|
Akama, T.O., Nishida, K., Nakayama, J., Watanabe, H., Ozaki, K., Nakamura, T., Dota, A., Kawasaki, S., Inoue, Y., Maeda, N., et al. (2000). Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nature genetics 26, 237-241.
Antonopoulos, A., Demotte, N., Stroobant, V., Haslam, S.M., van der Bruggen, P., and Dell, A. (2012). Loss of effector function of human cytolytic T lymphocytes is accompanied by major alterations in N- and O-glycosylation. The Journal of biological chemistry 287, 11240-11251.
Arata-Kawai, H., Singer, M.S., Bistrup, A., Zante, A., Wang, Y.Q., Ito, Y., Bao, X., Hemmerich, S., Fukuda, M., and Rosen, S.D. (2011). Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs. The American journal of pathology 178, 423-433.
Arbones, M.L., Ord, D.C., Ley, K., Ratech, H., Maynard-Curry, C., Otten, G., Capon, D.J., and Tedder, T.F. (1994). Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1, 247-260.
Baenziger, J.U. (2003). Glycoprotein hormone GalNAc-4-sulphotransferase. Biochemical Society transactions 31, 326-330.
Baenziger, J.U., and Green, E.D. (1988). Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochimica et biophysica acta 947, 287-306.
Baenziger, J.U., Kumar, S., Brodbeck, R.M., Smith, P.L., and Beranek, M.C. (1992). Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovine lutropin oligosaccharides. Proceedings of the National Academy of Sciences of the United States of America 89, 334-338.
Baum, L.G., Derbin, K., Perillo, N.L., Wu, T., Pang, M., and Uittenbogaart, C. (1996). Characterization of terminal sialic acid linkages on human thymocytes. Correlation between lectin-binding phenotype and sialyltransferase expression. The Journal of biological chemistry 271, 10793-10799.
Bennett, E.P., Mandel, U., Clausen, H., Gerken, T.A., Fritz, T.A., and Tabak, L.A. (2012). Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736-756.
Berg, E.L., Robinson, M.K., Warnock, R.A., and Butcher, E.C. (1991). The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. The Journal of cell biology 114, 343-349.
Bergwerff, A.A., Van Oostrum, J., Kamerling, J.P., and Vliegenthart, J.F. (1995). The major N-linked carbohydrate chains from human urokinase. The occurrence of 4-O-sulfated, (alpha 2-6)-sialylated or (alpha 1-3)-fucosylated N-acetylgalactosamine(beta 1-4)-N-acetylglucosamine elements. European journal of biochemistry / FEBS 228, 1009-1019.
Bhakta, S., Bartes, A., Bowman, K.G., Kao, W.M., Polsky, I., Lee, J.K., Cook, B.N., Bruehl, R.E., Rosen, S.D., Bertozzi, C.R., et al. (2000). Sulfation of N-acetylglucosamine by chondroitin 6-sulfotransferase 2 (GST-5). The Journal of biological chemistry 275, 40226-40234.
Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., Bryan, M.C., Fazio, F., Calarese, D., Stevens, J., et al. (2004). Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proceedings of the National Academy of Sciences of the United States of America 101, 17033-17038.
Bowman, K.G., Hemmerich, S., Bhakta, S., Singer, M.S., Bistrup, A., Rosen, S.D., and Bertozzi, C.R. (1998). Identification of an N-acetylglucosamine-6-0-sulfotransferase activity specific to lymphoid tissue: an enzyme with a possible role in lymphocyte homing. Chemistry & biology 5, 447-460.
Brockhausen, I. (2003). Sulphotransferases acting on mucin-type oligosaccharides. Biochemical Society transactions 31, 318-325.
Cariappa, A., Takematsu, H., Liu, H., Diaz, S., Haider, K., Boboila, C., Kalloo, G., Connole, M., Shi, H.N., Varki, N., et al. (2009). B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. The Journal of experimental medicine 206, 125-138.
Chandrasekaran, E.V., Jain, R.K., Larsen, R.D., Wlasichuk, K., and Matta, K.L. (1995). Selectin ligands and tumor-associated carbohydrate structures: specificities of alpha 2,3-sialyltransferases in the assembly of 3''-sialyl-6-sialyl/sulfo Lewis a and x, 3''-sialyl-6''-sulfo Lewis x, and 3''-sialyl-6-sialyl/sulfo blood group T-hapten. Biochemistry 34, 2925-2936.
