跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李益銘
研究生(外文):I-Ming Lee
論文名稱:噬菌體尾部刺突蛋白水解鮑氏不動桿菌表面多醣之研究以發展醣複合疫苗
論文名稱(外文):Study of bacteriophage tail spike protein fragmenting Acinetobacter baumannii exopolysaccharide to develop glycoconjugate vaccine
指導教授:吳世雄吳世雄引用關係
指導教授(外文):Shih-Hsiung Wu
口試委員:李宗璘吳宗益陳德禮史有伶黃開發
口試委員(外文):Tsung-Lin LiChung-Yi WuTe-Li ChenYu-Ling ShihKai-Fa Huang
口試日期:2017-01-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:82
中文關鍵詞:鮑氏不動桿菌醣複合疫苗表面多醣噬菌體尾端蛋白蛋白質結構核磁共振
外文關鍵詞:Acinetobacter baumanniiglycoconjugate vaccinebacteriophage tail spike proteinprotein crystallographynuclear magnetic resonance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鮑氏不動桿菌 (Acinetobacter baumannii)是一種伺機性致病菌,在大量使用抗生素治療的環境下,其變成多重抗藥性的鮑氏不動桿菌 (multidrug- resistant Acinetobacter baumannii, 簡稱MDRAB)的機率與日俱增,已然嚴重威脅全球人類的健康。因此,發展一種可以有效預防MDRAB感染的方案目前在臨床上是相當迫切的。其中,利用致病菌上的表面多醣(exopolysaccharide)或其寡糖片段和載體蛋白(carrier protein),透過特定的連接子(chemical linker)連結在一起所製成的醣複合疫苗(glycoconjugate vaccine)已被證實在預防其他致病菌的感染具有相當優異的效果,像是肺炎鏈球菌,腦膜炎雙球菌…等等。然而,在之前文獻認為,和用全長的表面多醣比較,利用表面寡醣片段架接在載體蛋白能夠引發更為顯著的免疫反應。於是,我們希望透過在噬菌體(bacteriophage)的尾部刺突蛋白(tail spike protein)具有醣水解酶的特性,獲得均質的細菌表面寡糖片段,以提升針對MDRAB的醣共軛疫苗的成效。而在之前的文獻提出在台灣有篩選到兩株不同會感染鮑氏不動桿菌的噬菌體,ΦAB6和ΦAB2,分別感染不同宿主Ab-54149和Ab-SK44。因此在本研究中,我們表現了這兩株噬菌體的重組尾部刺突蛋白,ΦAB6 TSP和ΦAB2 TSP,並且確認了其具有分別水解Ab-54149和Ab-SK44表面多醣的活性。而藉由這兩種尾端蛋白的產物,可以解析出Ab-54149和Ab-SK44表面多醣的結構。Ab-54149 表面多醣的結構和之前所報導的兩株具有抗藥性鮑氏不動桿菌上的表面多醣結構是一樣的,而Ab-SK44的表面多醣則可能和保護菌株避開補體(complement)的攻擊有關。另外,也得知ΦAB6 TSP水解的產物主要是由含有兩個pseudaminic acid的兩個重複單元(repeat unit)的寡醣所組成,而ΦAB2 TSP水解的產物則是只有一個重複單元的寡醣所組成。而利用這兩種表面多醣誘發所產生的抗體,對於其他在台灣臨床鮑氏不動桿菌株的表面多醣具有相當良好的識別率,因此這兩種表面多醣相當適合做為發展醣共軛疫苗的原料。於是,我們將兩種經由尾端蛋白水解過後的寡醣片段架接到載體蛋白上,並將此複合物注射到兔子身上,發現具有很好的免疫原性(immunogenicity),可以再更進一步作活體的測試。另外,我們也針對ΦAB6 TSP去做其結構和水解機制的探討。ΦAB6 TSP是由三個以β-helix為主體的單元聚合在一起的結構,而其活性位點(active site)則是位於每兩個β-helix的中間介面所形成的凹槽中。在活性位點中的麩氨酸(glutamic acid)425和447會經由維持還原端位向的機制將多醣進行水解。再者,Pse則是被認為在ΦAB6 TSP辨認受質的過程中便演相當重要的角色,也可能是造成ΦAB6 TSP具有高度受質專一性的原因。本研究提供了有關未來利用改造尾端蛋白來獲取更均質,更多樣化,更有免疫活性的表面寡醣片段的資訊,這對發展對抗MDRAB的醣複合疫苗將會是一大幫助。
With an increase in antibiotic-resistant strains, the nosocomial pathogen Acinetobacter baumannii has become a serious threat to global health. Glycoconjugate vaccines (GCV), made up of bacterial exopolysaccharide (EPS) and carrier protein conjugating with chemical linker, are an emerging therapeutic to combat bacterial infection. However, some previous literatures demonstrated that carbohydrate epitopes bearing proper repeat units of bacterial polysaccharide usually induced stronger immune responses in the vaccination process than those using whole polysaccharide. Therefore, we hopefully acquire the homogenous oligosaccharide fragments via bacteriophage tail spike protein (TSP) carrying glycohydrolase activity. Herein, we characterized that the bacteriophage ΦAB6 and ΦAB2 tail spike protein (TSP) enable to hydrolyze specifically the EPS of A. baumannii strain 54149 and SK44 respectively (Ab-54149 and Ab-SK44). Based on structural analysis of TSP-digested product, Ab-54149 EPS exhibited the same chemical structure as that of two antibiotic-resistant A. baumannii strains, and Ab-SK44 EPS might protect bacteria from complement-mediated killing. The ΦAB6 TSP-digested products comprised oligosaccharides of two repeat units, typically with stoichiometric pseudaminic acid (Pse). By contrast, ΦAB2 