J. B. Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine 22, 2413-2419 (2004). 39.Matsuzaki, S. et al. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 11, 211-219 (2005). 40.Citorik, R. J., Mimee, M. & Lu, T. K. Bacteriophage-based synthetic biology for the study of infectious diseases. Curr. Opin. Microbiol. 19, 59-69 (2014). 41.Lu, T. K. & Collins, J. J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Nat.l Acd. Sci. USA. 106, 4629-4634 (2009). 42.Fernandez-Gacio, A., Uguen, M. & Fastrez, J. Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol. 21, 408-414 (2003). 43.Bazan, J., Calkosinski, I. & Gamian, A. Phage display--a powerful technique for immunotherapy: 2. Vaccine delivery. Human vaccines & immunotherapeutics 8, 1829-1835 (2012). 44.Huang, J. X., Bishop-Hurley, S. L. & Cooper, M. A. Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrob. Agents Ch. 56, 4569-4582 (2012). 45.Chiaruttini, N. et al. Is the in vitro ejection of bacteriophage DNA quasistatic? A bulk to single virus study. Biophys. J.l 99, 447-455 (2010). 46.Moffatt, J. H. et al. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infec. Immun. 81, 684-689 (2013). 47.Zamze, S. et al. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J. Biol. Chem. 277, 41613-41623 (2002). 48.Andres, D. et al. Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system. Mol. Microbiol. 83, 1244-1253 (2012). 49.Andres, D. et al. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J. Biol. Chem. 285, 36768-36775 (2010). 50.Schwarzer, D., Stummeyer, K., Gerardy-Schahn, R. & Muhlenhoff, M. Characterization of a novel intramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spike and fiber proteins. J. Biol. Chem. 282, 2821-2831(2007). 51.Verma, V., Harjai, K. & Chhibber, S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr. Microbiol. 59, 274-281 (2009). 52.Stummeyer, K., Dickmanns, A., Muhlenhoff, M., Gerardy-Schahn, R. & Ficner, R. Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat. Sturct. Mol. Biol. 12, 90-96 (2005). 53.Xiang, Y. et al. Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike. Mol.Cell 34, 375-386 (2009). 54.Plisson, C. et al. Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. The EMBO journal 26, 3720-3728 (2007). 55.Bartual, S. G. et al. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc. Nat.l Acd. Sci. USA.107, 20287-20292 (2010). 56.Garcia-Doval, C. & van Raaij, M. J. Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. Proc. Nat.l Acd. Sci. USA.109, 9390-9395 (2012). 57.Leiman, P. G. et al. The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J. Mol. Biol. 371, 836-849 (2007). 58.Yaqub, O., Castle-Clarke, S., Sevdalis, N. & Chataway, J. Attitudes to vaccination: a critical review. Soc. Sci. Med. 112, 1-11 (2014). 59.Avci, F. Y. & Kasper, D. L. How bacterial carbohydrates influence the adaptive immune system. Annu. Rev. Immuno. 28, 107-130 (2010). 60.Pace, D. Glycoconjugate vaccines. Expert Opin. Biol. Ther. 13,11-33 (2013). 61.Vella, M. & Pace, D. Glycoconjugate vaccines: update. Expert Opin. Biol. Ther. 15, 529-546 (2015). 62.Astronomo, R. D. & Burton, D. R. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug Dis. 9, 308-324 (2010). 63.Berti, F. & Adamo, R. Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem. Biol. 8, 1653-1663 (2013). 64.Avci, F. Y., Li, X., Tsuji, M. & Kasper, D. L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 17, 1602-1609 (2011). 65.Terra, V. S. et al. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J. Med. Microbiol. 61, 919-926 (2012). 66.Garcia-Quintanilla, M., Pulido, M. R., Lopez-Rojas, R., Pachon, J. & McConnell, M. J. Emerging therapies for multidrug resistant Acinetobacter baumannii. Trends Microbiol. 21, 157-163 (2013). 67.Perciani, C. T. et al. Conjugation of polysaccharide 6B from Streptococcus pneumoniae with pneumococcal surface protein A: PspA conformation and its effect on the immune response. Clin. Vaccine Immun. 