|
REFERENCE 1.Demain, A.L., M. Newcomb, and J.D. Wu, Cellulase, clostridia, and ethanol. Microbiology and molecular biology reviews, 2005. 69(1): p. 124-154. 2.Wyman, C.E., Biomass ethanol: technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 1999. 24(1): p. 189-226. 3.Lee, H., S. Hamid, and S. Zain, Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal, 2014. 2014. 4.Fujita, Y., et al., Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Applied and environmental microbiology, 2004. 70(2): p. 1207-1212. 5.Kumar, P., et al., Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & engineering chemistry research, 2009. 48(8): p. 3713-3729. 6.Sannigrahi, P., Y. Pu, and A. Ragauskas, Cellulosic biorefineries—unleashing lignin opportunities. Current Opinion in Environmental Sustainability, 2010. 2(5): p. 383-393. 7.Pérez, J., et al., Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 2002. 5(2): p. 53-63. 8.Gírio, F.M., et al., Hemicelluloses for fuel ethanol: a review. Bioresource technology, 2010. 101(13): p. 4775-4800. 9.Ebringerová, A. Structural diversity and application potential of hemicelluloses. in Macromolecular Symposia. 2005. Wiley Online Library. 10.Campbell, M.M. and R.R. Sederoff, Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants). Plant physiology, 1996. 110(1): p. 3. 11.Rubin, E.M., Genomics of cellulosic biofuels. Nature, 2008. 454(7206): p. 841. 12.Várnai, A., et al., Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresource technology, 2011. 102(19): p. 9096-9104. 13.Cantarel, B.L., et al., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic acids research, 2009. 37(suppl 1): p. D233-D238. 14.Wilson, D.B., Cellulases and biofuels. Current opinion in biotechnology, 2009. 20(3): p. 295-299. 15.Aspeborg, H., et al., Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC evolutionary biology, 2012. 12(1): p. 186. 16.Chen, Z., et al., Tracing determinants of dual substrate specificity in glycoside hydrolase family 5. Journal of Biological Chemistry, 2012. 287(30): p. 25335-25343. 17.Bayer, E.A., et al., Cellulose, cellulases and cellulosomes. Current opinion in structural biology, 1998. 8(5): p. 548-557. 18.Henrissat, B. and A. Bairoch, New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 1993. 293(3): p. 781-788. 19.Zhang, X.Z. and Y.H.P. Zhang, Cellulases: characteristics, sources, production, and applications. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 2013. 1: p. 131-146. 20.Shallom, D. and Y. Shoham, Microbial hemicellulases. Current opinion in microbiology, 2003. 6(3): p. 219-228. 21.Dodd, D. and I.K. Cann, Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy, 2009. 1(1): p. 2-17. 22.McCleary, B.V., β-D-Mannanase. Methods in Enzymology, 1988. 160: p. 596-610. 23.Ademark, P., et al., Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a β-mannanase. Journal of Biotechnology, 1998. 63(3): p. 199-210. 24.Pereira, J.H., et al., Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. Journal of structural biology, 2010. 172(3): p. 372-379. 25.Wu, T.-H., et al., Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2011. 1814(12): p. 1832-1840. 26.Chhabra, S.R., et al., Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan-and mannan-based polysaccharides. Applied and environmental microbiology, 2002. 68(2): p. 545-554. 27.Shie, H.-Y., Structural analysis and functional improvement of plant polysaccharides degrading enzyme from Clostridium thermocellum. (Master''s Thesis) Retrieved from http://tulips.ntu.edu.tw, 2014. 28.Lynd, L.R., C.E. Wyman, and T.U. Gerngross, Biocommodity engineering. Biotechnology progress, 1999. 15(5): p. 777-793. 29.Chang, J.-J., et al., PGASO: A synthetic biology tool for engineering a cellulolytic yeast. Biotechnology for biofuels, 2012. 5(1): p. 53. 30.Lee, H.-L., et al., Construction and characterization of different fusion proteins between cellulases and β-glucosidase to improve glucose production and thermostability. Bioresource technology, 2011. 102(4): p. 3973-3976. 31.Lee, H.-L., et al., Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Engineering Design and Selection, 2012: p. gzs073. 32.Wang, H.M., et al., Parallel gene cloning and protein production in multiple expression systems. Biotechnology progress, 2009. 25(6): p. 1582-1586. 33.Sievers, F., et al., Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology, 2011. 7(1): p. 539. 34.Gouet, P., E. Courcelle, and D.I. Stuart, ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics, 1999. 15(4): p. 305-308. 35.DeLano, W.L., Pymol: An open-source molecular graphics tool. CCP4 Newsletter On Protein Crystallography, 2002. 40: p. 82-92. 36.Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 1976. 72(1-2): p. 248-254. 37.Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 1959. 31(3): p. 426-428. 38.Zhang, Z., et al., Thin layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Analytical biochemistry, 2007. 371(1): p. 118. 39.Henrissat, B., et al., Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proceedings of the National Academy of Sciences, 1995. 92(15): p. 7090-7094. 40.Zheng, B., et al., Crystal structure of hyperthermophilic endo-beta-1,4-glucanase: implications for catalytic mechanism and thermostability. J Biol Chem, 2012. 287(11): p. 8336-46. 41.Zheng, B., et al., Crystallization and preliminary crystallographic analysis of thermophilic cellulase from Fervidobacterium nodosum Rt17-B1. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 2009. 65(3): p. 219-222. 42.Oyama, T., et al., Mutational and structural analyses of caldanaerobius polysaccharolyticus Man5b reveal novel active site residues for family 5 glycoside hydrolases. PloS one, 2013. 8(11): p. e80448. 43.Chhabra, S.R. and R.M. Kelly, Biochemical characterization of Thermotoga maritima endoglucanase Cel74 with and without a carbohydrate binding module (CBM). FEBS letters, 2002. 531(2): p. 375-380. 44.Benson, D.A., et al., GenBank. Nucleic acids research, 2013. 41(D1): p. D36-D42. 45.Bernstein, F.C., et al., The protein data bank. European Journal of Biochemistry, 1977. 80(2): p. 319-324. 46.Yuan, S.-F., et al., Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. Journal of Biological Chemistry, 2015. 290(9): p. 5739-5748. 47.Vlasenko, E., et al., Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresource Technology, 2010. 101(7): p. 2405-2411. 48.Sakon, J., et al., Crystal Structure of Thermostable Family 5 Endocellulase E1 from Acidothermus cellulolyticus in Complex with Cellotetraose†. Biochemistry, 1996. 35(33): p. 10648-10660. 49.Hilge, M., et al., High-resolution native and complex structures of thermostable β-mannanase from Thermomonospora fusca–substrate specificity in glycosyl hydrolase family 5. Structure, 1998. 6(11): p. 1433-1444. 50.Leggio, L.L. and S. Larsen, The 1.62 Å structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS letters, 2002. 523(1): p. 103-108. 51.Schagerlöf, U., et al., Endoglucanase sensitivity for substituents in methyl cellulose hydrolysis studied using MALDI-TOFMS for oligosaccharide analysis and structural analysis of enzyme active sites. Biomacromolecules, 2007. 8(8): p. 2358-2365. 52.GILKES, N.R., et al., Structural and functional relationships in two families of β‐1, 4‐glycanases. The FEBS Journal, 1991. 202(2): p. 367-377. 53.Notenboom, V., et al., Exploring the Cellulose/Xylan Specificity of the β-1, 4-Glycanase Cex from Cellulomonas fimi through Crystallography and Mutation†. Biochemistry, 1998. 37(14): p. 4751-4758.
|