|
1Chittka, A., Nitarska, J., Grazini, U. & Richardson, W. D. Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. The Journal of biological chemistry 287, 42995-43006, doi:10.1074/jbc.M112.392746 (2012). 2Zakrzewicz, D., Zakrzewicz, A., Preissner, K. T., Markart, P. & Wygrecka, M. Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. International journal of molecular sciences 13, 12383-12400, doi:10.3390/ijms131012383 (2012). 3Geoghegan, V., Guo, A., Trudgian, D., Thomas, B. & Acuto, O. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nature communications 6, 6758, doi:10.1038/ncomms7758 (2015). 4Gnyszka, A., Jastrzebski, Z. & Flis, S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer research 33, 2989-2996 (2013). 5Rajendran, G. et al. Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. Journal of neuro-oncology 104, 483-494, doi:10.1007/s11060-010-0520-2 (2011). 6Turek-Plewa, J. & Jagodzinski, P. P. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cellular & molecular biology letters 10, 631-647 (2005). 7Zheng, S. & Shuman, S. Structure-function analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase. RNA 14, 696-705, doi:10.1261/rna.928208 (2008). 8De la Pena, M., Kyrieleis, O. J. & Cusack, S. Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. The EMBO journal 26, 4913-4925, doi:10.1038/sj.emboj.7601912 (2007). 9Egloff, M. P. et al. Structural and functional analysis of methylation and 5''-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. Journal of molecular biology 372, 723-736, doi:10.1016/j.jmb.2007.07.005 (2007). 10Ahn, H. J. et al. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition. The EMBO journal 22, 2593-2603, doi:10.1093/emboj/cdg269 (2003). 11Wang, K. T. et al. Structure of the bifunctional methyltransferase YcbY (RlmKL) that adds the m7G2069 and m2G2445 modifications in Escherichia coli 23S rRNA. Nucleic acids research 40, 5138-5148, doi:10.1093/nar/gks160 (2012). 12Kennaway, C. K. et al. Structure and operation of the DNA-translocating type I DNA restriction enzymes. Genes & development 26, 92-104, doi:10.1101/gad.179085.111 (2012). 13Dryden, D. T. et al. The assembly of the EcoKI type I DNA restriction/modification enzyme and its interaction with DNA. Biochemical Society transactions 27, 691-696 (1999). 14Vasu, K. & Nagaraja, V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiology and molecular biology reviews : MMBR 77, 53-72, doi:10.1128/MMBR.00044-12 (2013). 15Webre, D. J., Wolanin, P. M. & Stock, J. B. Bacterial chemotaxis. Current biology : CB 13, R47-49 (2003). 16Weis, R. M. & Koshland, D. E., Jr. Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid. Proceedings of the National Academy of Sciences of the United States of America 85, 83-87 (1988). 17Miller, D., Xu, H. & White, R. H. S-Inosyl-L-Homocysteine Hydrolase, a Novel Enzyme Involved in S-Adenosyl-L-Methionine Recycling. Journal of bacteriology 197, 2284-2291, doi:10.1128/JB.00080-15 (2015). 18Savic, M. et al. 30S Subunit-dependent activation of the Sorangium cellulosum So ce56 aminoglycoside resistance-conferring 16S rRNA methyltransferase Kmr. Antimicrobial agents and chemotherapy 59, 2807-2816, doi:10.1128/AAC.00056-15 (2015). 19Yu, W. et al. Bromo-deaza-SAH: a potent and selective DOT1L inhibitor. Bioorganic & medicinal chemistry 21, 1787-1794, doi:10.1016/j.bmc.2013.01.049 (2013). 20Selley, M. L. A metabolic link between S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer''s disease. Neurobiology of aging 28, 1834-1839, doi:10.1016/j.neurobiolaging.2006.08.003 (2007). 21Dorgan, K. M. et al. An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Analytical biochemistry 350, 249-255, doi:10.1016/j.ab.2006.01.004 (2006). 