跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃繼霆
研究生(外文):Ji-Ting Huang
論文名稱:SNP rs311103於紅血球Xga和CD99抗原表現的關聯
論文名稱(外文):SNP rs311103 is associated with human erythroid-specific Xg a /CD99 blood group phenotypes
指導教授:余榮熾
口試委員:涂玉青朱善德
口試日期:2017-06-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:35
中文關鍵詞:CD99 moleculeXG blood groupSingle nucleotide polymorphism
外文關鍵詞:CD99 moleculeXG blood groupSingle nucleotide polymorphism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
XG血型系統包含了兩種抗原,Xga以及CD99抗原。Xga為表現在紅血球的表面抗原,此抗原分成Xg(a+)及Xg(a-)兩種表現型;CD99為表現在多種細胞的表面抗原,此抗原分成CD99-High (CD99H)及CD99-Low (CD99L)兩種表現型。在過去研究發現,CD99及Xga抗原在紅血球上的表現有著一致性的關聯;女性紅血球細胞Xga抗原呈現Xg(a+)時,連結的CD99表現型呈現高的情況(CD99H);Xga抗原呈現Xg(a-),連結的CD99表現型呈現低的情況(CD99L)。但是,男性紅血球表面上呈現了第三種表現型,也就是當Xga抗原呈現Xg(a-),連結的CD99表現型可能呈現高的情況(CD99H)或是低(CD99L)的情況。在此種現象還無法被解釋的同時,使我們對於Xga及CD99抗原於紅血球表現的分子遺傳機制感到好奇。
本研究室首先取不同個體血液樣品進行研究,依據其Xga及CD99抗原表現型,分類成上述的三種類型。從樣品中挑選出16人gDNA以次世代定序(NGS)進行染色體大區域定序,範圍包含XG及CD99兩個基因約570kb,並排列出此區域之單一核甘酸多型性(single nucleotide polymorphism, 簡稱SNP)。透過分析結果發現位於CD99及XG基因間的SNP rs311103(G/C) 的基因型吻合三種表現型的關聯,因此判斷此SNP可能對於兩個基因的調控有很大的關連。
先前的研究發現,在紅血球細胞中Xga及CD99抗原表現型與mRNA表現量有關。以類/非紅血球細胞株作為細胞模型,將帶有SNP rs311103的片段利用報導基因的方式進行實驗,並以PROMO軟體預測會與此rs311103[G]而不是rs311103[C]產生親和性結合的轉錄因子,從中挑選出與血球相關的轉錄因子,包括GATA family of transcription factors (GATAs, GATA1~GATA6,共六個)及Lymphoid enhancer binding factor 1 (LEF1) 進行後續的實驗。
根據報導基因法、EMSA及ChIP實驗中,我們觀察到rs311103[G]與轉錄因子GATA1 和/或 GATA2促進基因轉錄表現,其中以GATA1有較高的專一性結合能力。為了確定基因調節系統上,轉錄因子藉由遠程調控基因的表現,我們分別建構XG或CD99基因的啟動子,並將帶有SNP rs311103重複片段接上報導載體,確認基因啟動子與rs311103區域間是否有相互的調控。同時在過去研究發現GATA1/2調控基因的表現會與TAL1共同調控,兩者之間形成一聚合體而共同調控基因的表現,因而後續我們以點突變的方式去證實先前的研究。本研究結果證實了SNP rs311103對於Xga / CD99血型表現型於紅血球的特異性,並揭開了其抗原形成的分子機制。
XG blood group system comprises two antigens, Xga and CD99. The Xga antigen express on the membranes of red blood cells (RBCs), and it can classify into Xg(a+) and Xg(a-) phenotype. The CD99 antigen express on membranes of many tissue cells, and it can classify into CD99-high (CD99H) and CD99-Low (CD99L) phenotype. According to past study, the Xga and CD99 antigens show a unique and sex-specific phenotypic relationship on the surface of RBCs. Among females and males, the Xg(a+) phenotype is associated with the CD99H phenotype. On the other hand, Xg(a–) females show an association with the CD99L phenotype; however, by way of contrast, Xg(a–) males, in addition to possibly having the CD99L phenotype, may also have the CD99H phenotype. There was no answer to explain why caused this phenomenon, so it attracted us to study what the mechanism of regulation between XG and CD99 genes.
We initially conducted a pilot study involving targeted next-generation sequencing of the 570-kb genomic sequences relevant to XG and CD99 from 16 individuals with different Xga/CD99 phenotypes. This was followed by a larger-scale association study that demonstrated an association between SNP rs311103 and the Xga/CD99 blood groups.