Chen, J., McLean, P.A., Neel, B.G., Okunade, G., Shull, G.E., and Wortis, H.H. (2004). CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nature immunology 5, 651-657.
Cheng, C.W., Chou, C.C., Hsieh, H.W., Tu, Z., Lin, C.H., Nycholat, C., Fukuda, M., and Khoo, K.H. (2015). Efficient Mapping of Sulfated Glycotopes by Negative Ion Mode nanoLC-MS/MS-Based Sulfoglycomic Analysis of Permethylated Glycans. Analytical chemistry 87, 6380-6388.
Cheng, P.F., Snovida, S., Ho, M.Y., Cheng, C.W., Wu, A.M., and Khoo, K.H. (2013). Increasing the depth of mass spectrometry-based glycomic coverage by additional dimensions of sulfoglycomics and target analysis of permethylated glycans. Analytical and bioanalytical chemistry 405, 6683-6695.
Chou, H.H., Hayakawa, T., Diaz, S., Krings, M., Indriati, E., Leakey, M., Paabo, S., Satta, Y., Takahata, N., and Varki, A. (2002). Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proceedings of the National Academy of Sciences of the United States of America 99, 11736-11741.
Comelli, E.M., Sutton-Smith, M., Yan, Q., Amado, M., Panico, M., Gilmartin, T., Whisenant, T., Lanigan, C.M., Head, S.R., Goldberg, D., et al. (2006). Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N-linked glycans. Journal of immunology 177, 2431-2440.
Dall''Olio, F., Malagolini, N., Trinchera, M., and Chiricolo, M. (2014). Sialosignaling: sialyltransferases as engines of self-fueling loops in cancer progression. Biochimica et biophysica acta 1840, 2752-2764.
Degroote, S., Ducourouble, M.P., Roussel, P., and Lamblin, G. (1999). Sequential biosynthesis of sulfated and/or sialylated Lewis x determinants by transferases of the human bronchial mucosa. Glycobiology 9, 1199-1211.
Domon, B., and Costello, C.E. (1988). Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry 27, 1534-1543.
Doody, G.M., Justement, L.B., Delibrias, C.C., Matthews, R.J., Lin, J., Thomas, M.L., and Fearon, D.T. (1995). A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242-244.
Drake, P.M., Stock, C.M., Nathan, J.K., Gip, P., Golden, K.P., Weinhold, B., Gerardy-Schahn, R., and Bertozzi, C.R. (2009). Polysialic acid governs T-cell development by regulating progenitor access to the thymus. Proceedings of the National Academy of Sciences of the United States of America 106, 11995-12000.
Esko, J.D., Kimata, K., and Lindahl, U. (2009). Proteoglycans and Sulfated Glycosaminoglycans. In Essentials of Glycobiology, A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, and M.E. Etzler, eds. (Cold Spring Harbor (NY)).
Esko, J.D., and Selleck, S.B. (2002). Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71, 435-471. Fujimoto, M., Kuwano, Y., Watanabe, R., Asashima, N., Nakashima, H., Yoshitake, S., Okochi, H., Tamaki, K., Poe, J.C., Tedder, T.F., et al. (2006). B cell antigen receptor and CD40 differentially regulate CD22 tyrosine phosphorylation. Journal of immunology 176, 873-879.
Fukuda, M., Hiraoka, N., Akama, T.O., and Fukuda, M.N. (2001). Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology. The Journal of biological chemistry 276, 47747-47750.
Funderburgh, J.L. (2000). Keratan sulfate: structure, biosynthesis, and function. Glycobiology 10, 951-958.
Gerlach, J., Ghosh, S., Jumaa, H., Reth, M., Wienands, J., Chan, A.C., and Nitschke, L. (2003). B cell defects in SLP65/BLNK-deficient mice can be partially corrected by the absence of CD22, an inhibitory coreceptor for BCR signaling. European journal of immunology 33, 3418-3426.
