|
1Reichert, J. M. Marketed therapeutic antibodies compendium. MAbs 4, 413-415, (2012). 2Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5, 520, (2014). 3Quast, I. & Lunemann, J. D. Fc glycan-modulated immunoglobulin G effector functions. J Clin Immunol 34 Suppl 1, S51-55, (2014). 4Le, N. P., Bowden, T. A., Struwe, W. B. & Crispin, M. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. Biochim Biophys Acta 1860, 1655-1668, (2016). 5Yu, X., Vasiljevic, S., Mitchell, D. A., Crispin, M. & Scanlan, C. N. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol 425, 1253-1258, (2013). 6Anthony, R. M., Wermeling, F., Karlsson, M. C. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 105, 19571-19578, (2008). 7Sondermann, P., Pincetic, A., Maamary, J., Lammens, K. & Ravetch, J. V. General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci U S A 110, 9868-9872, (2013). 8Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260-1263, (2014). 9Caaveiro, J. M., Kiyoshi, M. & Tsumoto, K. Structural analysis of Fc/FcgammaR complexes: a blueprint for antibody design. Immunol Rev 268, 201-221, (2015). 10Woof, J. M. & Burton, D. R. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 4, 89-99, (2004). 11Bruhns, P. & Jonsson, F. Mouse and human FcR effector functions. Immunol Rev 268, 25-51, (2015). 12Jiang, K. et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol 1, 419-425, (2000). 13Perussia, B. Signaling for cytotoxicity. Nat Immunol 1, 372-374, (2000). 14Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6, 443-446, (2000). 15Ying, T., Ju, T. W., Wang, Y., Prabakaran, P. & Dimitrov, D. S. Interactions of IgG1 CH2 and CH3 Domains with FcRn. Front Immunol 5, 146, (2014). 16Jefferis, R. & Lund, J. Interaction sites on human IgG-Fc for FcgammaR: current models. Immunol Letters 82, 57-65 (2002). 17Goebl, N. A. et al. Neonatal Fc receptor mediates internalization of Fc in transfected human endothelial cells. Mol Biol Cell 19, 5490-5505, (2008). 18Rath, T. et al. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol 35, 235-254, (2015). 19Collin, M., Shannon, O. & Bjorck, L. IgG glycan hydrolysis by a bacterial enzyme as a therapy against autoimmune conditions. Proc Natl Acad Sci U S A 105, 4265-4270, (2008). 20Dalziel, M., Crispin, M., Scanlan, C. N., Zitzmann, N. & Dwek, R. A. Emerging principles for the therapeutic exploitation of glycosylation. Science 343, 1235681, (2014). 21Zou, G. et al. Chemoenzymatic synthesis and Fcgamma receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcgammaIIIa receptor. J Am Chem Soc 133, 18975-18991, (2011). 22Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277, 26733-26740, (2002). 23Okazaki, A. et al. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J Mol Biol 336, 1239-1249, (2004). 24Huhn, C., Selman, M. H., Ruhaak, L. R., Deelder, A. M. & Wuhrer, M. IgG glycosylation analysis. Proteomics 9, 882-913, (2009). 25Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373-376, (2008). 26Liu, L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci 104, 1866-1884, (2015). 27Sha, S., Agarabi, C., Brorson, K., Lee, D. Y. & Yoon, S. N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies. Trends Biotechnol, 1360, 12 (2016). 28Huang, W., Giddens, J., Fan, S. Q., Toonstra, C. & Wang, L. X. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 134, 12308-12318, (2012). 29Krista Witte , P. S., Richard Martin , and Chi-Huey Wong Enzymatic Glycoprotein Synthesis: Preparation of Ribonuclease Glycoforms via Enzymatic Glycopeptide Condensation and Glycosylation. J Am Chem Soc 119, 2114-2118, (1997). 30Lin, C. W. et al. A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc Natl Acad Sci U S A 112, 10611-10616, (2015). 31Teplyakov, A., Zhao, Y., Malia, T. J., Obmolova, G. & Gilliland, G. L. IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface. Mol Immunol 56, 131-139, (2013). 32Smith, P., DiLillo, D. J., Bournazos, S., Li, F. & Ravetch, J. V. Mouse model recapitulating human Fcgamma receptor structural and functional diversity. Proc Natl Acad Sci U S A 109, 6181-6186, (2012). 33Ahmed, A. A., Keremane, S. R., Vielmetter, J. & Bjorkman, P. J. Structural characterization of GASDALIE Fc bound to the activating Fc receptor FcgammaRIIIa. J Struct Biol 194, 78-89, (2016). 34Ferrara, C. et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A 108, 12669-12674, (2011). 35Ahmed, A. A. et al. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J Mol Biol 426, 3166-3179, (2014). 36Mizushima, T. et al. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells 16, 1071-1080, (2011). 37Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510-1512, (2005). 38Barb, A. W. & Prestegard, J. H. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol 7, 147-153, (2011). 39Hanson, Q. M. & Barb, A. W. A perspective on the structure and receptor binding properties of immunoglobulin G Fc. Biochemistry 54, 2931-2942, (2015). 40Raju, T. S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20, 471-478, (2008). 41Krapp, S., Mimura, Y., Jefferis, R., Huber, R. & Sondermann, P. Structural Analysis of Human IgG-Fc Glycoforms Reveals a Correlation Between Glycosylation and Structural Integrity. J Mol Biol 325, 979-989, (2003). 42Crispin, M., Yu, X. & Bowden, T. A. Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc Natl Acad Sci U S A 110, E3544-3546, (2013). 43Barb, A. W. et al. NMR characterization of immunoglobulin G Fc glycan motion on enzymatic sialylation. Biochemistry 51, 4618-4626, (2012). 44Yu, X. et al. Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies. J Am Chem Soc 135, 9723-9732, (2013). 45Raju, T. S. & Lang, S. E. Diversity in structure and functions of antibody sialylation in the Fc. Curr Opin Biotechnol 30, 147-152, (2014). 46Chen, W. et al. Stabilizing the CH2 Domain of an Antibody by Engineering in an Enhanced Aromatic Sequon. ACS Chem Biol (2016). 47Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99, 13419-13424, (2002). 48Jiang, N. et al. Effects of anchor structure and glycosylation of Fcgamma receptor III on ligand binding affinity. Mol Biol Cell 27, 3449-3458, (2016). 49Wu, J. et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100, 1059-1070, (1997). 50Koene, H. R. et al. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 90, 1109-1114 (1997). 51Mellor, J. D., Brown, M. P., Irving, H. R., Zalcberg, J. R. & Dobrovic, A. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol 6, 1, (2013). 52Kim, D. H. et al. FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood 108, 2720-2725, (2006). 53Liu, F. et al. FCGR3A 158V/F polymorphism and response to frontline R-CHOP therapy in diffuse large B-cell lymphoma. DNA Cell Biol 33, 616-623, (2014). 54Johnson, D. E., Ostrowski, P., Jaumouille, V. & Grinstein, S. The position of lysosomes within the cell determines their luminal pH. J Cell Biol 212, 677-692, (2016). 55Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47-53, (2014). 56Lee, J. E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177-182, (2008). 57Murin, C. D. et al. Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc Natl Acad Sci U S A 111, 17182-17187, (2014). 58DiLillo, D. J., Tan, G. S., Palese, P. & Ravetch, J. V. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcgammaR interactions for protection against influenza virus in vivo. Nat Med 20, 143-151, (2014). 59Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73-77, (2011). 60Wang, J. Destruction-and-diffraction by X-ray free-electron laser. Protein Sci 25, 1585-1592, (2016). 61Kupitz, C. et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261-265, (2014). 62Young, I. D. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453-457, (2016). 63Hirata, K. et al. Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11, 734-736, (2014). 64Joti, Y. et al. Data acquisition system for X-ray free-electron laser experiments at SACLA. J Synchrotron Radiat 22, 571-576, (2015). 65 Wang, C. et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res 2, 846-856, (2014). 66 Chen, W. et al. Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins. J Am Chem Soc 135, 9877-9884, (2013). 67Zbyszek Otwinowski, W. M. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326 (1997). 68Matthews, B. W. Solvent content of protein crystals. J Mol Biol 33, 491-497 (1968). 69Kantardjieff, K. A. & Rupp, B. Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12, 1865-1871, (2003). 70McCoy, A. J. et al. Phaser crystallographic software. J Appl Crystallogr 40, 658-674, (2007). 71Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221, (2010). 72Paul Emsley, K. C. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 (2004). 73Lutteke, T. & von der Lieth, C. W. pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC bioinformatics 5, 69, (2004). 74Lutteke, T., Frank, M. & von der Lieth, C. W. Carbohydrate Structure Suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Res 33, D242-246, (2005). 75Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8 (2015). 76Yu, Y. et al. Understanding ForteBio''s Sensors for High-Throughput Kinetic and Epitope Screening for Purified Antibodies and Yeast Culture Supernatant. J Biomol Screen 21, 88-95, (2016).
|