TSP-digested product contained only one repeat unit. The antibodies induced by whole EPS of Ab-54149 and Ab-SK44 were capable of recognizing a number of A. baumannii clinical strains EPS. For potential use in GCV, both TSP-digested products were further conjugated to carrier protein CRM197 and subsequently injected into rabbits. The boosted serum from rabbits could recognize the whole extract and digested product of Ab-54149 and Ab-SK44 EPS respectively, indicated high immunogenicity of conjugate complex. Notably, both boosted serum displayed significantly better sensitivity toward whole EPS. The 1.48-1.89-Å resolution crystal structures of an N-terminally-truncated ΦAB6 TSP and its complexes with the semi-hydrolyzed products revealed a trimeric β-helix architecture that bears intersubunit carbohydrate-binding grooves, with some features unusual to the TSP family. The structures suggest that Pse in the substrate is an important recognition site for ΦAB6 TSP. A region in the carbohydrate-binding groove is identified as the determinant of product specificity. The structures also elucidated a retaining mechanism, for which the catalytic residues were verified by site-directed mutagenesis. Our findings provide a structural basis for engineering the enzyme to produce desired oligosaccharides, which is useful for the development of GCV against A. baumannii infection.
謝誌....................................................i
中文摘要................................................ii
英文摘要................................................iv
目錄...................................................vi
Abbreviations..........................................x
List of Figures………………………………………………………………………….xi
Chapter 1: Introduction………………………………………………………………..1
1-1. General introduction of Acinetobacter baumannii……..1
1-2. Emergence of multi-drug resistant Acinetobacter baumannii…………………….......................................2
1-3. Virulence factors for Acinetobacter baumannii pathogenicity…………………....................................4
1-4. Phage and its tail spike protein………………………………………....6
1-5. Glycoconjugate vaccine………………………………………………………….......8
1-6. Specific Aims…………………………………………………………………............10
Chapter 2: Materials and Methods…………………………………………………....12
2-1. Protein expression and purification…………………………………..12
2-2. Extraction of bacterial surface polysaccharides...13
2-3. Digestion of A. baumannii surface polysaccharide by ΦAB6 TSP……………..........................................14
2-4. Top agar assay of enzyme activity……………………………………...14
2-5. Structure determination of Ab-54149 surface polysaccharide by NMR..................................15
2-6. Mass spectrometry analysis of digested products of Ab-54149 surface polysaccharide………………………………………………………………16
2-7. Enzyme kinetic assay…………………………………………………………........16
2-8. Antiserum production and dot blot assay………………………..17
2-9. Crystallization and X-ray data collection………………………18
2-10. Structure determination and refinement……………………………20
2-11. Analytical ultracentrifugation analysis……………………..21
Chapter 3: Results
3-1. Characterization of ΦAB6 TSP and ΦAB2 TSP…………………….22
3-1-1. Glycosidase activity of ΦAB6 TSP and ΦAB2 TSP………22
3-1-2. Optimized condition for enzymatic activity of ΦAB6 TSP andΦAB2 TSP….......................................24
