跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李易儒
研究生(外文):Yi-Ru Lee
論文名稱:甘胺酸肌胺酸氮甲基轉移酶之結構分析及活性調控機制之探討
論文名稱(外文):Structural Analysis of Glycine Sarcosine N-methyltransferase from Methanohalophilus portucalensis Reveals Mechanistic Insights into the Regulation of Methyltransferase Activity
指導教授:詹迺立
口試委員:賴美津吳世雄蕭傳鐙張嘉銘
口試日期:2016-12-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:175
中文關鍵詞:甘胺酸肌胺酸氮甲基轉移酶S-腺苷甲硫氨酸(SAM)甜菜鹼高鹽甲烷太古生物Methanohalophilus portucalensisX射線晶體學肌胺酸 (sarcosine)NN-二甲基甘氨酸 (DMG)
外文關鍵詞:Glycine sarcosine N-methyltransferaseS-Adenosyl methionine (SAM)betaineMethanohalophilus portucalensisX-ray crystallographyDimethylglycine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
甲基轉移酶在許多細胞生化運作過程中經常扮演著重要的角色,因此生物體中存在著多種調控甲基轉移酶活性的分子機制。對於參與在生物生合成路徑中的甲基轉移酶而言,負迴饋抑制是一種經常被採用的調控策略;以避免終產物的過度累積。然而目前為止文獻中尚無此類甲基轉移酶與終產物形成的複合體晶體結構被報導,因此終產物抑制甲基轉移酶活性的結構基礎仍待探討。本研究係藉由晶體結構解析、闡述一個來自嗜鹽古生菌 (高鹽甲烷太古生物Methanohalophilus portucalensis) 中的甘胺酸肌胺酸氮-甲基轉移酶 (簡稱MpGSMT) 的活性調控機轉。此結構是甘胺酸肌胺酸氮-甲基轉移酶蛋白家族中第一個被報導的晶體結構。MpGSMT負責催化菌體內生合成滲透壓保護劑甜菜鹼(betaine)的第一及第二個催化步驟,它是利用S-腺苷甲硫氨酸 (簡稱SAM) 做為甲基的提供者,將甘胺酸以及肌胺酸進行甲基化以合成肌胺酸與二甲基甘胺酸。生化分析指出此酵素的活性可受高鹽所刺激而提升、而終產物甜菜鹼則會以負迴饋方式抑制其活性。為了對於甲基轉移酶的調控機制有更深入的了解,我們解析了MpGSMT於不同形式的晶體結構,包括酵素本身的結構、酵素分別結合SAM或是S-(5''-腺苷)-L-高半胱氨酸 (簡稱SAH)的二重複合體結構、以及酵素結合SAH/肌胺酸和酵素結合SAH/二甲基甘胺酸的三重複合體結構。
MpGSMT整體結構與第一型SAM依賴型甲基轉移酶家族成員非常類似, 結構主體呈現一個典型的混合型β-平板摺疊形式;有七個β-strands,各strands之間以α-螺旋與loops連接。β-strands的排列順序為 β3-β2-β1-β4-β5-β7-β6,β1-β6以平行方式排列,而β7以反平行方式排列。β5羧基端之延伸序列形成獨立的功能區覆蓋在活性中心的上方,其組成包括一個α-螺旋以及四個反平行排列的β-strands。結合於活性中心的SAM與酵素之間形成多組交互作用;包含腺苷的鹼基與色胺酸115的側鏈形成推疊(stacking interaction),D-核糖與天門冬胺酸88以及L-高半胱氨酸與丙胺酸67、亮胺酸132、天冬醯胺73、以及精胺酸43之間有氫鍵交互作用。受質肌胺酸結合區的空間的長、寬、高分別為7.7、7以及4 Å,位於蓋子結構與SAM結合的主結構之間。其中的天冬醯胺134、組胺酸138、精胺酸167、酪胺酸206、以及蛋胺酸218等胺基酸協助受質肌胺酸以最佳方位結合,以進行催化反應。結構分析進一步顯示結合於活性中心的SAH與受質肌胺酸之間的空間相當大,與一般的小分子氮-甲基轉移酶所具有較為窄小的活性中心有著顯著的不同。由於已知MpGSMT活性是需要被調控,因此推測儘管受質(肌胺酸)與輔酶(SAH)同時存在,此MpGSMT結構很可能仍處於非活化態的構形,推測需要額外的構型改變才能組合成一個有效的活性中心結構。此點也透過將輔酶(SAH)置換成甲基的提供者SAM,說明此構形的確處於非活化狀態,且不會引起甲基化反應。另外,此不活化的構型也透過浸泡晶體於甜菜鹼的水溶液中,並且經過結構解析的結果,確實觀察到有甜菜鹼的結合位,推測甜菜鹼可能透過穩定此非活化狀態而抑制MpGSMT酵素活性。此外,我們也模擬出一個MpGSMT處於有活性狀態的構形,以進一步了解活性中心可能的構型變化。比較MpGSMT非活化態的構形與處於有活性狀態的模型,我們發現N端第一個螺旋 (簡稱H1 helix) 在晶體結構中是遠離SAM結合的活性區塊,而在有活性的模型中此區域則形成一段延伸且包覆著活性中心的構形。突變此H1 helix區域,結果造成對鉀離子濃度原本刺激活性上升的敏感度降低了,此結果顯示N端區域與活性調控有關。
本研究是第一個生物生合成路徑中甲基轉移酶酵素與終產物形成複合體的蛋白結構,得以此推測負迴饋調控可能的機制。於研究過程中發現 N-端H1 helix區域對此小分子氮-甲基轉移酶的MpGSMT可能是一個重要的調控位點,它不僅是一個終產物甜菜鹼造成酵素活性受抑制的區域,也可能是高鹽得以提升酵素活性的關鍵調控位點。
Methyltransferases play crucial roles in many cellular processes, and various regulatory mechanisms have evolved to control their activities. For methyltransferases involved in biosynthetic pathways, regulation via feedback inhibition is a commonly employed strategy to prevent excessive accumulation of the pathways’ end products. To date, no biosynthetic methyltransferases have been characterized by X-ray crystallography in complex with their corresponding end product. To understand the structural basis by which feedback regulation of methyltransferase activity is acheved, we