跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建佑
研究生(外文):Jian-You Chen
論文名稱:利用高精準質譜分析技術鑑定人類與老鼠免疫淋巴球之硫與唾液酸化醣質體的特性
論文名稱(外文):Precision glycomic mapping of the sulfated sialylated glycans of human and murine lymphocytes by advanced mass spectrometry-based analyses
指導教授:邱繼輝邱繼輝引用關係
指導教授(外文):Kay-Hooi Khoo
口試委員:安形高志王亦生徐嘉琳葛一樊
口試委員(外文):Takashi AngataYi-Sheng WangChia-Lin HsuIvan Dzhagalov
口試日期:2017-04-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:115
中文關鍵詞:硫酸化醣質體KN343B 淋巴球T 淋巴球唾液酸
外文關鍵詞:SulfationKN343B lymphocytesT lymphocytesSialic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
位於非還原端醣抗原決定位(glyco-epitopes)上的硫酸化(sulfation)被指出調控多種重要的生物機制,其中包含人類淋巴球周邊淋巴結歸巢行為(homing)。由於O 與N 型硫酸化醣鏈在細胞內含量極少,以質譜儀分析技術來檢測尚未純化的硫酸化醣鏈是有一定的困難度。為了針對淋巴球的多樣性功能提出不同觀點,並且能利於更準確地呈現淋巴球中硫酸化醣抗原決定位真實情況,建立一個靈敏並且有效率的硫酸化醣質體檢測流程是目前首當其衝的要項,尤其針對同時鑑別硫酸基在於醣鏈上修飾的確切位置以及分離不同醣鏈的同質異構物,雖然在科學理論基礎上可行,然而,現階段僅利用單一檢測方式困難度大為提高。本論文的研究重旨在於利用MALDI-MS/MS 與nanoLC-MS/MS 結合了反相式(reverse phase)與多孔石墨碳(porous graphitized carbon)管柱分析技術,有系統性地檢測淋巴球全面性的醣質體,以及針對特定表現於N 型醣鏈上的硫酸化醣抗原決定位加以深入探討,並進一步以二種方式進行相對定量:一、定量整體硫酸化醣在整體複雜式N 型醣鏈的相對比例,二、僅針對α-2,6-disialylated biantennary N 型醣鏈上的單硫酸化醣與此特定醣鏈的相對比例。
利用互補系統性的分析,本論文提供了第一份以質譜分析為基礎的證據,確立6-sulfo-α-2,6-sialyl LacNAc 化學結構,並證實此KN343 抗原的表現在人類NALM-6和MEC-1 細胞株以及人類CD19+與CD4+淋巴球和慢性淋巴細胞白血病樣品。在這些樣品中,非硫酸化與硫酸化的主要N 型醣鏈末端皆以α-2,6 唾液酸鍵結為主要結構;在慢性淋巴細胞白血病樣品中,主要的α-2,6-disialyl biantennary N型醣鏈上所檢測到的KN343 相對量,與白血病樣品中呈現CD19 陽性的細胞比例是成正相關的。另一方面,利用同樣的質譜分析流程也一併鑑定老鼠naive T, Th1,Th2, Th17 和iTreg T 淋巴球的醣質體特徵。各別T 淋巴球的次細胞族群所表現的硫酸化N 型醣鏈特徵與表現量有所不同,但仍然足以偵測,而在老鼠B 淋巴球所表現的硫酸化醣鏈往往遠低於偵測極限。此外,naive T 與Th1 以及Th2 的O 與N型醣質體特性,主要分別以di-sialyl 與α-Gal 以及Neu5Ac 的末端修飾各為其特徵。本篇論文報導了T 淋巴球的次細胞族群表現特定醣質體資訊以及多面相N 型醣質體的檢測流程,提供未來探討人類與老鼠免疫淋巴球之醣生物學的重要依據。
Sulfate modification (sulfation) on terminal glyco-epitopes (glycotopes) has been demonstrated as a critical element that mediates many important biological processes including human lymphocyte homing to peripheral lymph node. Yet, sulfated O- and N-glycans are generally of very low abundance and barely detectable by mass spectrometry (MS) analysis without enrichment. To gain better insights into lymphocyte functional diversity, a highly sensitive and efficient analytical workflow is required for precision mapping of the occurrence of sulfated sialyl glycotopes on these immune cells. In particular, it should be capable of resolving different sulfated sialylated isomers by defining both the location of sulfate and the sialyl linkages, which is currently difficult to achieve by any single analytical platform. In this thesis work, the global glycomic profile and the specific sulfo-, sialyl glycotopes carried on the N-glycans of various sources of lymphocytes were systematically defined by a combination of MS-based methods, including MALDI-MS/MS and nanoLC-MS/MS analyses on both reverse phase and porous graphitized carbon (PGC) columns. Moreover, the degree of sulfation was determined at two levels, either as % total of complex type N-glycans that was sulfated or, more specifically, as relative amount of α-2,6-disialylated biantennary N-glycans that was mono-sulfated.
Using such concerted analytical approach, this thesis work provided the first MS-based evidence for the occurrence of the target glycotope defined by monoclonal antibody KN343, namely 6-sulfo-α-2,6-sialyl LacNAc, on the human B cell precursor leukemia cells (NALM-6) and chronic B cell leukemia cells (MEC-1), human CD19+ and CD4+ lymphocytes isolated from peripheral blood of healthy donors, and peripheral blood mononuclear cells (PBMC) collected from 10 chronic lymphocytic leukemia (CLL) patients. In each case, α-2,6-sialyl linkage was found to be predominant and the relative abundance of the total sulfated N-glycan fractions, as well as that of the major α-2,6-disialyl biantennary N-glycans carrying the KN343 sulfated glycotope, were quantified and correlated with the % of CD19+ cells expressing KN343, for each of the PBMC samples. In addition, the same analytical workflow was applied to various lineages of murine T lymphocytes including the naive, and activated Th1, Th2, Th17 and iTreg subsets derived thereof. Unlike murine B lymphocytes, sulfated N-glycans could be readily detected for all these different T lymphocyte subsets but at variable level. Moreover, di-sialyl, α-Gal and Neu5Ac capping were found to be more prominently expressed on both N- and O-glycans of murine naive T, Th1 and Th2 cells, respectively. Both the derived glyco-signatures specific to each lymphocyte subset and the multifaceted N-sulfoglycomic approaches developed in this thesis work should prove to be highly valuable for future follow-up studies on the glycobiology of human and murine lymphocytes.