20, 858-866 (2013). 68.Micoli, F. et al. Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc. Nat.l Acd. Sci. USA.110, 19077-19082 (2013). 69.Cuccui, J. et al. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open biology 3, 130002 (2013). 70.Johnson, M. A. & Bundle, D. R. Designing a new antifungal glycoconjugate vaccine. Chem. Soc. Rev. 42, 4327-4344 (2013). 71.Schumann, B., Pragani, R., Anish, C., Pereira, C. L. & Seeberger, P. H. Synthesis of conjugation-ready zwitterionic oligosaccharides by chemoselective thioglycoside activation. Chem. Sci. 5, 1992 (2014). 72.Gening, M. L. et al. Synthetic {beta}-(1->6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infec. Immun. 78, 764-772 (2010). 73.Adamo, R. et al. Synthetically defined glycoprotein vaccines: current status and future directions. Chem.l Sci. 4, 2995-3008 (2013). 74.Lai, M. et al. The tail associated protein of Acinetobacter baumannii phage ΦAB6 is the host specificity determinant possessing exopolysaccharide depolymerase activity. PLoS ONE 11, e0153361 (2016). 75.Lin, N. T., Chiou, P. Y., Chang, K. C., Chen, L. K. & Lai, M. J. Isolation and characterization of phi AB2: a novel bacteriophage of Acinetobacter baumannii. Res. Microbiol. 161, 308-314 (2010). 76.Guerrero, S. A., Hecht, H. J., Hofmann, B., Biebl, H. & Singh, M. Production of selenomethionine-labelled proteins using simplified culture conditions and generally applicable host/vector systems. Appl. Microbiol. Biotechnol. 56, 718-723 (2001). 77.Zamze, S. et al. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J. Biol.Chem. 277, 41613-41623 (2002). 78.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356 (1956). 79.Verma. V., Harjai, K. & Chhibber, S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr. Microbiol. 59, 274-281 (2009). 80.Robert, S., Albert F., Jonathan, K. & Rainer J. Reconstitution of the thermostable trimeric phage P22 tailspike protein from denatured chains in vitro. J. Biol. Chem. 264, 11750-11753 (1989). 81.Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in ocillation mode. Methods in Enzymol. 276, 307-326 (1997). 82.Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. D. 66, 213-221 (2010). 83.Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Cryst. D. 60, 2126–2132 (2004). 84.Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures Acta Cryst. D. 67, 355-367 (2011). 85.Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst. A. 47, 392-400 (1991). 86.Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291 (1993). 87.Fomsgaard, A., Freudenberg, M. A. & Galanos, C. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gel. J. Clin. Microbiol. 28, 2627-2631. 88.Steinbacher, S. et al. Crystal structure of P22 tailspike protein: Interdigitated subunits in a thermostable trimer. Science 265, 383-386 (1994). 89.Muller, J. J. et al. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure 16, 766-775 (2008). 90.Barbirz, S. et al. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol. Microbiol. 69, 303-316 (2008). 91.Pickersgill, R., Smith, D., Worboys, K. & Jenkins, J. Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. J. Biol. Chem. 273, 24660-24664 (1998). 92.Kreisberg, J. F., Betts, S. D. & King, J. β-Helix core packing within the triple-stranded oligomerization domain of the P22 tailspike. Protein Sci. 9, 2338-2343 (2000). 93.Vuong, T. V. & Wilson, D. B. Glycoside hydrolases: Catalytic base/nucleophile diversity. Biotechnol. Bioeng. 107, 195-205 (2010). 94.Tsuzuki S. CH/π interactions. Annu. Rep. Prog. Chem., Sect. C:Phys. Chem. 108, 69-95 (2012) 95.Zechel, D. L. & Withers, S. G. Glycosidase mechanism: anatomy of a finely tuned catalysis. Acc. Chem. Res. 33, 11-18 (2000). 96.Hu, Q.-Y. et al. Synthesis of a well-defined glycoconjugate vaccine by a tyrosine-selective conjugation strategy. Chem. Sci. 4, 3827-3832 (2013). 