Gillespie, W., Paulson, J.C., Kelm, S., Pang, M., and Baum, L.G. (1993). Regulation of alpha 2,3-sialyltransferase expression correlates with conversion of peanut agglutinin (PNA)+ to PNA- phenotype in developing thymocytes. The Journal of biological chemistry 268, 3801-3804.
Gross, J.r.H. (2004). Mass spectrometry : a textbook (Berlin ; New York: Springer). Grunwell, J.R., and Bertozzi, C.R. (2002). Carbohydrate sulfotransferases of the GalNAc/Gal/GlcNAc6ST family. Biochemistry 41, 13117-13126.
Gupta, G., Surolia, A., and Sampathkumar, S.G. (2010). Lectin microarrays for glycomic analysis. Omics : a journal of integrative biology 14, 419-436.
Han, S., Collins, B.E., Bengtson, P., and Paulson, J.C. (2005). Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nature chemical biology 1, 93-97.
Haslam, S.M., Julien, S., Burchell, J.M., Monk, C.R., Ceroni, A., Garden, O.A., and Dell, A. (2008). Characterizing the glycome of the mammalian immune system. Immunology and cell biology 86, 564-573.
Hayashida, Y., Akama, T.O., Beecher, N., Lewis, P., Young, R.D., Meek, K.M., Kerr, B., Hughes, C.E., Caterson, B., Tanigami, A., et al. (2006). Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. Proceedings of the National Academy of Sciences of the United States of America 103, 13333-13338.
Helenius, A., and Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73, 1019-1049.
Hemmerich, S., Bistrup, A., Singer, M.S., van Zante, A., Lee, J.K., Tsay, D., Peters, M., Carminati, J.L., Brennan, T.J., Carver-Moore, K., et al. (2001a). Sulfation of L-selectin ligands by an HEV-restricted sulfotransferase regulates lymphocyte homing to lymph nodes. Immunity 15, 237-247.
Hemmerich, S., Lee, J.K., Bhakta, S., Bistrup, A., Ruddle, N.R., and Rosen, S.D. (2001b). Chromosomal localization and genomic organization for the galactose/ N-acetylgalactosamine/N-acetylglucosamine 6-O-sulfotransferase gene family. Glycobiology 11, 75-87.
Hirakawa, J., Tsuboi, K., Sato, K., Kobayashi, M., Watanabe, S., Takakura, A., Imai, Y., Ito, Y., Fukuda, M., and Kawashima, H. (2010). Novel anti-carbohydrate antibodies reveal the cooperative function of sulfated N- and O-glycans in lymphocyte homing. The Journal of biological chemistry 285, 40864-40878.
Hiraoka, N., Kawashima, H., Petryniak, B., Nakayama, J., Mitoma, J., Marth, J.D., Lowe, J.B., and Fukuda, M. (2004). Core 2 branching beta1,6-N-acetylglucosaminyltransferase and high endothelial venule-restricted sulfotransferase collaboratively control lymphocyte homing. The Journal of biological chemistry 279, 3058-3067.
Homeister, J.W., Thall, A.D., Petryniak, B., Maly, P., Rogers, C.E., Smith, P.L., Kelly, R.J., Gersten, K.M., Askari, S.W., Cheng, G., et al. (2001). The alpha(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15, 115-126.
Hooper, L.V., Beranek, M.C., Manzella, S.M., and Baenziger, J.U. (1995). Differential expression of GalNAc-4-sulfotransferase and GalNAc-transferase results in distinct glycoforms of carbonic anhydrase VI in parotid and submaxillary glands. The Journal of biological chemistry 270, 5985-5993.
Hortin, G., Green, E.D., Baenziger, J.U., and Strauss, A.W. (1986). Sulphation of proteins secreted by a human hepatoma-derived cell line. Sulphation of N-linked oligosaccharides on alpha 2HS-glycoprotein. The Biochemical journal 235, 407-414.
Hurwitz, R., Hozier, J., LeBien, T., Minowada, J., Gajl-Peczalska, K., Kubonishi, I., and Kersey, J. (1979). Characterization of a leukemic cell line of the pre-B phenotype. International journal of cancer Journal international du cancer 23, 174-180.
Jenner, J., Kerst, G., Handgretinger, R., and Muller, I. (2006). Increased alpha2,6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells. Experimental hematology 34, 1212-1218.