It has been found that the reticulocytes from Xg(a+)/CD99H individuals have a higher level of the XG and CD99 (MIC2) transcripts than the reticulocytes from Xg(a–)/CD99L individuals. Different genomic segment that encompasses polymorphic rs311103 was introduced into erythroid /non-erythroid lineage cell lines by reporter assay, and the polymorphic rs311103 genomic regions were analyzed using PROMO program to identify potential transcription factor binding motifs. Putative binding motifs for the GATA binding protein family and for lymphoid enhancer binding factor 1 (LEF1) were identified within the rs311103[G] region, but not within rs311103[C] region.
Follow-up investigations included ectopic expression of various GATA factors, EMSA, and ChIP to show that the erythroid GATA1 factor is able to bind specifically to the rs311103[G] region and markedly stimulates the transcriptional activity of the rs311103[G] segment. In order to determine the details of the control system, especially their involvements in the co-regulation the XG and CD99 expressions and in the long-range interaction between the rs311103[G] genomic region and the CD99 promoter. Other study showed that GATA1/2 and TAL1 could co-regulate genes expression, the site-directed mutagenesis were conduct to know interaction between them. The present findings identify the genetic basis of the erythroid-specific Xga/CD99 blood group phenotypes and reveal the molecular background to their formation.
口試委員會審定書 i
中文摘要 ii
英文摘要 iv
縮寫表 vi
目 錄 vii
圖目錄 x
第一章 緒論 1
1.1 人類XG血型系統 1
1.2 CD99 抗原 1
1.3 XG血型系統和SNP的關聯 2
1.3.1. 單核苷酸多型性 (SNP) 2
1.3.2. XG血型系統與SNP rs311103 2
1.4 研究動機及方法 3
第二章 實驗材料與方法 4
2.1 細胞培養 (Cell Culture) 4
2.2 基因轉殖-酯質體轉染法 (Liposomal Transfection) 4
2.3 報導基因分析法 (Reporter assay) 4
2.4 RNA分析 5
2.4.1 RNA萃取 5
2.4.2 反轉錄聚合酶連鎖反應 (Reverse Transcriptase-Polymerase Chain Reaction, RT-PCR) 5
2.4.3 即時定量聚合酶連鎖反應 (Real-Time Polymerase Chain Reaction, RT-PCR) 5
2.5 蛋白質表現分析 6
2.5.1 細胞蛋白之萃取 6
2.5.2 SDS聚丙烯醯硫胺凝膠電泳 (SDS-Polyacrylamide gel electrophoresis, SDS-PAGE) 6
2.5.3 西方點墨法 (Western Blot) 6
2.6 電泳遷移變動分析 (Electrophoretic Mobility Shift Assay, EMSA) 6
2.6.1 蛋白質樣品 6
2.6.2 探針(Probe)備製 6
2.6.3 核蛋白質電泳和偵測 7
2.7 染色質免疫沉澱 (Chromatin immunoprecipitation , ChIP) 7
第三章 結果 8
3.1 紅血球細胞中SNP rs311103 基因型(G/C)對於轉錄能力的差異 8
3.2 轉錄因子對XG基因及CD99基因之rs311103[G]及rs311103[G]的轉錄活性調控關係 9
3.2.1 程式預測轉錄因子對於SNP rs311103基因型的不同而導致親和力結合的改變及轉錄因子對於rs311103[G]及rs311103[C]的轉錄活性影響 9
3.2.2 分析類/非紅血球細胞株中的轉錄因子表現量 10
3.3 轉錄因子GATA1/2對於rs311103[G]片段專一性結合的探討 10
3.3.1 in.vitro驗證轉錄因子GATA1/2對於rs311103[G]片段專一性 11
3.3.2 in.vivo驗證轉錄因子GATA1/2對於rs311103[G]片段專一性 11
3.4 SNP rs311103基因型與XG和CD99基因啟動子的關係 11
3.5. 轉錄因子GATA1/2與TAL1於SNP rs311103所扮演角色 12
第四章 討論 14
第五章 圖表 16
參考文獻 28
表附錄 32
1.Mann JD, Cahan A, Gelb AG, et al. A sex-linked blood group. Lancet. 1962;1(7219):8–10.
2.Goodfellow PN, Tippett P. A human quantitative polymorphism related to Xg blood group. Nature. 1981;289(5796):404–405.
3.Latron F, Blanchard D, Cartron J-P. Immunochemical characterization of the human blood cell membrane glycoprotein recognized by the monoclonal antibody 12E7. Biochem J. 1987;247(3):757–764.
4.Petty A, Tippett P. Investigation of the biochemical relationship between the blood group antigens Xga and CD99 (12E7 antigen) on red cells. Vox Sang. 1995;69(3):231–235.