22Altintas, E. & Sezgin, O. S-adenosylhomocysteine hydrolase, S-adenosylmethionine, S-adenosylhomocysteine: correlations with ribavirin induced anemia. Medical hypotheses 63, 834-837, doi:10.1016/j.mehy.2004.03.031 (2004). 23Hendricks, C. L., Ross, J. R., Pichersky, E., Noel, J. P. & Zhou, Z. S. An enzyme-coupled colorimetric assay for S-adenosylmethionine-dependent methyltransferases. Analytical biochemistry 326, 100-105, doi:10.1016/j.ab.2003.11.014 (2004). 24Pott, W. A., Benjamin, S. A. & Yang, R. S. Pharmacokinetics, metabolism, and carcinogenicity of arsenic. Reviews of environmental contamination and toxicology 169, 165-214 (2001). 25Wooderchak, W. L., Zhou, Z. S. & Hevel, J. Assays for S-adenosylmethionine (AdoMet/SAM)-dependent methyltransferases. Curr Protoc Toxicol Chapter 4, Unit4 26, doi:10.1002/0471140856.tx0426s38 (2008). 26Messier, V., Zenklusen, D. & Michnick, S. W. A nutrient-responsive pathway that determines M phase timing through control of B-cyclin mRNA stability. Cell 153, 1080-1093, doi:10.1016/j.cell.2013.04.035 (2013). 27Rust, H. L. et al. Using unnatural amino acid mutagenesis to probe the regulation of PRMT1. ACS chemical biology 9, 649-655, doi:10.1021/cb400859z (2014). 28Higashimoto, K., Kuhn, P., Desai, D., Cheng, X. & Xu, W. Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proceedings of the National Academy of Sciences of the United States of America 104, 12318-12323, doi:10.1073/pnas.0610792104 (2007). 29Myers, L. C., Jackow, F. & Verdine, G. L. Metal dependence of transcriptional switching in Escherichia coli Ada. The Journal of biological chemistry 270, 6664-6670 (1995). 30Perry, J. J. et al. Human C6orf211 encodes Armt1, a protein carboxyl methyltransferase that targets PCNA and is linked to the DNA damage response. Cell reports 10, 1288-1296, doi:10.1016/j.celrep.2015.01.054 (2015). 31Dillon, M. B., Rust, H. L., Thompson, P. R. & Mowen, K. A. Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. The Journal of biological chemistry 288, 27872-27880, doi:10.1074/jbc.M113.491092 (2013). 32Singhroy, D. N. et al. Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV-1 activity. Retrovirology 10, 73, doi:10.1186/1742-4690-10-73 (2013). 33Deplus, R. et al. Citrullination of DNMT3A by PADI4 regulates its stability and controls DNA methylation. Nucleic acids research 42, 8285-8296, doi:10.1093/nar/gku522 (2014). 34Moskovitz, J., Walss-Bass, C., Cruz, D. A., Thompson, P. M. & Bortolato, M. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity. Int J Neuropsychopharmacol 17, 1707-1713, doi:10.1017/S1461145714000467 (2014). 35Shamma, A. et al. ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Molecular and cellular biology 33, 3113-3124, doi:10.1128/MCB.01597-12 (2013). 36Ke, M. et al. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2''-O-methyltransferase activity of nsp10/nsp16 complex. Virus research 167, 322-328, doi:10.1016/j.virusres.2012.05.017 (2012). 37Saha, N. & Shuman, S. Effects of alanine cluster mutations in the D12 subunit of vaccinia virus mRNA (guanine-N7) methyltransferase. Virology 287, 40-48, doi:10.1006/viro.2001.1006 (2001). 38Antonysamy, S. et al. Structural context of disease-associated mutations and putative mechanism of autoinhibition revealed by X-ray crystallographic analysis of the EZH2-SET domain. PloS one 8, e84147, doi:10.1371/journal.pone.0084147 (2013). 39Schlichter, A. & Cairns, B. R. Histone trimethylation by Set1 is coordinated by the RRM, autoinhibitory, and catalytic domains. The EMBO journal 24, 1222-1231, doi:10.1038/sj.emboj.7600607 (2005). 40Zhang, Y. et al. MicroRNA-323-3p regulates the activity of polycomb repressive complex 2 (PRC2) via targeting the mRNA of embryonic ectoderm development (Eed) gene in mouse embryonic stem cells. The Journal of biological chemistry 288, 23659-23665, doi:10.1074/jbc.M113.475608 (2013). 