Chapter 1: Introduction………………………………………………………….….....1
1.1: N- and O-linked glycosylation……………………………………………….…..1
1.2: A diverse range of sulfated glycans and lymphocyte homing……...…….….......7
1.2.1: Sulfated GAGs…………………………..…………………..……..……......7
1.2.2: Sulfated LacdiNAc……………………………..………..……………….....8
1.2.3: Sulfo-sialyl Lewis X, L-selectin and lymphocyte homing…………..….......9
1.2.4: Sulfo-α-2,6-sialyl LacNAc and CD22……………………..……..….…….12
1.3: GlcNAc 6-O-Sulfotranferases…………………………………………….……14
1.4: α-2,6/2,3-Sialyltransferases……………………………………………....….....16
1.5: Current applications for analytical sulfoglycomics………………………….…18
1.5.1: Liquid chromatography (LC) and analytical columns………………….….19
1.5.2: Matrix assisted laser desorption ionization (MALDI)-MS and electrospray ionization (ESI)-MS……………………………………………………………...….…21
1.5.3: MS/MS analysis of glycans………………………………………….....….23
1.6: The limitation of sulfoglycomics by current mass spectrometry-based methods………………………………………………………………………………...26
1.7: Current unsolved questions of sulfoglycomics in immune system…………….27
1.8: Specific Aims………………………………………………………………......28
Chapter 2: Materials and Methods…………………………………………………31
2.1: Cells and Clinical Samples…………………………………………………….31
2.2: N- and O-glycan preparation………………………………………………..…..32
2.3: Permethylation of oligosaccharides and enrichment of permethylated sulfated glycans by Oasis MAX cartridge…………………………………………………..…..34
2.4: Clean up of permethylated glycans by ZipTipC18………………………………35
2.5: MALDI/TOF-MS and MS/MS…………………………………………………35
2.6: NanoLC-MS and MS/MS analysis…………………………………….……….36
2.7: Glypick software…………………………….………………………………….39
Chapter 3: Results…………………………………………………………………….40
3.1: Human pre-B and B-CLL cells and N-Sulfoglycomic workflow………..……..40
3.1.1: Overall N-glycosylation profiles of NALM-6 and MEC-1 Cells………....40
3.1.2: MALDI-MS/MS analysis of permethylated N-glycans……………….…..43
3.1.3: NanoLC-MS/MS analysis of permethylated sulfated N-glycans………….44
3.1.4: NanoLC-MS/MS analysis of native N-glycans on PGC…………………..46
3.2: Human lymphocytes and PBMC derived from donors and CLL patients…………………………………………………………...…………………….55
3.2.1: Evidence of KN343 in human CD19+, CD4+ cells and PBMC...…………55
3.2.2: Quantifying the relative amount of total sulfated and non-sulfated N-glycans..……………………………………………………………………………..58
3.2.3: Overall strategic workflow and practical considerations………………….60
3.3: Murine T lymphocyte……………………………….……………………….....71
3.3.1: NeuGc remodeling in N-glycans of murine T lymphocytes upon activation…………………………………………………………………………….....71
3.3.2: Sulfated N-glycans of murine T lymphocyte subsets………………….…..72
3.3.3: O-glycans of mutine T lymphocyte subsets…………………………….….73
Chapter 4: Discussion and perspectives………………………………………….….87
4.1: Analytical workflow…………………………………………………………....88
4.2: Biological relevance of identified glycomic features……………………….….90
4.2.1: Sulfation is more relevant in humans than murine lymphocytes……...…..90
4.2.2: Disialylation in murine T cells is absent after differentiation…………..…92
4.2.3: α-Gal and Neu5Ac capping are the glycan signatures in murine Th1 and Th2, respectively……………………………………………………………………….....…93
4.2.4: Overall view of N-glycosylation in mouse CD4+ lymphocytes…………...95
4.3: Future work on sulfoglycomics of immune system……………………...….96
Reference………………………………………………………………………….…..98
Akama, T.O., Nishida, K., Nakayama, J., Watanabe, H., Ozaki, K., Nakamura, T., Dota, A., Kawasaki, S., Inoue, Y., Maeda, N., et al. (2000). Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nature genetics 26, 237-241.