Jensen, P.H., Karlsson, N.G., Kolarich, D., and Packer, N.H. (2012). Structural analysis of N- and O-glycans released from glycoproteins. Nature protocols 7, 1299-1310.
Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Shahin, A., Xu, D., Goodyear, C.S., Fukada, S.Y., Liu, F.T., Liew, F.Y., and Lukic, M.L. (2009). Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. Journal of immunology 182, 1167-1173.
Ju, T., and Cummings, R.D. (2002). A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proceedings of the National Academy of Sciences of the United States of America 99, 16613-16618.
Ju, T., and Cummings, R.D. (2005). Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437, 1252.
Karlsson, N.G., Wilson, N.L., Wirth, H.J., Dawes, P., Joshi, H., and Packer, N.H. (2004). Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid communications in mass spectrometry : RCM 18, 2282-2292.
Kawashima, H. (2006). Roles of sulfated glycans in lymphocyte homing. Biological & pharmaceutical bulletin 29, 2343-2349.
Kawashima, H., Petryniak, B., Hiraoka, N., Mitoma, J., Huckaby, V., Nakayama, J., Uchimura, K., Kadomatsu, K., Muramatsu, T., Lowe, J.B., et al. (2005). N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nature immunology 6, 1096-1104.
Kelm, S., Schauer, R., Manuguerra, J.C., Gross, H.J., and Crocker, P.R. (1994). Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconjugate journal 11, 576-585.
Khoo, K.H., and Yu, S.Y. (2010). Mass spectrometric analysis of sulfated N- and O-glycans. Methods in enzymology 478, 3-26.
Kimura, N., Ohmori, K., Miyazaki, K., Izawa, M., Matsuzaki, Y., Yasuda, Y., Takematsu, H., Kozutsumi, Y., Moriyama, A., and Kannagi, R. (2007). Human B-lymphocytes express alpha2-6-sialylated 6-sulfo-N-acetyllactosamine serving as a preferred ligand for CD22/Siglec-2. The Journal of biological chemistry 282, 32200-32207.
Kitagawa, H., and Paulson, J.C. (1994). Cloning of a novel alpha 2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. The Journal of biological chemistry 269, 1394-1401.
Lasky, L.A. (1995). Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64, 113-139.
Lee, J.K., Bistrup, A., van Zante, A., and Rosen, S.D. (2003). Activities and expression pattern of the carbohydrate sulfotransferase GlcNAc6ST-3 (I-GlcNAc6ST): functional implications. Glycobiology 13, 245-254.
Leprince, C., Draves, K.E., Geahlen, R.L., Ledbetter, J.A., and Clark, E.A. (1993). CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proceedings of the National Academy of Sciences of the United States of America 90, 3236-3240.
Macauley, M.S., Kawasaki, N., Peng, W., Wang, S.H., He, Y., Arlian, B.M., McBride, R., Kannagi, R., Khoo, K.H., and Paulson, J.C. (2015). Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man. The Journal of biological chemistry 290, 30066-30077.
Maly, P., Thall, A., Petryniak, B., Rogers, C.E., Smith, P.L., Marks, R.M., Kelly, R.J., Gersten, K.M., Cheng, G., Saunders, T.L., et al. (1996). The alpha(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643-653.
Morelle, W., and Michalski, J.C. (2007). Analysis of protein glycosylation by mass spectrometry. Nature protocols 2, 1585-1602.
Morelle, W., Slomianny, M.C., Diemer, H., Schaeffer, C., van Dorsselaer, A., and Michalski, J.C. (2004). Fragmentation characteristics of permethylated oligosaccharides using a matrix-assisted laser desorption/ionization two-stage time-of-flight (TOF/TOF) tandem mass spectrometer. Rapid communications in mass spectrometry : RCM 18, 2637-2649.
Moremen, K.W., Tiemeyer, M., and Nairn, A.V. (2012). Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13, 448-462.
Muller, J., Obermeier, I., Wohner, M., Brandl, C., Mrotzek, S., Angermuller, S., Maity, P.C., Reth, M., and Nitschke, L. (2013). CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proceedings of the National Academy of Sciences of the United States of America 110, 12402-12407.