5.Fouchet C, Gane P, Cartron J-P, Lopez C. Quantitative analysis of XG blood group and CD99 antigens on human red cells. Immunogenetics. 2000;51(8–9):688–694.
6.Herron R, Smith GA. Identification and immunochemical characterization of the human erythrocyte membrane glycoproteins that carry the Xga antigen. Biochem J. 1989;262(1):369–371.
7.Fouchet C, Gane P, Huet M, et al. A study of the coregulation and tissue specificity of XG and MIC2 gene expression in eukaryotic cells. Blood. 2000;95(5):1819–1826.
8.Tippett P, Ellis NA. The Xg blood group system: a review. Transfus Med Rev. 1998;12(4):233–257.
9.Ellis NA, Ye T-Z, Patton S, German J, Goodfellow PN, Weller P. Cloning of PBDX, and MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp. Nat Genet. 1994;6(4):394–400.
10.Ellis NA, Tippett P, Petty A, et al. PBDX is the XG blood group gene. Nat Genet. 1994;8(3):285–290.
11.Goodfellow P, Banting G, Levy R, Povey S, McMichael A. A human X-linked antigen defined by a monoclonal antibody. Somatic Cell Genet. 1980;6(6):777–787.
12.Goodfellow P, Banting G, Sheer D, et al. Genetic evidence that a Y-linked gene in man is homologous to a gene on the X chromosome. Nature. 1983;302(5906):346–349.
13.Darling SM, Banting GS, Pym B, Wolfe J, Goodfellow PN. Cloning an expressed gene shared by the human sex chromosome. Proc Natl Acad Sci USA. 1986;83(1):135–139.
14.Smith MJ, Goodfellow PJ, Goodfellow PN. The genomic organization of the human pseudoautosomal gene MIC2 and the detection of a related locus. Hum Mol Genet. 1993;2(4):417–422.
15.Goodfellow P. Expression of the 12E7 antigen is controlled independently by genes on the human X and Y chromosomes. Differentiation. 1983;23(Suppl.):S35–S39.
16.Banting GS, Pym B, Goodfellow PN. Biochemical analysis of an antigen produced by both human sex chromosomes. EMBO J. 1985;4(8):1967–1972.
17.Tippett P, Shaw M-A, Green CA, Daniels GL. The 12E7 red cell quantitative polymorphism: control by the Y-borne locus, Yg. Ann Hum Genet. 1986;50(Pt4):393–347.
18.Weller PA, Critcher R, Goodfellow PN, German J, Ellis NA. The human Y chromosome homologue of XG: transcription of a naturally truncated gene. Hum Mol Genet. 1995;4(5):859–868.
19.Goodfellow PJ, Pritchard C, Tippett P, Goodfellow PN. Recombination between the X and Y chromosomes: implications for the relationship between MIC2, XG and YG. Ann Hum Genet. 1987;51(Pt2):161–167.
20.Levy R, Dilley J, Fox RI, Warnke R. A human thymus-leukemia antigen defined by hybridoma monoclonal antibodies. Proc Natl Acad Sci USA. 1979;76(12):6552–6556.
21.Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG. Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet. 2007;39(2):226–231.
22.Stranger BE, Nica AC, Forrest MS, et al. Population genomics of human gene expression. Nat Genet. 2007;39(10):1217–1224.
23.Tycko B. Allele-specific DNA methylation: beyond imprinting. Hum Mol Genet. 2010;19(R2):R210–R220.
24.Lentjes MH, Niessen HE, Akiyama Y, de Bruïne AP, Melotte V, van Engeland M. The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med. 2016,18(e3):1–15.
25.Hewitt KJ, Johnson KD, Gao X, Keles S, Bresnick EH. The hematopoietic stem and progenitor cell cistrome: GATA factor-dependent cis-regulotory mechanisms. Curr Top Dev Biol. 2016;118:45–76.
26.DeVilbiss AW, Tanimura N, Mclver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating transcriptional coregulatory ensembles to establish genetic networks: a GATA factor perspective. Curr Top Dev Biol. 2016;118:205–244.
27.Bresnick EH, Lee H-Y, Fujiwara T, Johnson KD, Keles S. GATA switches as developmental drivers. J Biol Chem. 2010;285(41):31087–31093.
28.Kaneko H, Shimizu R, Yamamoto M. GATA factor switching during erythroid differentiation. Curr Opin Hematol. 2010;17:163–168.
29.Moriguchi T, Yamamoto M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. Int J Hematol. 2014;100:417–424.
30.Han et al. Genome-Wide Organization of GATA1 and TAL1 Determined at High Resolution. Molecular and Cellular Biology. January 2016 Volume 36 Number 1
31.Wu et al. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Research. 24:1945–1962
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top