Antonopoulos, A., Demotte, N., Stroobant, V., Haslam, S.M., van der Bruggen, P., and Dell, A. (2012). Loss of effector function of human cytolytic T lymphocytes is accompanied by major alterations in N- and O-glycosylation. The Journal of biological chemistry 287, 11240-11251.

Arata-Kawai, H., Singer, M.S., Bistrup, A., Zante, A., Wang, Y.Q., Ito, Y., Bao, X., Hemmerich, S., Fukuda, M., and Rosen, S.D. (2011). Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs. The American journal of pathology 178, 423-433.

Arbones, M.L., Ord, D.C., Ley, K., Ratech, H., Maynard-Curry, C., Otten, G., Capon, D.J., and Tedder, T.F. (1994). Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1, 247-260.

Baenziger, J.U. (2003). Glycoprotein hormone GalNAc-4-sulphotransferase. Biochemical Society transactions 31, 326-330.

Baenziger, J.U., and Green, E.D. (1988). Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochimica et biophysica acta 947, 287-306.

Baenziger, J.U., Kumar, S., Brodbeck, R.M., Smith, P.L., and Beranek, M.C. (1992). Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovine lutropin oligosaccharides. Proceedings of the National Academy of Sciences of the United States of America 89, 334-338.

Baum, L.G., Derbin, K., Perillo, N.L., Wu, T., Pang, M., and Uittenbogaart, C. (1996). Characterization of terminal sialic acid linkages on human thymocytes. Correlation between lectin-binding phenotype and sialyltransferase expression. The Journal of biological chemistry 271, 10793-10799.

Bennett, E.P., Mandel, U., Clausen, H., Gerken, T.A., Fritz, T.A., and Tabak, L.A. (2012). Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736-756.

Berg, E.L., Robinson, M.K., Warnock, R.A., and Butcher, E.C. (1991). The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. The Journal of cell biology 114, 343-349.

Bergwerff, A.A., Van Oostrum, J., Kamerling, J.P., and Vliegenthart, J.F. (1995). The major N-linked carbohydrate chains from human urokinase. The occurrence of 4-O-sulfated, (alpha 2-6)-sialylated or (alpha 1-3)-fucosylated N-acetylgalactosamine(beta 1-4)-N-acetylglucosamine elements. European journal of biochemistry / FEBS 228, 1009-1019.

Bhakta, S., Bartes, A., Bowman, K.G., Kao, W.M., Polsky, I., Lee, J.K., Cook, B.N., Bruehl, R.E., Rosen, S.D., Bertozzi, C.R., et al. (2000). Sulfation of N-acetylglucosamine by chondroitin 6-sulfotransferase 2 (GST-5). The Journal of biological chemistry 275, 40226-40234.

Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., Bryan, M.C., Fazio, F., Calarese, D., Stevens, J., et al. (2004). Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proceedings of the National Academy of Sciences of the United States of America 101, 17033-17038.

Bowman, K.G., Hemmerich, S., Bhakta, S., Singer, M.S., Bistrup, A., Rosen, S.D., and Bertozzi, C.R. (1998). Identification of an N-acetylglucosamine-6-0-sulfotransferase activity specific to lymphoid tissue: an enzyme with a possible role in lymphocyte homing. Chemistry & biology 5, 447-460.

Brockhausen, I. (2003). Sulphotransferases acting on mucin-type oligosaccharides. Biochemical Society transactions 31, 318-325.

Cariappa, A., Takematsu, H., Liu, H., Diaz, S., Haider, K., Boboila, C., Kalloo, G., Connole, M., Shi, H.N., Varki, N., et al. (2009). B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. The Journal of experimental medicine 206, 125-138.

Chandrasekaran, E.V., Jain, R.K., Larsen, R.D., Wlasichuk, K., and Matta, K.L. (1995). Selectin ligands and tumor-associated carbohydrate structures: specificities of alpha 2,3-sialyltransferases in the assembly of 3''-sialyl-6-sialyl/sulfo Lewis a and x, 3''-sialyl-6''-sulfo Lewis x, and 3''-sialyl-6-sialyl/sulfo blood group T-hapten. Biochemistry 34, 2925-2936.

Chen, J., McLean, P.A., Neel, B.G., Okunade, G., Shull, G.E., and Wortis, H.H. (2004). CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nature immunology 5, 651-657.