41Cifuentes-Rojas, C., Hernandez, A. J., Sarma, K. & Lee, J. T. Regulatory interactions between RNA and polycomb repressive complex 2. Molecular cell 55, 171-185, doi:10.1016/j.molcel.2014.05.009 (2014). 42Peng, Y. et al. Structural basis of substrate recognition in human nicotinamide N-methyltransferase. Biochemistry 50, 7800-7808, doi:10.1021/bi2007614 (2011). 43Purdy, M. M., Holz-Schietinger, C. & Reich, N. O. Identification of a second DNA binding site in human DNA methyltransferase 3A by substrate inhibition and domain deletion. Archives of biochemistry and biophysics 498, 13-22, doi:10.1016/j.abb.2010.03.007 (2010). 44Bacolla, A., Pradhan, S., Roberts, R. J. & Wells, R. D. Recombinant human DNA (cytosine-5) methyltransferase. II. Steady-state kinetics reveal allosteric activation by methylated dna. The Journal of biological chemistry 274, 33011-33019 (1999). 45Svedruzic, Z. M. & Reich, N. O. Mechanism of allosteric regulation of Dnmt1''s processivity. Biochemistry 44, 14977-14988, doi:10.1021/bi050988f (2005). 46Svedruzic, Z. M. & Reich, N. O. DNA cytosine C5 methyltransferase Dnmt1: catalysis-dependent release of allosteric inhibition. Biochemistry 44, 9472-9485, doi:10.1021/bi050295z (2005). 47Lai, S. J. & Lai, M. C. Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from halophilic methanogen Methanohalophilus portucalensis. PloS one 6, e25090, doi:10.1371/journal.pone.0025090 (2011). 48Mudd, S. H. & Datko, A. H. Synthesis of methylated ethanolamine moieties: regulation by choline in lemna. Plant physiology 90, 296-305 (1989). 49Danne, L. et al. Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase. Molecular microbiology 95, 313-331, doi:10.1111/mmi.12870 (2015). 50Sato, F., Tsujita, T., Katagiri, Y., Yoshida, S. & Yamada, Y. Purification and characterization of S-adenosyl-L-methionine: norcoclaurine 6-O-methyltransferase from cultured Coptis japonica cells. European journal of biochemistry / FEBS 225, 125-131 (1994). 51Muth, W. L. & Nash, C. H., 3rd. Biosynthesis of mycophenolic acid: purification and characterization of S-adenosyl-L-methionine: demethylmycophenolic acid O-methyltransferase. Antimicrobial agents and chemotherapy 8, 321-327 (1975). 52Southall, S. M., Wong, P. S., Odho, Z., Roe, S. M. & Wilson, J. R. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Molecular cell 33, 181-191, doi:10.1016/j.molcel.2008.12.029 (2009). 53Shinsky, S. A. et al. A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. Journal of molecular biology 426, 2283-2299, doi:10.1016/j.jmb.2014.03.011 (2014). 54Nolan, L. L. Molecular target of the antileishmanial action of sinefungin. Antimicrobial agents and chemotherapy 31, 1542-1548 (1987). 55Sirinupong, N. et al. Crystal structure of cardiac-specific histone methyltransferase SmyD1 reveals unusual active site architecture. The Journal of biological chemistry 285, 40635-40644, doi:10.1074/jbc.M110.168187 (2010). 56Jiang, Y., Sirinupong, N., Brunzelle, J. & Yang, Z. Crystal structures of histone and p53 methyltransferase SmyD2 reveal a conformational flexibility of the autoinhibitory C-terminal domain. PloS one 6, e21640, doi:10.1371/journal.pone.0021640 (2011). 57An, S., Yeo, K. J., Jeon, Y. H. & Song, J. J. Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. The Journal of biological chemistry 286, 8369-8374, doi:10.1074/jbc.M110.203380 (2011). 58Roesser, M. & Muller, V. Osmoadaptation in bacteria and archaea: common principles and differences. Environmental microbiology 3, 743-754 (2001). 59Roberts, M. F. Osmoadaptation and osmoregulation in archaea: update 2004. Frontiers in bioscience : a journal and virtual library 9, 1999-2019 (2004). 