characterized the crystal structures of the glycine sarcosine N-methyltransferase from the halophilic archaeon Methanohalophilus portucalensis (MpGSMT). As the first enzyme in the biosynthetic pathway of the osmoprotectant betaine, MpGSMT catalyzes N-methylation of glycine and sarcosine, and its activity is feedback-inhibited by the end product betaine. Here, we report the crystal structures of MpGSMT in its apo state, cofactor S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH)-bound binary complexes, and in complexes with cofactor and substrate/product. This work represents the first structural elucidation of the GSMT methyltransferase family.
The overall structure of MpGSMT exhibits a classical mixed β-sheet fold common to all class I SAM-dependent methyltransferase (SAM-MTase). The seven β-strands are sandwiched by three helices on each side and are arranged in the order of β3-β2-β1-β4-β5-β7-β6, where β7 is the only strand showing anti-parallel packing. A lid structure comprises a helix and a 4-strand anti-parallel β-sheet protrudes from β5 to shield the active site cavity from solvent. Multiple sets of interactions were identified between MpGSMT and the bound SAH: stacking interaction between the adenine ring and the side chain of Trp115; hydrogen bonds between the D-ribose and Asp88; and L-homocysteine with Ala67, Leu132, Asn73 and Arg43. The substrate binding pocket is ~7.7 Å long, ~7 Å wide, and ~4 Å deep and is located between the lid structure and the mixed β-sheet domain. Residues Asn134, His138, Arg167, Tyr206 and Met218 are involved in orienting sarcosine for catalysis. A structural analysis revealed that, despite the simultaneous presence of both substrate (sarcosine) and cofactor (S-adenosyl-L-homocysteine; SAH), the enzyme was likely crystallized in an inactive conformation, as additional structural changes are required to complete the active site assembly. Consistent with this interpretation, the bound SAH can be replaced by the methyl donor S-adenosyl-L-methionine without triggering the methylation reaction. Furthermore, the observed conformational state was found to harbor a betaine-binding site enclosed by the H1 helix, H2 helix and αB helix, suggesting that betaine may inhibit MpGSMT activity by trapping the enzyme in an inactive form. In addition, we obtained a structural model of MpGSMT in its catalytically active state by homology modeling using the closely related glycine N-methyltransferase (PDBid: 1NBH) as the template. Comparison of catalytically inactivated structure and the active state model, the H1 helix region was found to locate away from the SAM binding fold in the crystal structure, whereas it forms an extend loop structure that covers the active site in the active state model. Mutagenesis of the H1 helix region resulted in enhancement of basal catalytic activity but reduces the enzyme’s response to potassium concentration, suggesting that the N-terminal region may be involved in the regulation of MpGSMT activity.