3-1-3. Further characterization of ΦAB6 TSP………………………………26
3-2. Structure of EPS of A. baumannii strains 54149 and SK44……………………...........................................27
3-2-1. Structure of EPS of A. baumannii strain 54149…..27
3-2-2. Structure of EPS of A. baumannii strain SK44……….30
3-3. The 3D crystal structure of ΦAB6 TSP……………………………………32
3-3-1. Overall structure of ΦAB6 TSP∆N………………………….………...32
3-3-2. Structure of ΦAB6 TSP∆N monomer……………………………………...33
3-3-3. Structure of ΦAB6 TSP∆N trimer…………………………………………….36
3-4. The complex structure of ΦAB6 TSP………………………………………….40
3-4-1. Structure of carbohydrate-binding groove……………………40
3-4-2. Catalytic center of ΦAB6 TSP………………………………………………..43
3-5. Immunogenicity of glycoconjugate complex…………………...47
3-5-1. Clinical survey of EPS induced antibody…………………..47
3-5-2. Synthesis of glycoconjugate complex…………………………………48
3-5-3. Dot blots analysis of anti-serum which were individually produced by two glycoconjugate comprising of ΦAB6 TSP and ΦAB2 TSP digested product………………………………………..51
Chapter 4: Conclusion and Discussion…………………………………………….…53
4-1. Exopolysaccahride of Ab-54149 and Ab-SK44………………………54
4-2. Structural comparison of phage TSPs…………………………………..55
4-3. Potential application of ΦAB6 TSP complex structures.............................................59
4-4. Serum boosted by glycoconjugate…..…………………………………………61
Chapter 5: Perspective……………………………………………………………….........63
Tables…………………………………………………………………………………..................64
Table 1. Data collection and refinement statistics………..64
Table 2. The proton (1H) and carbon (13C) chemical shifts on NMR spectra of ΦAB6 TSP-digested products of Ab-54149 surface polysaccharide……………............................65
Table 3. Kinetic data of wild-type and mutant ΦAB6 TSPs...................................................65
Table 4. The population of extracted EPS from 250 clinical A. baumannii strains recognized by Ab-54149 or Ab-SK44 EPS induced antibodies……...…………................66
Acknowledgements…………………………………………………………………….............67
References……………………………………………………………………………................68
Appendix……………………………………………………………………………….................77
1.Maragakis, L. L. & Perl, T. M. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis.46, 1254-1263 (2008).
2.Antunes, L. C. S., Visca, P. & Towner, K. J. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 71, 292-301 (2014).
3.Vila, J. & Pachon, J. Therapeutic options for Acintobacter baumannii infections : an update. Expert Opin. Pharmacother. 13, 2319-2336 (2012).
4.Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538-582, (2008).
5.McConnell, M. J., Actis, L. & Pachon, J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev. 37, 130-155, (2013).
6.Antunes, L. C., Imperi, F., Carattoli, A. & Visca, P. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PloS one 6, e22674 (2011)
7.Fournier, P. E. et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS genetics 2, e7(2006).
8.Qureshi, Z. A. et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 60, 1295-1303 (2015).
9.Gonzalez-Villoria, A. M. & Valverde-Garduno, V. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen. J. Patho. 2016, 7318075(2016).
10.Rice, L. B. Mechanisms of resistance and clinical relevance of resistance to beta-lactams, glycopeptides, and fluoroquinolones. Mayo Clin. Proceed. 87, 198-208 (2012).