Naito, Y., Takematsu, H., Koyama, S., Miyake, S., Yamamoto, H., Fujinawa, R., Sugai, M., Okuno, Y., Tsujimoto, G., Yamaji, T., et al. (2007). Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Molecular and cellular biology 27, 3008-3022.
Naito-Matsui, Y., Takada, S., Kano, Y., Iyoda, T., Sugai, M., Shimizu, A., Inaba, K., Nitschke, L., Tsubata, T., Oka, S., et al. (2014). Functional evaluation of activation-dependent alterations in the sialoglycan composition of T cells. The Journal of biological chemistry 289, 1564-1579.
Nitschke, L., Carsetti, R., Ocker, B., Kohler, G., and Lamers, M.C. (1997). CD22 is a negative regulator of B-cell receptor signalling. Current biology : CB 7, 133-143.
O''Keefe, T.L., Williams, G.T., Davies, S.L., and Neuberger, M.S. (1996). Hyperresponsive B cells in CD22-deficient mice. Science 274, 798-801.
Otipoby, K.L., Andersson, K.B., Draves, K.E., Klaus, S.J., Farr, A.G., Kerner, J.D., Perlmutter, R.M., Law, C.L., and Clark, E.A. (1996). CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634-637.
Paavonen, T., and Renkonen, R. (1992). Selective expression of sialyl-Lewis x and Lewis a epitopes, putative ligands for L-selectin, on peripheral lymph-node high endothelial venules. The American journal of pathology 141, 1259-1264.
Patnode, M.L., Yu, S.Y., Cheng, C.W., Ho, M.Y., Tegesjo, L., Sakuma, K., Uchimura, K., Khoo, K.H., Kannagi, R., and Rosen, S.D. (2013). KSGal6ST generates galactose-6-O-sulfate in high endothelial venules but does not contribute to L-selectin-dependent lymphocyte homing. Glycobiology 23, 381-394.
Paulson, J.C., Beranek, W.E., and Hill, R.L. (1977a). Purification of a sialyltransferase from bovine colostrum by affinity chromatography on CDP-agarose. The Journal of biological chemistry 252, 2356-2362.
Paulson, J.C., Rearick, J.I., and Hill, R.L. (1977b). Enzymatic properties of beta-D-galactoside alpha2 leads to 6 sialytransferase from bovine colostrum. The Journal of biological chemistry 252, 2363-2371.
Peaker, C.J., and Neuberger, M.S. (1993). Association of CD22 with the B cell antigen receptor. European journal of immunology 23, 1358-1363.
Powell, L.D., Jain, R.K., Matta, K.L., Sabesan, S., and Varki, A. (1995). Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22. Evidence for a minimal structural recognition motif and the potential importance of multisite binding. The Journal of biological chemistry 270, 7523-7532.
Powell, L.D., Sgroi, D., Sjoberg, E.R., Stamenkovic, I., and Varki, A. (1993). Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. The Journal of biological chemistry 268, 7019-7027.
Priatel, J.J., Chui, D., Hiraoka, N., Simmons, C.J., Richardson, K.B., Page, D.M., Fukuda, M., Varki, N.M., and Marth, J.D. (2000). The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12, 273-283.
Redelinghuys, P., Antonopoulos, A., Liu, Y., Campanero-Rhodes, M.A., McKenzie, E., Haslam, S.M., Dell, A., Feizi, T., and Crocker, P.R. (2011). Early murine T-lymphocyte activation is accompanied by a switch from N-Glycolyl- to N-acetyl-neuraminic acid and generation of ligands for siglec-E. The Journal of biological chemistry 286, 34522-34532.
Rosen, S.D. (2004). Ligands for L-selectin: homing, inflammation, and beyond. Annual review of immunology 22, 129-156.
Rosen, S.D., Singer, M.S., Yednock, T.A., and Stoolman, L.M. (1985). Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 228, 1005-1007.
Ruhaak, L.R., Deelder, A.M., and Wuhrer, M. (2009). Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Analytical and bioanalytical chemistry 394, 163-174.
Sakuma, K., Chen, G.Y., Aoki, M., and Kannagi, R. (2012). Induction of 6-sulfated glycans with cell adhesion activity via T-bet and GATA-3 in human helper T cells. Biochimica et biophysica acta 1820, 841-848.