Taken together, we resolved the structure of a catalytically inactive state of MpGSMT and discovered that the H1 helix region may play an important regulatory module that not only participates in the betaine-mediated feedback inhibition but also in salt-induced activation.
口試委員會審定書 i
謝誌 ii
摘要 iv
Abstract vii
Table of Contents xi
List of Figures and Tables xv
Chapter 1: Introduction 1
1.1 Methyltransferases participate in a wide variety of significant biological functions 2
1.2 Most methyltransferases activities are regulated 3
1.3 The regulation of methyltransferase activity usually associates with conformational change 10
1.4 Biological function of MpGSMT in osmotic protection 11
1.5 The methylation activity of MpGSMT also requires to be regulated 13
1.6 GSMT nomenclature by International Union of Biochemistry and Molecular Biology (IUBMB) 14
1.7 The sequence-based bioinformatics and structural feature of MpGSMT 15
1.8 The possible reaction mechanism of MpGSMT 18
1.9 Study aim and a summary report 20
Chapter 2: Materials and Methods 23
2.1. Protein preparation 24
2.2. Protein crystallization, Data collection and structural determination 26
2.3. Homology modeling of active form of MpGSMT 31
2.4. Introducing mutations that destabilize helix H1 into MpGSMT 32
2.5. Methyltransferse activity assay 34
2.6. Database 35
2.7. Statistical analysis 35
Chapter 3: Results 37
3.1. Crystal structure of MpGSMT 38
3.1.1. Overall structure of MpGSMT 38
3.1.2. Quaternary structure 39
3.1.3 The cofactor SAM/SAH-binding site 41
3.1.4 Validation of SAM/SAH-bound MpGSMT 43
(1) The measurement of structural similarity 43
(2) Analysis of SAM binding motifs in MpGSMT 44
3.1.5 Sarcosine and dimethylglycine binding sites 45
3.2. Crystal structure of betaine-bound MpGSMT 50
3.3. Active state model by homology modeling 54
3.4. H1 helix region is different in crystal structure and active state model 61
3.5. H1 helix destabilizing mutation design and activity assay 61
3.6. βF loop is another structural difference between crystal structure and active state model 64
Chapter 4: Discussion 66
4.1 The possible inhibitory mechanism of betaine for MpGSMT 67
4.2 The importance of N-terminal region discussed in many N-methyltransferses 71
4.3 Quaternary structure and enzymatic activity of MpGSMT and GNMT 75
4.4 The possible applications of MpGSMT from our results 76
4.5 Future works for obtaining an active form structure of MpGSMT 77
Chapter 5: Summary 80
Chapter 6: Figures and Tables 82
References 135
Appendix 151
Appendix A. Abbreviations 152
Appendix B. The compositions of commonly used buffer 154
Publication 161
1Chittka, A., Nitarska, J., Grazini, U. & Richardson, W. D. Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. The Journal of biological chemistry 287, 42995-43006, doi:10.1074/jbc.M112.392746 (2012).
2Zakrzewicz, D., Zakrzewicz, A., Preissner, K. T., Markart, P. & Wygrecka, M. Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. International journal of molecular sciences 13, 12383-12400, doi:10.3390/ijms131012383 (2012).
3Geoghegan, V., Guo, A., Trudgian, D., Thomas, B. & Acuto, O. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nature communications 6, 6758, doi:10.1038/ncomms7758 (2015).
4Gnyszka, A., Jastrzebski, Z. & Flis, S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer research 33, 2989-2996 (2013).
5Rajendran, G. et al. Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. Journal of neuro-oncology 104, 483-494, doi:10.1007/s11060-010-0520-2 (2011).