11.Aghazadeh, M. et al. Dissemination of aminoglycoside-modifying enzymes and 16S rRNA methylases among acinetobacter baumannii and Pseudomonas aeruginosa isolates. Microb. Drug Resist. 19, 282-288 (2013)
12.Xu, J., Sun, Z., Li, Y. & Zhou, Q. Surveillance and correlation of antibiotic consumption and resistance of Acinetobacter baumannii complex in a tertiary care hospital in northeast China, 2003-2011. International journal of environmental research and public health 10, 1462-1473 (2013)
13.S-C., Kuo et al. Emergence of extensively drug resistance Acinetobcter baumannii complex over 10 years: Nationwide data from Taiwan surveillance of antimicrobiol resistance program BMC Infe. Disea. 12, 200-209 (2012)
14.Xu, T. et al. A 4-year surveillance of antimicrobial resistance patterns of Acinetobacter baumanni in a university-affiliated hospital in China. Journal of thoracic disease 5, 506-512 (2013)
15.CDC of United state Report in 2013
16.Moffatt, J. H. et al. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect.Immun. 81, 684-689 (2013).
17.De Castro, C., Parrilli, M., Holst, O. & Molinaro, A. Microbe-Associated Molecular Patterns in Innate Immunity. Method Enzymol. 480, 89-115 (2010).
18.Jones, G. & Jiang H. Detection of lipopolysaccharide and lipid A employing a spermine-pyrene conjugate. Bioconjugate Chem. 16, 621-625 (2005).
19.Kenyon, J. J. & Hall, R. M. Variation in the complex carbohydrate synthesis loci of Acinetobacter baumannii geneomes. Plos One 8, e62160-e62172 (2013)
20.Hu, D. et al. Diversity in the major polysaccharide antigen of Acinetobacter baumannii assessed DNA sequencing, and development of a molecular serotyping scheme. Plos One 8, e70329-e70342 (2013)
21.Mahdavi, J. et al. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open biology 4, 130202 (2014).
22.Vinogradov, E., Maclean, L., Xu, H. H. & Chen, W. The structure of the polysaccharide isolated from Acinetobacter baumannii strain LAC-4. Carbohyd. Res. 390, 42-45 (2014).
23.Fregolino, E. et al. Identification and structural determination of the capsular polysaccharides from two Acinetobacter baumannii clinical isolates, MG1 and SMAL. Carbohyd. Res.346, 973-977 (2011).
24.Vinogradov, E. et al. The struture of carbohydrate backbone of the lipopolysaccharide from Acinetobacter baumannii strain ATCC 19606. Eur. J. Biochem. 269, 422-430 (2002).
25.Russo, T. A. et al. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect.Immun. 78, 3993-4000 (2010).
26.Choi, A. H., Slamti, L., Avci, F. Y., Pier, G. B. & Maira-Litran, T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol 191, 5953-5963 (2009)
27.Iwashkiw, J. A. et al. Identification of a genernal O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. Plos Pathogen 8, e1002758-e1002772 (2012).
28.Bentancor, L. V., O''Malley, J. M., Bozkurt-Guzel, C., Pier, G. B. & Maira-Litran, T. Poly-N-acetyl-beta-(1-6)-glucosamine is a target for protective immunity against Acinetobacter baumannii infections. Infect.Immun. 80, 651-656 (2012).
29.Gening, M. L. et al. Synthetic {beta}-(1->6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infect.Immun. 78, 764-772 (2010).
30.Parent, K. N. et al. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol. Microb. 92, 47-60 (2014).
31.Fanos, V., Kacet, N. & Mosconi, G. A review of teicoplanin in the treatment of serious neonatal infections. Eur. J. Pediatr. 156, 423-427 (1997)
32.Knirel, Y. A., Shashkov, A. S., Tsvetkov, Y. E., Jansson, P.-E. & Zähringer, U. 5,7-Diamino-3,5,7,9-Tetradeoxynon-2-Ulosonic Acids in Bacterial Glycopolymers: Chemistry and Biochemistry. Adv. Carbohydr. Chem. Biochem. 58, 371-417 (2003).
33.Elbreki, M. et al. Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment. Journal of Viruses 2014, 1-20 (2014).
34.Haq, I. U., Chaudhry, W. N., Akhtar, M. N., Andleeb, S. & Qadri, I. Bacteriophages and their implications on future biotechnology: a review. Virol. J. 9, 9 (2012).
35.Salmond, G. P. & Fineran, P. C. A century of the phage: past, present and future. Nat. Rev. Microb. 13, 777-786 (2015).
36.Chaturongakul, S. & Ounjai, P. Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Frontiers in microbiology 5, 442 (2014).
37.Andres, D. et al. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J. Biol. Chem. 285, 36768-36775 (2010).