Sasaki, K., Watanabe, E., Kawashima, K., Sekine, S., Dohi, T., Oshima, M., Hanai, N., Nishi, T., and Hasegawa, M. (1993). Expression cloning of a novel Gal beta (1-3/1-4) GlcNAc alpha 2,3-sialyltransferase using lectin resistance selection. The Journal of biological chemistry 268, 22782-22787.
Sato, S., Jansen, P.J., and Tedder, T.F. (1997). CD19 and CD22 expression reciprocally regulates tyrosine phosphorylation of Vav protein during B lymphocyte signaling. Proceedings of the National Academy of Sciences of the United States of America 94, 13158-13162.
Schauer, R., Srinivasan, G.V., Wipfler, D., Kniep, B., and Schwartz-Albiez, R. (2011). O-Acetylated sialic acids and their role in immune defense. Advances in experimental medicine and biology 705, 525-548.
Seki, M., Oomizu, S., Sakata, K.M., Sakata, A., Arikawa, T., Watanabe, K., Ito, K., Takeshita, K., Niki, T., Saita, N., et al. (2008). Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clinical immunology 127, 78-88.
Shi, W.X., Chammas, R., Varki, N.M., Powell, L., and Varki, A. (1996). Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing. The Journal of biological chemistry 271, 31526-31532.
Sjoberg, E.R., Powell, L.D., Klein, A., and Varki, A. (1994). Natural ligands of the B cell adhesion molecule CD22 beta can be masked by 9-O-acetylation of sialic acids. The Journal of cell biology 126, 549-562.
Smith, K.G., Tarlinton, D.M., Doody, G.M., Hibbs, M.L., and Fearon, D.T. (1998). Inhibition of the B cell by CD22: a requirement for Lyn. The Journal of experimental medicine 187, 807-811.
Smith, M.H., Ploegh, H.L., and Weissman, J.S. (2011). Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086-1090.
Smith, P.L., Skelton, T.P., Fiete, D., Dharmesh, S.M., Beranek, M.C., MacPhail, L., Broze, G.J., Jr., and Baenziger, J.U. (1992). The asparagine-linked oligosaccharides on tissue factor pathway inhibitor terminate with SO4-4GalNAc beta 1, 4GlcNAc beta 1,2 Mana alpha. The Journal of biological chemistry 267, 19140-19146.
Stacchini, A., Aragno, M., Vallario, A., Alfarano, A., Circosta, P., Gottardi, D., Faldella, A., Rege-Cambrin, G., Thunberg, U., Nilsson, K., et al. (1999). MEC1 and MEC2: two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leukemia research 23, 127-136.
Stephens, E., Maslen, S.L., Green, L.G., and Williams, D.H. (2004). Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Analytical chemistry 76, 2343-2354.
Stone, E.L., Ismail, M.N., Lee, S.H., Luu, Y., Ramirez, K., Haslam, S.M., Ho, S.B., Dell, A., Fukuda, M., and Marth, J.D. (2009). Glycosyltransferase function in core 2-type protein O glycosylation. Molecular and cellular biology 29, 3770-3782.
Streeter, P.R., Rouse, B.T., and Butcher, E.C. (1988). Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. The Journal of cell biology 107, 1853-1862.
Tedder, T.F., Poe, J.C., and Haas, K.M. (2005). CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Advances in immunology 88, 1-50.
Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Poirier, F., Riley, E.M., Baum, L.G., et al. (2007). Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nature immunology 8, 825-834.
Toscano, M.A., Commodaro, A.G., Ilarregui, J.M., Bianco, G.A., Liberman, A., Serra, H.M., Hirabayashi, J., Rizzo, L.V., and Rabinovich, G.A. (2006). Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. Journal of immunology 176, 6323-6332.
Toyoda, M., Kaji, H., Sawaki, H., Togayachi, A., Angata, T., Narimatsu, H., and Kameyama, A. (2016). Identification and characterization of sulfated glycoproteins from small cell lung carcinoma cells assisted by management of molecular charges. Glycoconjugate journal 33, 917-926.
Trowbridge, J.M., and Gallo, R.L. (2002). Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12, 117R-125R.