6Turek-Plewa, J. & Jagodzinski, P. P. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cellular & molecular biology letters 10, 631-647 (2005).
7Zheng, S. & Shuman, S. Structure-function analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase. RNA 14, 696-705, doi:10.1261/rna.928208 (2008).
8De la Pena, M., Kyrieleis, O. J. & Cusack, S. Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. The EMBO journal 26, 4913-4925, doi:10.1038/sj.emboj.7601912 (2007).
9Egloff, M. P. et al. Structural and functional analysis of methylation and 5''-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. Journal of molecular biology 372, 723-736, doi:10.1016/j.jmb.2007.07.005 (2007).
10Ahn, H. J. et al. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition. The EMBO journal 22, 2593-2603, doi:10.1093/emboj/cdg269 (2003).
11Wang, K. T. et al. Structure of the bifunctional methyltransferase YcbY (RlmKL) that adds the m7G2069 and m2G2445 modifications in Escherichia coli 23S rRNA. Nucleic acids research 40, 5138-5148, doi:10.1093/nar/gks160 (2012).
12Kennaway, C. K. et al. Structure and operation of the DNA-translocating type I DNA restriction enzymes. Genes & development 26, 92-104, doi:10.1101/gad.179085.111 (2012).
13Dryden, D. T. et al. The assembly of the EcoKI type I DNA restriction/modification enzyme and its interaction with DNA. Biochemical Society transactions 27, 691-696 (1999).
14Vasu, K. & Nagaraja, V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiology and molecular biology reviews : MMBR 77, 53-72, doi:10.1128/MMBR.00044-12 (2013).
15Webre, D. J., Wolanin, P. M. & Stock, J. B. Bacterial chemotaxis. Current biology : CB 13, R47-49 (2003).
16Weis, R. M. & Koshland, D. E., Jr. Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid. Proceedings of the National Academy of Sciences of the United States of America 85, 83-87 (1988).
17Miller, D., Xu, H. & White, R. H. S-Inosyl-L-Homocysteine Hydrolase, a Novel Enzyme Involved in S-Adenosyl-L-Methionine Recycling. Journal of bacteriology 197, 2284-2291, doi:10.1128/JB.00080-15 (2015).
18Savic, M. et al. 30S Subunit-dependent activation of the Sorangium cellulosum So ce56 aminoglycoside resistance-conferring 16S rRNA methyltransferase Kmr. Antimicrobial agents and chemotherapy 59, 2807-2816, doi:10.1128/AAC.00056-15 (2015).
19Yu, W. et al. Bromo-deaza-SAH: a potent and selective DOT1L inhibitor. Bioorganic & medicinal chemistry 21, 1787-1794, doi:10.1016/j.bmc.2013.01.049 (2013).
20Selley, M. L. A metabolic link between S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer''s disease. Neurobiology of aging 28, 1834-1839, doi:10.1016/j.neurobiolaging.2006.08.003 (2007).
21Dorgan, K. M. et al. An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Analytical biochemistry 350, 249-255, doi:10.1016/j.ab.2006.01.004 (2006).
22Altintas, E. & Sezgin, O. S-adenosylhomocysteine hydrolase, S-adenosylmethionine, S-adenosylhomocysteine: correlations with ribavirin induced anemia. Medical hypotheses 63, 834-837, doi:10.1016/j.mehy.2004.03.031 (2004).
23Hendricks, C. L., Ross, J. R., Pichersky, E., Noel, J. P. & Zhou, Z. S. An enzyme-coupled colorimetric assay for S-adenosylmethionine-dependent methyltransferases. Analytical biochemistry 326, 100-105, doi:10.1016/j.ab.2003.11.014 (2004).
24Pott, W. A., Benjamin, S. A. & Yang, R. S. Pharmacokinetics, metabolism, and carcinogenicity of arsenic. Reviews of environmental contamination and toxicology 169, 165-214 (2001).
25Wooderchak, W. L., Zhou, Z. S. & Hevel, J. Assays for S-adenosylmethionine (AdoMet/SAM)-dependent methyltransferases. Curr Protoc Toxicol Chapter 4, Unit4 26, doi:10.1002/0471140856.tx0426s38 (2008).