38.Jepson, C. D. & March, J. B. Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine 22, 2413-2419 (2004).
39.Matsuzaki, S. et al. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 11, 211-219 (2005).
40.Citorik, R. J., Mimee, M. & Lu, T. K. Bacteriophage-based synthetic biology for the study of infectious diseases. Curr. Opin. Microbiol. 19, 59-69 (2014).
41.Lu, T. K. & Collins, J. J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Nat.l Acd. Sci. USA. 106, 4629-4634 (2009).
42.Fernandez-Gacio, A., Uguen, M. & Fastrez, J. Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol. 21, 408-414 (2003).
43.Bazan, J., Calkosinski, I. & Gamian, A. Phage display--a powerful technique for immunotherapy: 2. Vaccine delivery. Human vaccines & immunotherapeutics 8, 1829-1835 (2012).
44.Huang, J. X., Bishop-Hurley, S. L. & Cooper, M. A. Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrob. Agents Ch. 56, 4569-4582 (2012).
45.Chiaruttini, N. et al. Is the in vitro ejection of bacteriophage DNA quasistatic? A bulk to single virus study. Biophys. J.l 99, 447-455 (2010).
46.Moffatt, J. H. et al. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infec. Immun. 81, 684-689 (2013).
47.Zamze, S. et al. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J. Biol. Chem. 277, 41613-41623 (2002).
48.Andres, D. et al. Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system. Mol. Microbiol. 83, 1244-1253 (2012).
49.Andres, D. et al. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J. Biol. Chem. 285, 36768-36775 (2010).
50.Schwarzer, D., Stummeyer, K., Gerardy-Schahn, R. & Muhlenhoff, M. Characterization of a novel intramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spike and fiber proteins. J. Biol. Chem. 282, 2821-2831(2007).
51.Verma, V., Harjai, K. & Chhibber, S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr. Microbiol. 59, 274-281 (2009).
52.Stummeyer, K., Dickmanns, A., Muhlenhoff, M., Gerardy-Schahn, R. & Ficner, R. Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat. Sturct. Mol. Biol. 12, 90-96 (2005).
53.Xiang, Y. et al. Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike. Mol.Cell 34, 375-386 (2009).
54.Plisson, C. et al. Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. The EMBO journal 26, 3720-3728 (2007).
55.Bartual, S. G. et al. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc. Nat.l Acd. Sci. USA.107, 20287-20292 (2010).
56.Garcia-Doval, C. & van Raaij, M. J. Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. Proc. Nat.l Acd. Sci. USA.109, 9390-9395 (2012).
57.Leiman, P. G. et al. The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J. Mol. Biol. 371, 836-849 (2007).
58.Yaqub, O., Castle-Clarke, S., Sevdalis, N. & Chataway, J. Attitudes to vaccination: a critical review. Soc. Sci. Med. 112, 1-11 (2014).
59.Avci, F. Y. & Kasper, D. L. How bacterial carbohydrates influence the adaptive immune system. Annu. Rev. Immuno. 28, 107-130 (2010).
60.Pace, D. Glycoconjugate vaccines. Expert Opin. Biol. Ther. 13,11-33 (2013).
61.Vella, M. & Pace, D. Glycoconjugate vaccines: update. Expert Opin. Biol. Ther. 15, 529-546 (2015).
62.Astronomo, R. D. & Burton, D. R. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug Dis. 9, 308-324 (2010).
63.Berti, F. & Adamo, R. Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem. Biol. 8, 1653-1663 (2013).
64.Avci, F. Y., Li, X., Tsuji, M. & Kasper, D. L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 17, 1602-1609 (2011).
65.Terra, V. S. et al. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J. Med. Microbiol. 61, 919-926 (2012).
66.Garcia-Quintanilla, M., Pulido, M. R., Lopez-Rojas, R., Pachon, J. & McConnell, M. J. Emerging therapies for multidrug resistant Acinetobacter baumannii. Trends Microbiol. 21, 157-163 (2013).
67.Perciani, C. T. et al. Conjugation of polysaccharide 6B from Streptococcus pneumoniae with pneumococcal surface protein A: PspA conformation and its effect on the immune response. Clin. Vaccine Immun. 20, 858-866 (2013).