60Chen, T. H. & Murata, N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, cell & environment 34, 1-20, doi:10.1111/j.1365-3040.2010.02232.x (2011). 61Chen, T. H. & Murata, N. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in plant science 13, 499-505, doi:10.1016/j.tplants.2008.06.007 (2008). 62Craig, S. A. Betaine in human nutrition. The American journal of clinical nutrition 80, 539-549 (2004). 63Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiological reviews 87, 1441-1474, doi:10.1152/physrev.00056.2006 (2007). 64Nakanishi, T., Turner, R. J. & Burg, M. B. Osmoregulation of betaine transport in mammalian renal medullary cells. The American journal of physiology 258, F1061-1067 (1990). 65Muller, V., Spanheimer, R. & Santos, H. Stress response by solute accumulation in archaea. Curr Opin Microbiol 8, 729-736, doi:DOI 10.1016/j.mib.2005.10.011 (2005). 66Lai, M. C., Hong, T. Y. & Gunsalus, R. P. Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis. Journal of bacteriology 182, 5020-5024, doi:Doi 10.1128/Jb.182.17.5020-5024.2000 (2000). 67Proctor, L. M., Lai, R. & Gunsalus, R. P. The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl Environ Microb 63, 2252-2257 (1997). 68Roessler, M. et al. Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Go1. Appl Environ Microb 68, 2133-2139, doi:Doi 10.1128/Aem.68.5.2133-2139.2002 (2002). 69Lai, M. C., Yang, D. R. & Chuang, M. J. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl Environ Microbiol 65, 828-833 (1999). 70Mathrani, I. M. & Boone, D. R. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl Environ Microbiol 50, 140-143 (1985). 71Lai, M. C., Wang, C. C., Chuang, M. J., Wu, Y. C. & Lee, Y. C. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res Microbiol 157, 948-955, doi:S0923-2508(06)00211-7 [pii] 10.1016/j.resmic.2006.08.007 (2006). 72Boone, D. R., Mathrani, I. M., Liu, Y., Menaia, J. A. G. F. & Mah, R. A. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int J Sys Bact 43, 430–437 (1993). 73Lai, M. C., Sowers, K. R., Robertson, D. E., Roberts, M. F. & Gunsalus, R. P. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. Journal of bacteriology 173, 5352-5358 (1991). 74Lai, M. C. & Gunsalus, R. P. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. Journal of bacteriology 174, 7474-7477 (1992). 75Kimura, Y., Kawasaki, S., Yoshimoto, H. & Takegawa, K. Glycine betaine biosynthesized from glycine provides an osmolyte for cell growth and spore germination during osmotic stress in Myxococcus xanthus. Journal of bacteriology 192, 1467-1470, doi:10.1128/JB.01118-09 (2010). 76Lu, W. D., Chi, Z. M. & Su, C. D. Identification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis. Archives of microbiology 186, 495-506, doi:10.1007/s00203-006-0167-8 (2006). 77Nyyssola, A., Kerovuo, J., Kaukinen, P., von Weymarn, N. & Reinikainen, T. Extreme halophiles synthesize betaine from glycine by methylation. The Journal of biological chemistry 275, 22196-22201, doi:10.1074/jbc.M910111199 (2000). 78Nyyssola, A., Reinikainen, T. & Leisola, M. Characterization of glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase. Appl Environ Microbiol 67, 2044-2050, doi:10.1128/AEM.67.5.2044-2050.2001 (2001). 79Nyyssola, A. & Leisola, M. Actinopolyspora halophila has two separate pathways for betaine synthesis. Archives of microbiology 176, 294-300, doi:10.1007/s002030100325 (2001). 80Waditee, R. et al. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. The Journal of biological chemistry 278, 4932-4942, doi:10.1074/jbc.M210970200 (2003). 81Fujioka, M. Mammalian small molecule methyltransferases: their structural and functional features. The International journal of biochemistry 24, 1917-1924 (1992). 