Cheng, C.W., Chou, C.C., Hsieh, H.W., Tu, Z., Lin, C.H., Nycholat, C., Fukuda, M., and Khoo, K.H. (2015). Efficient Mapping of Sulfated Glycotopes by Negative Ion Mode nanoLC-MS/MS-Based Sulfoglycomic Analysis of Permethylated Glycans. Analytical chemistry 87, 6380-6388.

Cheng, P.F., Snovida, S., Ho, M.Y., Cheng, C.W., Wu, A.M., and Khoo, K.H. (2013). Increasing the depth of mass spectrometry-based glycomic coverage by additional dimensions of sulfoglycomics and target analysis of permethylated glycans. Analytical and bioanalytical chemistry 405, 6683-6695.

Chou, H.H., Hayakawa, T., Diaz, S., Krings, M., Indriati, E., Leakey, M., Paabo, S., Satta, Y., Takahata, N., and Varki, A. (2002). Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proceedings of the National Academy of Sciences of the United States of America 99, 11736-11741.

Comelli, E.M., Sutton-Smith, M., Yan, Q., Amado, M., Panico, M., Gilmartin, T., Whisenant, T., Lanigan, C.M., Head, S.R., Goldberg, D., et al. (2006). Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N-linked glycans. Journal of immunology 177, 2431-2440.

Dall''Olio, F., Malagolini, N., Trinchera, M., and Chiricolo, M. (2014). Sialosignaling: sialyltransferases as engines of self-fueling loops in cancer progression. Biochimica et biophysica acta 1840, 2752-2764.

Degroote, S., Ducourouble, M.P., Roussel, P., and Lamblin, G. (1999). Sequential biosynthesis of sulfated and/or sialylated Lewis x determinants by transferases of the human bronchial mucosa. Glycobiology 9, 1199-1211.

Domon, B., and Costello, C.E. (1988). Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry 27, 1534-1543.

Doody, G.M., Justement, L.B., Delibrias, C.C., Matthews, R.J., Lin, J., Thomas, M.L., and Fearon, D.T. (1995). A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242-244.

Drake, P.M., Stock, C.M., Nathan, J.K., Gip, P., Golden, K.P., Weinhold, B., Gerardy-Schahn, R., and Bertozzi, C.R. (2009). Polysialic acid governs T-cell development by regulating progenitor access to the thymus. Proceedings of the National Academy of Sciences of the United States of America 106, 11995-12000.

Esko, J.D., Kimata, K., and Lindahl, U. (2009). Proteoglycans and Sulfated Glycosaminoglycans. In Essentials of Glycobiology, A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, and M.E. Etzler, eds. (Cold Spring Harbor (NY)).

Esko, J.D., and Selleck, S.B. (2002). Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71, 435-471.
Fujimoto, M., Kuwano, Y., Watanabe, R., Asashima, N., Nakashima, H., Yoshitake, S., Okochi, H., Tamaki, K., Poe, J.C., Tedder, T.F., et al. (2006). B cell antigen receptor and CD40 differentially regulate CD22 tyrosine phosphorylation. Journal of immunology 176, 873-879.

Fukuda, M., Hiraoka, N., Akama, T.O., and Fukuda, M.N. (2001). Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology. The Journal of biological chemistry 276, 47747-47750.

Funderburgh, J.L. (2000). Keratan sulfate: structure, biosynthesis, and function. Glycobiology 10, 951-958.

Gerlach, J., Ghosh, S., Jumaa, H., Reth, M., Wienands, J., Chan, A.C., and Nitschke, L. (2003). B cell defects in SLP65/BLNK-deficient mice can be partially corrected by the absence of CD22, an inhibitory coreceptor for BCR signaling. European journal of immunology 33, 3418-3426.

Gillespie, W., Paulson, J.C., Kelm, S., Pang, M., and Baum, L.G. (1993). Regulation of alpha 2,3-sialyltransferase expression correlates with conversion of peanut agglutinin (PNA)+ to PNA- phenotype in developing thymocytes. The Journal of biological chemistry 268, 3801-3804.

Gross, J.r.H. (2004). Mass spectrometry : a textbook (Berlin ; New York: Springer).
Grunwell, J.R., and Bertozzi, C.R. (2002). Carbohydrate sulfotransferases of the GalNAc/Gal/GlcNAc6ST family. Biochemistry 41, 13117-13126.

Gupta, G., Surolia, A., and Sampathkumar, S.G. (2010). Lectin microarrays for glycomic analysis. Omics : a journal of integrative biology 14, 419-436.

Han, S., Collins, B.E., Bengtson, P., and Paulson, J.C. (2005). Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nature chemical biology 1, 93-97.

Haslam, S.M., Julien, S., Burchell, J.M., Monk, C.R., Ceroni, A., Garden, O.A., and Dell, A. (2008). Characterizing the glycome of the mammalian immune system. Immunology and cell biology 86, 564-573.