68.Micoli, F. et al. Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc. Nat.l Acd. Sci. USA.110, 19077-19082 (2013).
69.Cuccui, J. et al. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open biology 3, 130002 (2013).
70.Johnson, M. A. & Bundle, D. R. Designing a new antifungal glycoconjugate vaccine. Chem. Soc. Rev. 42, 4327-4344 (2013).
71.Schumann, B., Pragani, R., Anish, C., Pereira, C. L. & Seeberger, P. H. Synthesis of conjugation-ready zwitterionic oligosaccharides by chemoselective thioglycoside activation. Chem. Sci. 5, 1992 (2014).
72.Gening, M. L. et al. Synthetic {beta}-(1->6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infec. Immun. 78, 764-772 (2010).
73.Adamo, R. et al. Synthetically defined glycoprotein vaccines: current status and future directions. Chem.l Sci. 4, 2995-3008 (2013).
74.Lai, M. et al. The tail associated protein of Acinetobacter baumannii phage ΦAB6 is the host specificity determinant possessing exopolysaccharide depolymerase activity. PLoS ONE 11, e0153361 (2016).
75.Lin, N. T., Chiou, P. Y., Chang, K. C., Chen, L. K. & Lai, M. J. Isolation and characterization of phi AB2: a novel bacteriophage of Acinetobacter baumannii. Res. Microbiol. 161, 308-314 (2010).
76.Guerrero, S. A., Hecht, H. J., Hofmann, B., Biebl, H. & Singh, M. Production of selenomethionine-labelled proteins using simplified culture conditions and generally applicable host/vector systems. Appl. Microbiol. Biotechnol. 56, 718-723 (2001).
77.Zamze, S. et al. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J. Biol.Chem. 277, 41613-41623 (2002).
78.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356 (1956).
79.Verma. V., Harjai, K. & Chhibber, S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr. Microbiol. 59, 274-281 (2009).
80.Robert, S., Albert F., Jonathan, K. & Rainer J. Reconstitution of the thermostable trimeric phage P22 tailspike protein from denatured chains in vitro. J. Biol. Chem. 264, 11750-11753 (1989).
81.Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in ocillation mode. Methods in Enzymol. 276, 307-326 (1997).
82.Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. D. 66, 213-221 (2010).
83.Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Cryst. D. 60, 2126–2132 (2004).
84.Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures Acta Cryst. D. 67, 355-367 (2011).
85.Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst. A. 47, 392-400 (1991).
86.Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291 (1993).
87.Fomsgaard, A., Freudenberg, M. A. & Galanos, C. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gel. J. Clin. Microbiol. 28, 2627-2631.
88.Steinbacher, S. et al. Crystal structure of P22 tailspike protein: Interdigitated subunits in a thermostable trimer. Science 265, 383-386 (1994).
89.Muller, J. J. et al. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure 16, 766-775 (2008).
90.Barbirz, S. et al. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol. Microbiol. 69, 303-316 (2008).
91.Pickersgill, R., Smith, D., Worboys, K. & Jenkins, J. Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. J. Biol. Chem. 273, 24660-24664 (1998).
92.Kreisberg, J. F., Betts, S. D. & King, J. β-Helix core packing within the triple-stranded oligomerization domain of the P22 tailspike. Protein Sci. 9, 2338-2343 (2000).
93.Vuong, T. V. & Wilson, D. B. Glycoside hydrolases: Catalytic base/nucleophile diversity. Biotechnol. Bioeng. 107, 195-205 (2010).
94.Tsuzuki S. CH/π interactions. Annu. Rep. Prog. Chem., Sect. C:Phys. Chem. 108, 69-95 (2012)
95.Zechel, D. L. & Withers, S. G. Glycosidase mechanism: anatomy of a finely tuned catalysis. Acc. Chem. Res. 33, 11-18 (2000).
96.Hu, Q.-Y. et al. Synthesis of a well-defined glycoconjugate vaccine by a tyrosine-selective conjugation strategy. Chem. Sci. 4, 3827-3832 (2013).
97.Kenyon, J. J., Marzaioli, A. M., Hall, R. M. & De Castro C. Structure of the K2 capsule associated with the KL2 gene cluster of Acinetobacter baumannii. Glycobiology 24, 554-563 (2014).