Uchimura, K., Fasakhany, F., Kadomatsu, K., Matsukawa, T., Yamakawa, T., Kurosawa, N., and Muramatsu, T. (2000). Diversity of N-acetylglucosamine-6-O-sulfotransferases: molecular cloning of a novel enzyme with different distribution and specificities. Biochemical and biophysical research communications 274, 291-296.
Uchimura, K., Gauguet, J.M., Singer, M.S., Tsay, D., Kannagi, R., Muramatsu, T., von Andrian, U.H., and Rosen, S.D. (2005). A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nature immunology 6, 1105-1113.
Umemoto, E., Tanaka, T., Kanda, H., Jin, S., Tohya, K., Otani, K., Matsutani, T., Matsumoto, M., Ebisuno, Y., Jang, M.H., et al. (2006). Nepmucin, a novel HEV sialomucin, mediates L-selectin-dependent lymphocyte rolling and promotes lymphocyte adhesion under flow. The Journal of experimental medicine 203, 1603-1614.
van Rooijen, J.J., Kamerling, J.P., and Vliegenthart, J.F. (1998). Sulfated di-, tri- and tetraantennary N-glycans in human Tamm-Horsfall glycoprotein. European journal of biochemistry / FEBS 256, 471-487.
Varki, A., and Gagneux, P. (2012). Multifarious roles of sialic acids in immunity. Annals of the New York Academy of Sciences 1253, 16-36.
von Andrian, U.H., Hasslen, S.R., Nelson, R.D., Erlandsen, S.L., and Butcher, E.C. (1995). A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82, 989-999.
von Andrian, U.H., and Mackay, C.R. (2000). T-cell function and migration. Two sides of the same coin. The New England journal of medicine 343, 1020-1034.
Weigel, P.H., and DeAngelis, P.L. (2007). Hyaluronan synthases: a decade-plus of novel glycosyltransferases. The Journal of biological chemistry 282, 36777-36781. Woodworth, A., Fiete, D., and Baenziger, J.U. (2002). Spatial and temporal regulation of tenascin-R glycosylation in the cerebellum. The Journal of biological chemistry 277, 50941-50947.
Wu, C., Rauch, U., Korpos, E., Song, J., Loser, K., Crocker, P.R., and Sorokin, L.M. (2009). Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression. Journal of immunology 182, 6508-6516.
Wuhrer, M., Koeleman, C.A., Hokke, C.H., and Deelder, A.M. (2005). Protein glycosylation analyzed by normal-phase nano-liquid chromatography--mass spectrometry of glycopeptides. Analytical chemistry 77, 886-894.
Yang, W.H., Nussbaum, C., Grewal, P.K., Marth, J.D., and Sperandio, M. (2012). Coordinated roles of ST3Gal-VI and ST3Gal-IV sialyltransferases in the synthesis of selectin ligands. Blood 120, 1015-1026.
Yeh, J.C., Hiraoka, N., Petryniak, B., Nakayama, J., Ellies, L.G., Rabuka, D., Hindsgaul, O., Marth, J.D., Lowe, J.B., and Fukuda, M. (2001). Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase. Cell 105, 957-969.
Yu, S.Y., Chang, L.Y., Cheng, C.W., Chou, C.C., Fukuda, M.N., and Khoo, K.H. (2013). Priming mass spectrometry-based sulfoglycomic mapping for identification of terminal sulfated lacdiNAc glycotope. Glycoconjugate journal 30, 183-194.
Yu, S.Y., Wu, S.W., Hsiao, H.H., and Khoo, K.H. (2009). Enabling techniques and strategic workflow for sulfoglycomics based on mass spectrometry mapping and sequencing of permethylated sulfated glycans. Glycobiology 19, 1136-1149.
Yu, S.Y., Wu, S.W., and Khoo, K.H. (2006). Distinctive characteristics of MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing of permethylated complex type N-glycans. Glycoconjugate journal 23, 355-369.
Zhang, M., and Varki, A. (2004). Cell surface sialic acids do not affect primary CD22 interactions with CD45 and surface IgM nor the rate of constitutive CD22 endocytosis. Glycobiology 14, 939-949.
Zhou, S., Dong, X., Veillon, L., Huang, Y., and Mechref, Y. (2016). LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Analytical and bioanalytical chemistry.
|