97.Kenyon, J. J., Marzaioli, A. M., Hall, R. M. & De Castro C. Structure of the K2 capsule associated with the KL2 gene cluster of Acinetobacter baumannii. Glycobiology 24, 554-563 (2014). 98.Senchenkova, S. N. et al. Structure of the capsular polysaccharide of Acinetobacter baumannii ACICU containing di-N-acetylpseudaminic acid. Carbohyd. Res. 391, 89-92 (2014). 99.Lees-Miller, R. G. et al. A common pathway for O-linked protein glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol. Microbiol. 89, 816-830. 100.Jung, W. S. et al. Structural and functional insights into intramolecular fructosyl transfer by inulin fructotransferase. J. Biol. Chem. 282,8414-8423 (2007). 101.Andres, D., Baxa, U., Hanke, C., Seckler, R. & Barbirz, S. Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection. Biochem. Soc. Trans. 38, 1386-1389 (2010). 102.Steinbacher, S. et al. Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc. Natl. Acad. Sci. 93, 10584-10588 (1996). 103.Andres, D. et al. An essential serotype recognition pocket on phage P22 tailspike protein forces Salmonella enterica serovar Paratyphi A O-antigen fragments to bind as nonsolution conformers. Glycobiology 23, 486-494 (2013). 104.Lemieux, M. J. et al. Crystallographic Structure of Human β-Hexosaminidase A: Interpretation of Tay-Sachs Mutations and Loss of GM2 Ganglioside Hydrolysis. J. Mol. Biol. 359,913-929 (2006) 105.Zunk, M. & Kiefel, M. J. The occurrence and biological significance of the α-keto-sugars pseudaminic acid and legionaminic acid within pathogenic bacteria. RSC Adv. 4, 3413-3421 (2014). 106.Rieger-Hug, D. & Stirm, S. Comparative study of host depolymerases associated with Klebsiella bacteriophages. Virology 113, 363-378 (1981). 107.Rondini, S. et al. Design of glycoconjugate vaccines against invasive African Salmonella enterica serovar Typhimurium. Infect. Immun. 83, 996-1007 (2015). 108.Buonsanti, C. et al. Novel adjuvant Alum-TLR7 significantly potentiates immune response to glycoconjugate vaccines. Sci. Rep. 6, 1-9 (2015). 109.Kong, L. et al. An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide Hep2Kdo2. Nat. Chem. 8, 242-249 (2016). 110.Boyd, M. A. et al. Serum bacterial assays to evaluate typhoidal and nontyphoidal Salmonella vaccines. Clin.Vaccine Immun. 21, 712-721 (2014). 111.McIntosh, E.D.G. et al. Serum bactericidal antibody assays-The role of complement in infection and immunity. Vaccine 33, 4414-4421 (2015). 112.Chen, L. et al. Outer membrane vesicle displaying engineered glycotopes elicit protective antibodies. Proc. Natl. Acad. Sci. USA 113, E3609-3618 (2016). 113.Moginger, U. et al. Cross reactive material 197 glycoconjugate vaccines contain privileged conjugation site. Sci. Rep. 6, 20488 (2016) 114.Tontini, M. et al. Preclinical studies on new proteins as carrier for glycoconjugate vaccines. Vaccine 34, 4235-4242 (2016). 115.Szijarto, V. et al. Bactericidal monoclonal antibodies specific to the lipopolysaccharide O antigen from multidrug-resistant Escherichia coli clone ST131-O25b:H4 elicit protection in mice. Antimicrob. Agents Chem. 59, 3109-3116 (2015). 116.Adamo, R. et al. Deciphering the structure–immunogenicity relationship of anti-Candida glycoconjugate vaccines. Chem. Sci. 5, 4302-4311 (2014). 117.Lerner, R. A. Combinatorial antibody libraries: new advances, new immunological insights. Nature reviews. Immunol. 16, 498-508 (2016). 118.Zhou, Z., Liao, G., Mandal, S. S., Suryawanshi, S. & Guo, Z. A Fully Synthetic Self-Adjuvanting Globo H-Based Vaccine Elicited Strong T Cell-Mediated Antitumor Immunity. Chem. Sci. 6, 7112-7121 (2015). 119.Pan, C. et al. Biosynthesis of Conjugate Vaccines Using an O-Linked Glycosylation System. mBio 7, e00443-00416 (2016). 120.Zolot, R. S. et al. Antibody-drug conjugates. Nat. Rev. Drug Discov. 12, 259-260 (2013)
|