Hayashida, Y., Akama, T.O., Beecher, N., Lewis, P., Young, R.D., Meek, K.M., Kerr, B., Hughes, C.E., Caterson, B., Tanigami, A., et al. (2006). Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. Proceedings of the National Academy of Sciences of the United States of America 103, 13333-13338.

Helenius, A., and Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73, 1019-1049.

Hemmerich, S., Bistrup, A., Singer, M.S., van Zante, A., Lee, J.K., Tsay, D., Peters, M., Carminati, J.L., Brennan, T.J., Carver-Moore, K., et al. (2001a). Sulfation of L-selectin ligands by an HEV-restricted sulfotransferase regulates lymphocyte homing to lymph nodes. Immunity 15, 237-247.

Hemmerich, S., Lee, J.K., Bhakta, S., Bistrup, A., Ruddle, N.R., and Rosen, S.D. (2001b). Chromosomal localization and genomic organization for the galactose/ N-acetylgalactosamine/N-acetylglucosamine 6-O-sulfotransferase gene family. Glycobiology 11, 75-87.

Hirakawa, J., Tsuboi, K., Sato, K., Kobayashi, M., Watanabe, S., Takakura, A., Imai, Y., Ito, Y., Fukuda, M., and Kawashima, H. (2010). Novel anti-carbohydrate antibodies reveal the cooperative function of sulfated N- and O-glycans in lymphocyte homing. The Journal of biological chemistry 285, 40864-40878.

Hiraoka, N., Kawashima, H., Petryniak, B., Nakayama, J., Mitoma, J., Marth, J.D., Lowe, J.B., and Fukuda, M. (2004). Core 2 branching beta1,6-N-acetylglucosaminyltransferase and high endothelial venule-restricted sulfotransferase collaboratively control lymphocyte homing. The Journal of biological chemistry 279, 3058-3067.

Homeister, J.W., Thall, A.D., Petryniak, B., Maly, P., Rogers, C.E., Smith, P.L., Kelly, R.J., Gersten, K.M., Askari, S.W., Cheng, G., et al. (2001). The alpha(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15, 115-126.

Hooper, L.V., Beranek, M.C., Manzella, S.M., and Baenziger, J.U. (1995). Differential expression of GalNAc-4-sulfotransferase and GalNAc-transferase results in distinct glycoforms of carbonic anhydrase VI in parotid and submaxillary glands. The Journal of biological chemistry 270, 5985-5993.

Hortin, G., Green, E.D., Baenziger, J.U., and Strauss, A.W. (1986). Sulphation of proteins secreted by a human hepatoma-derived cell line. Sulphation of N-linked oligosaccharides on alpha 2HS-glycoprotein. The Biochemical journal 235, 407-414.

Hurwitz, R., Hozier, J., LeBien, T., Minowada, J., Gajl-Peczalska, K., Kubonishi, I., and Kersey, J. (1979). Characterization of a leukemic cell line of the pre-B phenotype. International journal of cancer Journal international du cancer 23, 174-180.

Jenner, J., Kerst, G., Handgretinger, R., and Muller, I. (2006). Increased alpha2,6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells. Experimental hematology 34, 1212-1218.

Jensen, P.H., Karlsson, N.G., Kolarich, D., and Packer, N.H. (2012). Structural analysis of N- and O-glycans released from glycoproteins. Nature protocols 7, 1299-1310.

Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Shahin, A., Xu, D., Goodyear, C.S., Fukada, S.Y., Liu, F.T., Liew, F.Y., and Lukic, M.L. (2009). Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. Journal of immunology 182, 1167-1173.

Ju, T., and Cummings, R.D. (2002). A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proceedings of the National Academy of Sciences of the United States of America 99, 16613-16618.

Ju, T., and Cummings, R.D. (2005). Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437, 1252.

Karlsson, N.G., Wilson, N.L., Wirth, H.J., Dawes, P., Joshi, H., and Packer, N.H. (2004). Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid communications in mass spectrometry : RCM 18, 2282-2292.

Kawashima, H. (2006). Roles of sulfated glycans in lymphocyte homing. Biological & pharmaceutical bulletin 29, 2343-2349.

Kawashima, H., Petryniak, B., Hiraoka, N., Mitoma, J., Huckaby, V., Nakayama, J., Uchimura, K., Kadomatsu, K., Muramatsu, T., Lowe, J.B., et al. (2005). N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nature immunology 6, 1096-1104.

Kelm, S., Schauer, R., Manuguerra, J.C., Gross, H.J., and Crocker, P.R. (1994). Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconjugate journal 11, 576-585.

Khoo, K.H., and Yu, S.Y. (2010). Mass spectrometric analysis of sulfated N- and O-glycans. Methods in enzymology 478, 3-26.

Kimura, N., Ohmori, K., Miyazaki, K., Izawa, M., Matsuzaki, Y., Yasuda, Y., Takematsu, H., Kozutsumi, Y., Moriyama, A., and Kannagi, R. (2007). Human B-lymphocytes express alpha2-6-sialylated 6-sulfo-N-acetyllactosamine serving as a preferred ligand for CD22/Siglec-2. The Journal of biological chemistry 282, 32200-32207.