98.Senchenkova, S. N. et al. Structure of the capsular polysaccharide of Acinetobacter baumannii ACICU containing di-N-acetylpseudaminic acid. Carbohyd. Res. 391, 89-92 (2014).
99.Lees-Miller, R. G. et al. A common pathway for O-linked protein glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol. Microbiol. 89, 816-830.
100.Jung, W. S. et al. Structural and functional insights into intramolecular fructosyl transfer by inulin fructotransferase. J. Biol. Chem. 282,8414-8423 (2007).
101.Andres, D., Baxa, U., Hanke, C., Seckler, R. & Barbirz, S. Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection. Biochem. Soc. Trans. 38, 1386-1389 (2010).
102.Steinbacher, S. et al. Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc. Natl. Acad. Sci. 93, 10584-10588 (1996).
103.Andres, D. et al. An essential serotype recognition pocket on phage P22 tailspike protein forces Salmonella enterica serovar Paratyphi A O-antigen fragments to bind as nonsolution conformers. Glycobiology 23, 486-494 (2013).
104.Lemieux, M. J. et al. Crystallographic Structure of Human β-Hexosaminidase A: Interpretation of Tay-Sachs Mutations and Loss of GM2 Ganglioside Hydrolysis. J. Mol. Biol. 359,913-929 (2006)
105.Zunk, M. & Kiefel, M. J. The occurrence and biological significance of the α-keto-sugars pseudaminic acid and legionaminic acid within pathogenic bacteria. RSC Adv. 4, 3413-3421 (2014).
106.Rieger-Hug, D. & Stirm, S. Comparative study of host depolymerases associated with Klebsiella bacteriophages. Virology 113, 363-378 (1981).
107.Rondini, S. et al. Design of glycoconjugate vaccines against invasive African Salmonella enterica serovar Typhimurium. Infect. Immun. 83, 996-1007 (2015).
108.Buonsanti, C. et al. Novel adjuvant Alum-TLR7 significantly potentiates immune response to glycoconjugate vaccines. Sci. Rep. 6, 1-9 (2015).
109.Kong, L. et al. An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide Hep2Kdo2. Nat. Chem. 8, 242-249 (2016).
110.Boyd, M. A. et al. Serum bacterial assays to evaluate typhoidal and nontyphoidal Salmonella vaccines. Clin.Vaccine Immun. 21, 712-721 (2014).
111.McIntosh, E.D.G. et al. Serum bactericidal antibody assays-The role of complement in infection and immunity. Vaccine 33, 4414-4421 (2015).
112.Chen, L. et al. Outer membrane vesicle displaying engineered glycotopes elicit protective antibodies. Proc. Natl. Acad. Sci. USA 113, E3609-3618 (2016).
113.Moginger, U. et al. Cross reactive material 197 glycoconjugate vaccines contain privileged conjugation site. Sci. Rep. 6, 20488 (2016)
114.Tontini, M. et al. Preclinical studies on new proteins as carrier for glycoconjugate vaccines. Vaccine 34, 4235-4242 (2016).
115.Szijarto, V. et al. Bactericidal monoclonal antibodies specific to the lipopolysaccharide O antigen from multidrug-resistant Escherichia coli clone ST131-O25b:H4 elicit protection in mice. Antimicrob. Agents Chem. 59, 3109-3116 (2015).
116.Adamo, R. et al. Deciphering the structure–immunogenicity relationship of anti-Candida glycoconjugate vaccines. Chem. Sci. 5, 4302-4311 (2014).
117.Lerner, R. A. Combinatorial antibody libraries: new advances, new immunological insights. Nature reviews. Immunol. 16, 498-508 (2016).
118.Zhou, Z., Liao, G., Mandal, S. S., Suryawanshi, S. & Guo, Z. A Fully Synthetic Self-Adjuvanting Globo H-Based Vaccine Elicited Strong T Cell-Mediated Antitumor Immunity. Chem. Sci. 6, 7112-7121 (2015).
119.Pan, C. et al. Biosynthesis of Conjugate Vaccines Using an O-Linked Glycosylation System. mBio 7, e00443-00416 (2016).
120.Zolot, R. S. et al. Antibody-drug conjugates. Nat. Rev. Drug Discov. 12, 259-260 (2013)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