82Martin, J. L. & McMillan, F. M. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12, 783-793, doi:S0959440X02003913 [pii] (2002). 83Liscombe, D. K., Louie, G. V. & Noel, J. P. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Natural product reports 29, 1238-1250, doi:10.1039/c2np20029e (2012). 84Schubert, H. L., Blumenthal, R. M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28, 329-335, doi:S0968-0004(03)00090-2 [pii] 10.1016/S0968-0004(03)00090-2 (2003). 85Zhang, X., Zhou, L. & Cheng, X. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. The EMBO journal 19, 3509-3519, doi:10.1093/emboj/19.14.3509 (2000). 86Huang, Y. et al. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes. Journal of molecular biology 298, 149-162, doi:10.1006/jmbi.2000.3637 S0022-2836(00)93637-4 [pii] (2000). 87Martin, J. L., Begun, J., McLeish, M. J., Caine, J. M. & Grunewald, G. L. Getting the adrenaline going: crystal structure of the adrenaline-synthesizing enzyme PNMT. Structure 9, 977-985, doi:S0969212601006621 [pii] (2001). 88Goedecke, K., Pignot, M., Goody, R. S., Scheidig, A. J. & Weinhold, E. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Nat Struct Biol 8, 121-125, doi:10.1038/84104 (2001). 89Gong, W., O''Gara, M., Blumenthal, R. M. & Cheng, X. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic acids research 25, 2702-2715, doi:gka457 [pii] (1997). 90Schubert, H. L., Phillips, J. D. & Hill, C. P. Structures along the catalytic pathway of PrmC/HemK, an N5-glutamine AdoMet-dependent methyltransferase. Biochemistry 42, 5592-5599, doi:10.1021/bi034026p (2003). 91Scheuermann, T. H., Lolis, E. & Hodsdon, M. E. Tertiary structure of thiopurine methyltransferase from Pseudomonas syringae, a bacterial orthologue of a polymorphic, drug-metabolizing enzyme. Journal of molecular biology 333, 573-585 (2003). 92Horton, J. R., Sawada, K., Nishibori, M. & Cheng, X. Structural basis for inhibition of histamine N-methyltransferase by diverse drugs. Journal of molecular biology 353, 334-344, doi:10.1016/j.jmb.2005.08.040 (2005). 93Cheng, X. & Blumenthal, R. M. S-Adenosylmethionine-dependent Methyltransferases: Structures and Functions, World Scientific, Singapore. (1999). 94Struck, A. W., Thompson, M. L., Wong, L. S. & Micklefield, J. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. Chembiochem : a European journal of chemical biology 13, 2642-2655, doi:10.1002/cbic.201200556 (2012). 95Grove, T. L. et al. A radically different mechanism for S-adenosylmethionine-dependent methyltransferases. Science 332, 604-607, doi:10.1126/science.1200877 (2011). 96Horowitz, S. et al. Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases. Journal of the American Chemical Society 135, 15536-15548, doi:10.1021/ja407140k (2013). 97Takata, Y. et al. Catalytic mechanism of glycine N-methyltransferase. Biochemistry 42, 8394-8402, doi:10.1021/bi034245a (2003). 98Kozbial, P. Z. & Mushegian, A. R. Natural history of S-adenosylmethionine-binding proteins. BMC structural biology 5, 19, doi:10.1186/1472-6807-5-19 (2005). 99Schapira, M. Structural Chemistry of Human SET Domain Protein Methyltransferases. Current chemical genomics 5, 85-94, doi:10.2174/1875397301005010085 (2011). 100Andreoli, F., Barbosa, A. J., Parenti, M. D. & Del Rio, A. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Current pharmaceutical design 19, 578-613 (2013). 101Komoto, J. et al. Catalytic mechanism of guanidinoacetate methyltransferase: crystal structures of guanidinoacetate methyltransferase ternary complexes. Biochemistry 43, 14385-14394, doi:10.1021/bi0486785 (2004). 102Lee, S. G., Kim, Y., Alpert, T. D., Nagata, A. & Jez, J. M. Structure and reaction mechanism of phosphoethanolamine methyltransferase from the malaria parasite Plasmodium falciparum: an antiparasitic drug target. The Journal of biological chemistry 287, 1426-1434, doi:10.1074/jbc.M111.315267 (2012). 103Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography Part A 276, 307-326, doi:doi:10.1016/S0076-6879(97)76066-X (1997). 104Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica. Section D, Biological crystallography 66, 213-221, doi:10.1107/S0907444909052925 (2010). 105Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta crystallographica. Section D, Biological crystallography 60, 2126-2132, doi:10.1107/S0907444904019158 (2004). 106Schrodinger, L. L. C. The PyMOL Molecular Graphics System, Version 1.3r1. (2010). 107Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. Journal of molecular biology 234, 779-815, doi:10.1006/jmbi.1993.1626 (1993). 108Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research 25, 4876-4882 (1997). 109Matsumura, I. A quarter century of reaping what we SOE. BioTechniques 54, 127-128, doi:10.2144/000114001 (2013). 110Drinkwater, N. et al. Molecular recognition of physiological substrate noradrenaline by the adrenaline-synthesizing enzyme PNMT and factors influencing its methyltransferase activity. The Biochemical journal 422, 463-471, doi:10.1042/BJ20090702 (2009). 111Fabrega, C., Hausmann, S., Shen, V., Shuman, S. & Lima, C. D. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Molecular cell 13, 77-89 (2004). 112Lu, C. et al. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nature structural & molecular biology 15, 1076-1083, doi:10.1038/nsmb.1494 (2008). 113O''Hagan, D. & Schmidberger, J. W. Enzymes that catalyse SN2 reaction mechanisms. Natural product reports 27, 900-918, doi:10.1039/b919371p (2010). 114Li, X. et al. Residues in human arsenic (+3 oxidation state) methyltransferase forming potential hydrogen bond network around S-adenosylmethionine. PloS one 8, e76709, doi:10.1371/journal.pone.0076709 (2013). 115Peng, Y. et al. Structural basis of substrate recognition in thiopurine s-methyltransferase. Biochemistry 47, 6216-6225, doi:10.1021/bi800102x (2008). 116Hu, P. & Zhang, Y. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: an ab initio QM/MM-FE study with multiple initial structures. Journal of the American Chemical Society 128, 1272-1278, doi:10.1021/ja056153+ (2006). 117Poulin, M. B. et al. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36. Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.1521036113 (2016). 118Perez, C., Koshy, C., Yildiz, O. & Ziegler, C. Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490, 126-130, doi:10.1038/nature11403 (2012). 119Ressl, S., Terwisscha van Scheltinga, A. C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458, 47-52, doi:10.1038/nature07819 (2009). 120Schiefner, A. et al. Cation-pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. The Journal of biological chemistry 279, 5588-5596, doi:10.1074/jbc.M309771200 (2004). 121Smith, B. C. & Denu, J. M. Chemical mechanisms of histone lysine and arginine modifications. Biochimica et biophysica acta 1789, 45-57, doi:10.1016/j.bbagrm.2008.06.005 (2009). 122Southall, S. M., Cronin, N. B. & Wilson, J. R. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Nucleic acids research 42, 661-671, doi:10.1093/nar/gkt776 (2014). 123Lee, S. G. & Jez, J. M. Evolution of structure and mechanistic divergence in di-domain methyltransferases from nematode phosphocholine biosynthesis. Structure 21, 1778-1787, doi:10.1016/j.str.2013.07.023 (2013). 124Mato, J. M. & Lu, S. C. Role of S-adenosyl-L-methionine in liver health and injury. Hepatology 45, 1306-1312, doi:10.1002/hep.21650 (2007). 125Mato, J. M., Martinez-Chantar, M. L. & Lu, S. C. Methionine metabolism and liver disease. Annual review of nutrition 28, 273-293, doi:10.1146/annurev.nutr.28.061807.155438 (2008). 