Kitagawa, H., and Paulson, J.C. (1994). Cloning of a novel alpha 2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. The Journal of biological chemistry 269, 1394-1401.

Lasky, L.A. (1995). Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64, 113-139.

Lee, J.K., Bistrup, A., van Zante, A., and Rosen, S.D. (2003). Activities and expression pattern of the carbohydrate sulfotransferase GlcNAc6ST-3 (I-GlcNAc6ST): functional implications. Glycobiology 13, 245-254.

Leprince, C., Draves, K.E., Geahlen, R.L., Ledbetter, J.A., and Clark, E.A. (1993). CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proceedings of the National Academy of Sciences of the United States of America 90, 3236-3240.

Macauley, M.S., Kawasaki, N., Peng, W., Wang, S.H., He, Y., Arlian, B.M., McBride, R., Kannagi, R., Khoo, K.H., and Paulson, J.C. (2015). Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man. The Journal of biological chemistry 290, 30066-30077.

Maly, P., Thall, A., Petryniak, B., Rogers, C.E., Smith, P.L., Marks, R.M., Kelly, R.J., Gersten, K.M., Cheng, G., Saunders, T.L., et al. (1996). The alpha(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643-653.

Morelle, W., and Michalski, J.C. (2007). Analysis of protein glycosylation by mass spectrometry. Nature protocols 2, 1585-1602.

Morelle, W., Slomianny, M.C., Diemer, H., Schaeffer, C., van Dorsselaer, A., and Michalski, J.C. (2004). Fragmentation characteristics of permethylated oligosaccharides using a matrix-assisted laser desorption/ionization two-stage time-of-flight (TOF/TOF) tandem mass spectrometer. Rapid communications in mass spectrometry : RCM 18, 2637-2649.

Moremen, K.W., Tiemeyer, M., and Nairn, A.V. (2012). Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13, 448-462.

Muller, J., Obermeier, I., Wohner, M., Brandl, C., Mrotzek, S., Angermuller, S., Maity, P.C., Reth, M., and Nitschke, L. (2013). CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proceedings of the National Academy of Sciences of the United States of America 110, 12402-12407.

Naito, Y., Takematsu, H., Koyama, S., Miyake, S., Yamamoto, H., Fujinawa, R., Sugai, M., Okuno, Y., Tsujimoto, G., Yamaji, T., et al. (2007). Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Molecular and cellular biology 27, 3008-3022.

Naito-Matsui, Y., Takada, S., Kano, Y., Iyoda, T., Sugai, M., Shimizu, A., Inaba, K., Nitschke, L., Tsubata, T., Oka, S., et al. (2014). Functional evaluation of activation-dependent alterations in the sialoglycan composition of T cells. The Journal of biological chemistry 289, 1564-1579.

Nitschke, L., Carsetti, R., Ocker, B., Kohler, G., and Lamers, M.C. (1997). CD22 is a negative regulator of B-cell receptor signalling. Current biology : CB 7, 133-143.

O''Keefe, T.L., Williams, G.T., Davies, S.L., and Neuberger, M.S. (1996). Hyperresponsive B cells in CD22-deficient mice. Science 274, 798-801.

Otipoby, K.L., Andersson, K.B., Draves, K.E., Klaus, S.J., Farr, A.G., Kerner, J.D., Perlmutter, R.M., Law, C.L., and Clark, E.A. (1996). CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634-637.

Paavonen, T., and Renkonen, R. (1992). Selective expression of sialyl-Lewis x and Lewis a epitopes, putative ligands for L-selectin, on peripheral lymph-node high endothelial venules. The American journal of pathology 141, 1259-1264.

Patnode, M.L., Yu, S.Y., Cheng, C.W., Ho, M.Y., Tegesjo, L., Sakuma, K., Uchimura, K., Khoo, K.H., Kannagi, R., and Rosen, S.D. (2013). KSGal6ST generates galactose-6-O-sulfate in high endothelial venules but does not contribute to L-selectin-dependent lymphocyte homing. Glycobiology 23, 381-394.

Paulson, J.C., Beranek, W.E., and Hill, R.L. (1977a). Purification of a sialyltransferase from bovine colostrum by affinity chromatography on CDP-agarose. The Journal of biological chemistry 252, 2356-2362.

Paulson, J.C., Rearick, J.I., and Hill, R.L. (1977b). Enzymatic properties of beta-D-galactoside alpha2 leads to 6 sialytransferase from bovine colostrum. The Journal of biological chemistry 252, 2363-2371.

Peaker, C.J., and Neuberger, M.S. (1993). Association of CD22 with the B cell antigen receptor. European journal of immunology 23, 1358-1363.

Powell, L.D., Jain, R.K., Matta, K.L., Sabesan, S., and Varki, A. (1995). Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22. Evidence for a minimal structural recognition motif and the potential importance of multisite binding. The Journal of biological chemistry 270, 7523-7532.