26Messier, V., Zenklusen, D. & Michnick, S. W. A nutrient-responsive pathway that determines M phase timing through control of B-cyclin mRNA stability. Cell 153, 1080-1093, doi:10.1016/j.cell.2013.04.035 (2013).
27Rust, H. L. et al. Using unnatural amino acid mutagenesis to probe the regulation of PRMT1. ACS chemical biology 9, 649-655, doi:10.1021/cb400859z (2014).
28Higashimoto, K., Kuhn, P., Desai, D., Cheng, X. & Xu, W. Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proceedings of the National Academy of Sciences of the United States of America 104, 12318-12323, doi:10.1073/pnas.0610792104 (2007).
29Myers, L. C., Jackow, F. & Verdine, G. L. Metal dependence of transcriptional switching in Escherichia coli Ada. The Journal of biological chemistry 270, 6664-6670 (1995).
30Perry, J. J. et al. Human C6orf211 encodes Armt1, a protein carboxyl methyltransferase that targets PCNA and is linked to the DNA damage response. Cell reports 10, 1288-1296, doi:10.1016/j.celrep.2015.01.054 (2015).
31Dillon, M. B., Rust, H. L., Thompson, P. R. & Mowen, K. A. Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. The Journal of biological chemistry 288, 27872-27880, doi:10.1074/jbc.M113.491092 (2013).
32Singhroy, D. N. et al. Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV-1 activity. Retrovirology 10, 73, doi:10.1186/1742-4690-10-73 (2013).
33Deplus, R. et al. Citrullination of DNMT3A by PADI4 regulates its stability and controls DNA methylation. Nucleic acids research 42, 8285-8296, doi:10.1093/nar/gku522 (2014).
34Moskovitz, J., Walss-Bass, C., Cruz, D. A., Thompson, P. M. & Bortolato, M. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity. Int J Neuropsychopharmacol 17, 1707-1713, doi:10.1017/S1461145714000467 (2014).
35Shamma, A. et al. ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Molecular and cellular biology 33, 3113-3124, doi:10.1128/MCB.01597-12 (2013).
36Ke, M. et al. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2''-O-methyltransferase activity of nsp10/nsp16 complex. Virus research 167, 322-328, doi:10.1016/j.virusres.2012.05.017 (2012).
37Saha, N. & Shuman, S. Effects of alanine cluster mutations in the D12 subunit of vaccinia virus mRNA (guanine-N7) methyltransferase. Virology 287, 40-48, doi:10.1006/viro.2001.1006 (2001).
38Antonysamy, S. et al. Structural context of disease-associated mutations and putative mechanism of autoinhibition revealed by X-ray crystallographic analysis of the EZH2-SET domain. PloS one 8, e84147, doi:10.1371/journal.pone.0084147 (2013).
39Schlichter, A. & Cairns, B. R. Histone trimethylation by Set1 is coordinated by the RRM, autoinhibitory, and catalytic domains. The EMBO journal 24, 1222-1231, doi:10.1038/sj.emboj.7600607 (2005).
40Zhang, Y. et al. MicroRNA-323-3p regulates the activity of polycomb repressive complex 2 (PRC2) via targeting the mRNA of embryonic ectoderm development (Eed) gene in mouse embryonic stem cells. The Journal of biological chemistry 288, 23659-23665, doi:10.1074/jbc.M113.475608 (2013).
41Cifuentes-Rojas, C., Hernandez, A. J., Sarma, K. & Lee, J. T. Regulatory interactions between RNA and polycomb repressive complex 2. Molecular cell 55, 171-185, doi:10.1016/j.molcel.2014.05.009 (2014).
42Peng, Y. et al. Structural basis of substrate recognition in human nicotinamide N-methyltransferase. Biochemistry 50, 7800-7808, doi:10.1021/bi2007614 (2011).
43Purdy, M. M., Holz-Schietinger, C. & Reich, N. O. Identification of a second DNA binding site in human DNA methyltransferase 3A by substrate inhibition and domain deletion. Archives of biochemistry and biophysics 498, 13-22, doi:10.1016/j.abb.2010.03.007 (2010).