126Cook, R. J. & Wagner, C. Glycine N-methyltransferase is a folate binding protein of rat liver cytosol. Proceedings of the National Academy of Sciences of the United States of America 81, 3631-3634 (1984). 127Yeo, E. J. & Wagner, C. Tissue distribution of glycine N-methyltransferase, a major folate-binding protein of liver. Proceedings of the National Academy of Sciences of the United States of America 91, 210-214 (1994). 128Yeo, E. J., Briggs, W. T. & Wagner, C. Inhibition of glycine N-methyltransferase by 5-methyltetrahydrofolate pentaglutamate. The Journal of biological chemistry 274, 37559-37564 (1999). 129Luka, Z., Mudd, S. H. & Wagner, C. Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. The Journal of biological chemistry 284, 22507-22511, doi:10.1074/jbc.R109.019273 (2009). 130Luka, Z. et al. 5-methyltetrahydrofolate is bound in intersubunit areas of rat liver folate-binding protein glycine N-methyltransferase. The Journal of biological chemistry 282, 4069-4075, doi:10.1074/jbc.M610384200 (2007). 131Chu, U. B. et al. Noncompetitive inhibition of indolethylamine-N-methyltransferase by N,N-dimethyltryptamine and N,N-dimethylaminopropyltryptamine. Biochemistry 53, 2956-2965, doi:10.1021/bi500175p (2014). 132Monecke, T., Dickmanns, A., Strasser, A. & Ficner, R. Structure analysis of the conserved methyltransferase domain of human trimethylguanosine synthase TGS1. Acta crystallographica. Section D, Biological crystallography 65, 332-338, doi:10.1107/S0907444909003102 (2009). 133Fu, Z. et al. Crystal structure of glycine N-methyltransferase from rat liver. Biochemistry 35, 11985-11993, doi:10.1021/bi961068n bi961068n [pii] (1996). 134Pattanayek, R., Newcomer, M. E. & Wagner, C. Crystal structure of apo-glycine N-methyltransferase (GNMT). Protein Sci 7, 1326-1331, doi:10.1002/pro.5560070608 (1998). 135Pakhomova, S., Luka, Z., Grohmann, S., Wagner, C. & Newcomer, M. E. Glycine N-methyltransferases: a comparison of the crystal structures and kinetic properties of recombinant human, mouse and rat enzymes. Proteins 57, 331-337, doi:10.1002/prot.20209 (2004). 136Ogawa, H., Gomi, T., Takusagawa, F. & Fujioka, M. Structure, function and physiological role of glycine N-methyltransferase. The international journal of biochemistry & cell biology 30, 13-26 (1998). 137He, C. et al. Co-expression of genes ApGSMT2 and ApDMT2 for glycinebetaine synthesis in maize enhances the drought tolerance of plants. Molecular Breeding 31, 559-573, doi:10.1007/s11032-012-9815-7 (2013). 138He, Y. et al. Heterologous expression of ApGSMT2 and ApDMT2 genes from Aphanothece halophytica enhanced drought tolerance in transgenic tobacco. Molecular Biology Reports 38, 657-666, doi:10.1007/s11033-010-0152-9 (2011). 139Lai, S.-J., Lai, M.-C., Lee, R.-J., Chen, Y.-H. & Yen, H. E. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. Plant Molecular Biology 85, 429-441, doi:10.1007/s11103-014-0195-8 (2014). 140Singh, M. et al. The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic. Microbiology-Sgm 159, 641-648, doi:10.1099/mic.0.065078-0 (2013). 141Waditee-Sirisattha, R. et al. Anabaena sp PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt. Archives of microbiology 194, 909-914, doi:10.1007/s00203-012-0824-z (2012). 142Tsuchimoto, S. et al. Development of transgenic plants in jatropha with drought tolerance. Plant Biotechnology 29, 137-143, doi:10.5511/plantbiotechnology.12.0406d (2012). 143Wu, W. L. et al. Phosphoproteomic analysis of Methanohalophilus portucalensis FDF1(T) identified the role of protein phosphorylation in methanogenesis and osmoregulation. Scientific reports 6, 29013, doi:10.1038/srep29013 (2016).
|