Powell, L.D., Sgroi, D., Sjoberg, E.R., Stamenkovic, I., and Varki, A. (1993). Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. The Journal of biological chemistry 268, 7019-7027.

Priatel, J.J., Chui, D., Hiraoka, N., Simmons, C.J., Richardson, K.B., Page, D.M., Fukuda, M., Varki, N.M., and Marth, J.D. (2000). The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12, 273-283.

Redelinghuys, P., Antonopoulos, A., Liu, Y., Campanero-Rhodes, M.A., McKenzie, E., Haslam, S.M., Dell, A., Feizi, T., and Crocker, P.R. (2011). Early murine T-lymphocyte activation is accompanied by a switch from N-Glycolyl- to N-acetyl-neuraminic acid and generation of ligands for siglec-E. The Journal of biological chemistry 286, 34522-34532.

Rosen, S.D. (2004). Ligands for L-selectin: homing, inflammation, and beyond. Annual review of immunology 22, 129-156.

Rosen, S.D., Singer, M.S., Yednock, T.A., and Stoolman, L.M. (1985). Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 228, 1005-1007.

Ruhaak, L.R., Deelder, A.M., and Wuhrer, M. (2009). Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Analytical and bioanalytical chemistry 394, 163-174.

Sakuma, K., Chen, G.Y., Aoki, M., and Kannagi, R. (2012). Induction of 6-sulfated glycans with cell adhesion activity via T-bet and GATA-3 in human helper T cells. Biochimica et biophysica acta 1820, 841-848.

Sasaki, K., Watanabe, E., Kawashima, K., Sekine, S., Dohi, T., Oshima, M., Hanai, N., Nishi, T., and Hasegawa, M. (1993). Expression cloning of a novel Gal beta (1-3/1-4) GlcNAc alpha 2,3-sialyltransferase using lectin resistance selection. The Journal of biological chemistry 268, 22782-22787.

Sato, S., Jansen, P.J., and Tedder, T.F. (1997). CD19 and CD22 expression reciprocally regulates tyrosine phosphorylation of Vav protein during B lymphocyte signaling. Proceedings of the National Academy of Sciences of the United States of America 94, 13158-13162.

Schauer, R., Srinivasan, G.V., Wipfler, D., Kniep, B., and Schwartz-Albiez, R. (2011). O-Acetylated sialic acids and their role in immune defense. Advances in experimental medicine and biology 705, 525-548.

Seki, M., Oomizu, S., Sakata, K.M., Sakata, A., Arikawa, T., Watanabe, K., Ito, K., Takeshita, K., Niki, T., Saita, N., et al. (2008). Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clinical immunology 127, 78-88.

Shi, W.X., Chammas, R., Varki, N.M., Powell, L., and Varki, A. (1996). Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing. The Journal of biological chemistry 271, 31526-31532.

Sjoberg, E.R., Powell, L.D., Klein, A., and Varki, A. (1994). Natural ligands of the B cell adhesion molecule CD22 beta can be masked by 9-O-acetylation of sialic acids. The Journal of cell biology 126, 549-562.

Smith, K.G., Tarlinton, D.M., Doody, G.M., Hibbs, M.L., and Fearon, D.T. (1998). Inhibition of the B cell by CD22: a requirement for Lyn. The Journal of experimental medicine 187, 807-811.

Smith, M.H., Ploegh, H.L., and Weissman, J.S. (2011). Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086-1090.

Smith, P.L., Skelton, T.P., Fiete, D., Dharmesh, S.M., Beranek, M.C., MacPhail, L., Broze, G.J., Jr., and Baenziger, J.U. (1992). The asparagine-linked oligosaccharides on tissue factor pathway inhibitor terminate with SO4-4GalNAc beta 1, 4GlcNAc beta 1,2 Mana alpha. The Journal of biological chemistry 267, 19140-19146.

Stacchini, A., Aragno, M., Vallario, A., Alfarano, A., Circosta, P., Gottardi, D., Faldella, A., Rege-Cambrin, G., Thunberg, U., Nilsson, K., et al. (1999). MEC1 and MEC2: two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leukemia research 23, 127-136.

Stephens, E., Maslen, S.L., Green, L.G., and Williams, D.H. (2004). Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Analytical chemistry 76, 2343-2354.

Stone, E.L., Ismail, M.N., Lee, S.H., Luu, Y., Ramirez, K., Haslam, S.M., Ho, S.B., Dell, A., Fukuda, M., and Marth, J.D. (2009). Glycosyltransferase function in core 2-type protein O glycosylation. Molecular and cellular biology 29, 3770-3782.

Streeter, P.R., Rouse, B.T., and Butcher, E.C. (1988). Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. The Journal of cell biology 107, 1853-1862.

Tedder, T.F., Poe, J.C., and Haas, K.M. (2005). CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Advances in immunology 88, 1-50.

Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Poirier, F., Riley, E.M., Baum, L.G., et al. (2007). Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nature immunology 8, 825-834.