44Bacolla, A., Pradhan, S., Roberts, R. J. & Wells, R. D. Recombinant human DNA (cytosine-5) methyltransferase. II. Steady-state kinetics reveal allosteric activation by methylated dna. The Journal of biological chemistry 274, 33011-33019 (1999).
45Svedruzic, Z. M. & Reich, N. O. Mechanism of allosteric regulation of Dnmt1''s processivity. Biochemistry 44, 14977-14988, doi:10.1021/bi050988f (2005).
46Svedruzic, Z. M. & Reich, N. O. DNA cytosine C5 methyltransferase Dnmt1: catalysis-dependent release of allosteric inhibition. Biochemistry 44, 9472-9485, doi:10.1021/bi050295z (2005).
47Lai, S. J. & Lai, M. C. Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from halophilic methanogen Methanohalophilus portucalensis. PloS one 6, e25090, doi:10.1371/journal.pone.0025090 (2011).
48Mudd, S. H. & Datko, A. H. Synthesis of methylated ethanolamine moieties: regulation by choline in lemna. Plant physiology 90, 296-305 (1989).
49Danne, L. et al. Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase. Molecular microbiology 95, 313-331, doi:10.1111/mmi.12870 (2015).
50Sato, F., Tsujita, T., Katagiri, Y., Yoshida, S. & Yamada, Y. Purification and characterization of S-adenosyl-L-methionine: norcoclaurine 6-O-methyltransferase from cultured Coptis japonica cells. European journal of biochemistry / FEBS 225, 125-131 (1994).
51Muth, W. L. & Nash, C. H., 3rd. Biosynthesis of mycophenolic acid: purification and characterization of S-adenosyl-L-methionine: demethylmycophenolic acid O-methyltransferase. Antimicrobial agents and chemotherapy 8, 321-327 (1975).
52Southall, S. M., Wong, P. S., Odho, Z., Roe, S. M. & Wilson, J. R. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Molecular cell 33, 181-191, doi:10.1016/j.molcel.2008.12.029 (2009).
53Shinsky, S. A. et al. A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. Journal of molecular biology 426, 2283-2299, doi:10.1016/j.jmb.2014.03.011 (2014).
54Nolan, L. L. Molecular target of the antileishmanial action of sinefungin. Antimicrobial agents and chemotherapy 31, 1542-1548 (1987).
55Sirinupong, N. et al. Crystal structure of cardiac-specific histone methyltransferase SmyD1 reveals unusual active site architecture. The Journal of biological chemistry 285, 40635-40644, doi:10.1074/jbc.M110.168187 (2010).
56Jiang, Y., Sirinupong, N., Brunzelle, J. & Yang, Z. Crystal structures of histone and p53 methyltransferase SmyD2 reveal a conformational flexibility of the autoinhibitory C-terminal domain. PloS one 6, e21640, doi:10.1371/journal.pone.0021640 (2011).
57An, S., Yeo, K. J., Jeon, Y. H. & Song, J. J. Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. The Journal of biological chemistry 286, 8369-8374, doi:10.1074/jbc.M110.203380 (2011).
58Roesser, M. & Muller, V. Osmoadaptation in bacteria and archaea: common principles and differences. Environmental microbiology 3, 743-754 (2001).
59Roberts, M. F. Osmoadaptation and osmoregulation in archaea: update 2004. Frontiers in bioscience : a journal and virtual library 9, 1999-2019 (2004).
60Chen, T. H. & Murata, N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, cell & environment 34, 1-20, doi:10.1111/j.1365-3040.2010.02232.x (2011).
61Chen, T. H. & Murata, N. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in plant science 13, 499-505, doi:10.1016/j.tplants.2008.06.007 (2008).
62Craig, S. A. Betaine in human nutrition. The American journal of clinical nutrition 80, 539-549 (2004).
63Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiological reviews 87, 1441-1474, doi:10.1152/physrev.00056.2006 (2007).
64Nakanishi, T., Turner, R. J. & Burg, M. B. Osmoregulation of betaine transport in mammalian renal medullary cells. The American journal of physiology 258, F1061-1067 (1990).