Toscano, M.A., Commodaro, A.G., Ilarregui, J.M., Bianco, G.A., Liberman, A., Serra, H.M., Hirabayashi, J., Rizzo, L.V., and Rabinovich, G.A. (2006). Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. Journal of immunology 176, 6323-6332.

Toyoda, M., Kaji, H., Sawaki, H., Togayachi, A., Angata, T., Narimatsu, H., and Kameyama, A. (2016). Identification and characterization of sulfated glycoproteins from small cell lung carcinoma cells assisted by management of molecular charges. Glycoconjugate journal 33, 917-926.

Trowbridge, J.M., and Gallo, R.L. (2002). Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12, 117R-125R.

Uchimura, K., Fasakhany, F., Kadomatsu, K., Matsukawa, T., Yamakawa, T., Kurosawa, N., and Muramatsu, T. (2000). Diversity of N-acetylglucosamine-6-O-sulfotransferases: molecular cloning of a novel enzyme with different distribution and specificities. Biochemical and biophysical research communications 274, 291-296.

Uchimura, K., Gauguet, J.M., Singer, M.S., Tsay, D., Kannagi, R., Muramatsu, T., von Andrian, U.H., and Rosen, S.D. (2005). A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nature immunology 6, 1105-1113.

Umemoto, E., Tanaka, T., Kanda, H., Jin, S., Tohya, K., Otani, K., Matsutani, T., Matsumoto, M., Ebisuno, Y., Jang, M.H., et al. (2006). Nepmucin, a novel HEV sialomucin, mediates L-selectin-dependent lymphocyte rolling and promotes lymphocyte adhesion under flow. The Journal of experimental medicine 203, 1603-1614.

van Rooijen, J.J., Kamerling, J.P., and Vliegenthart, J.F. (1998). Sulfated di-, tri- and tetraantennary N-glycans in human Tamm-Horsfall glycoprotein. European journal of biochemistry / FEBS 256, 471-487.

Varki, A., and Gagneux, P. (2012). Multifarious roles of sialic acids in immunity. Annals of the New York Academy of Sciences 1253, 16-36.

von Andrian, U.H., Hasslen, S.R., Nelson, R.D., Erlandsen, S.L., and Butcher, E.C. (1995). A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82, 989-999.

von Andrian, U.H., and Mackay, C.R. (2000). T-cell function and migration. Two sides of the same coin. The New England journal of medicine 343, 1020-1034.

Weigel, P.H., and DeAngelis, P.L. (2007). Hyaluronan synthases: a decade-plus of novel glycosyltransferases. The Journal of biological chemistry 282, 36777-36781.
Woodworth, A., Fiete, D., and Baenziger, J.U. (2002). Spatial and temporal regulation of tenascin-R glycosylation in the cerebellum. The Journal of biological chemistry 277, 50941-50947.

Wu, C., Rauch, U., Korpos, E., Song, J., Loser, K., Crocker, P.R., and Sorokin, L.M. (2009). Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression. Journal of immunology 182, 6508-6516.

Wuhrer, M., Koeleman, C.A., Hokke, C.H., and Deelder, A.M. (2005). Protein glycosylation analyzed by normal-phase nano-liquid chromatography--mass spectrometry of glycopeptides. Analytical chemistry 77, 886-894.

Yang, W.H., Nussbaum, C., Grewal, P.K., Marth, J.D., and Sperandio, M. (2012). Coordinated roles of ST3Gal-VI and ST3Gal-IV sialyltransferases in the synthesis of selectin ligands. Blood 120, 1015-1026.

Yeh, J.C., Hiraoka, N., Petryniak, B., Nakayama, J., Ellies, L.G., Rabuka, D., Hindsgaul, O., Marth, J.D., Lowe, J.B., and Fukuda, M. (2001). Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase. Cell 105, 957-969.

Yu, S.Y., Chang, L.Y., Cheng, C.W., Chou, C.C., Fukuda, M.N., and Khoo, K.H. (2013). Priming mass spectrometry-based sulfoglycomic mapping for identification of terminal sulfated lacdiNAc glycotope. Glycoconjugate journal 30, 183-194.

Yu, S.Y., Wu, S.W., Hsiao, H.H., and Khoo, K.H. (2009). Enabling techniques and strategic workflow for sulfoglycomics based on mass spectrometry mapping and sequencing of permethylated sulfated glycans. Glycobiology 19, 1136-1149.

Yu, S.Y., Wu, S.W., and Khoo, K.H. (2006). Distinctive characteristics of MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing of permethylated complex type N-glycans. Glycoconjugate journal 23, 355-369.

Zhang, M., and Varki, A. (2004). Cell surface sialic acids do not affect primary CD22 interactions with CD45 and surface IgM nor the rate of constitutive CD22 endocytosis. Glycobiology 14, 939-949.

Zhou, S., Dong, X., Veillon, L., Huang, Y., and Mechref, Y. (2016). LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Analytical and bioanalytical chemistry.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top