65Muller, V., Spanheimer, R. & Santos, H. Stress response by solute accumulation in archaea. Curr Opin Microbiol 8, 729-736, doi:DOI 10.1016/j.mib.2005.10.011 (2005).
66Lai, M. C., Hong, T. Y. & Gunsalus, R. P. Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis. Journal of bacteriology 182, 5020-5024, doi:Doi 10.1128/Jb.182.17.5020-5024.2000 (2000).
67Proctor, L. M., Lai, R. & Gunsalus, R. P. The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl Environ Microb 63, 2252-2257 (1997).
68Roessler, M. et al. Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Go1. Appl Environ Microb 68, 2133-2139, doi:Doi 10.1128/Aem.68.5.2133-2139.2002 (2002).
69Lai, M. C., Yang, D. R. & Chuang, M. J. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl Environ Microbiol 65, 828-833 (1999).
70Mathrani, I. M. & Boone, D. R. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl Environ Microbiol 50, 140-143 (1985).
71Lai, M. C., Wang, C. C., Chuang, M. J., Wu, Y. C. & Lee, Y. C. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res Microbiol 157, 948-955, doi:S0923-2508(06)00211-7 [pii]
10.1016/j.resmic.2006.08.007 (2006).
72Boone, D. R., Mathrani, I. M., Liu, Y., Menaia, J. A. G. F. & Mah, R. A. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int J Sys Bact 43, 430–437 (1993).
73Lai, M. C., Sowers, K. R., Robertson, D. E., Roberts, M. F. & Gunsalus, R. P. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. Journal of bacteriology 173, 5352-5358 (1991).
74Lai, M. C. & Gunsalus, R. P. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. Journal of bacteriology 174, 7474-7477 (1992).
75Kimura, Y., Kawasaki, S., Yoshimoto, H. & Takegawa, K. Glycine betaine biosynthesized from glycine provides an osmolyte for cell growth and spore germination during osmotic stress in Myxococcus xanthus. Journal of bacteriology 192, 1467-1470, doi:10.1128/JB.01118-09 (2010).
76Lu, W. D., Chi, Z. M. & Su, C. D. Identification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis. Archives of microbiology 186, 495-506, doi:10.1007/s00203-006-0167-8 (2006).
77Nyyssola, A., Kerovuo, J., Kaukinen, P., von Weymarn, N. & Reinikainen, T. Extreme halophiles synthesize betaine from glycine by methylation. The Journal of biological chemistry 275, 22196-22201, doi:10.1074/jbc.M910111199 (2000).
78Nyyssola, A., Reinikainen, T. & Leisola, M. Characterization of glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase. Appl Environ Microbiol 67, 2044-2050, doi:10.1128/AEM.67.5.2044-2050.2001 (2001).
79Nyyssola, A. & Leisola, M. Actinopolyspora halophila has two separate pathways for betaine synthesis. Archives of microbiology 176, 294-300, doi:10.1007/s002030100325 (2001).
80Waditee, R. et al. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. The Journal of biological chemistry 278, 4932-4942, doi:10.1074/jbc.M210970200 (2003).
81Fujioka, M. Mammalian small molecule methyltransferases: their structural and functional features. The International journal of biochemistry 24, 1917-1924 (1992).
82Martin, J. L. & McMillan, F. M. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12, 783-793, doi:S0959440X02003913 [pii] (2002).
83Liscombe, D. K., Louie, G. V. & Noel, J. P. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Natural product reports 29, 1238-1250, doi:10.1039/c2np20029e (2012).
84Schubert, H. L., Blumenthal, R. M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28, 329-335, doi:S0968-0004(03)00090-2 [pii]
10.1016/S0968-0004(03)00090-2 (2003).
85Zhang, X., Zhou, L. & Cheng, X. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. The EMBO journal 19, 3509-3519, doi:10.1093/emboj/19.14.3509 (2000).
86Huang, Y. et al. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes. Journal of molecular biology 298, 149-162, doi:10.1006/jmbi.2000.3637
S0022-2836(00)93637-4 [pii] (2000).
87Martin, J. L., Begun, J., McLeish, M. J., Caine, J. M. & Grunewald, G. L. Getting the adrenaline going: crystal structure of the adrenaline-synthesizing enzyme PNMT. Structure 9, 977-985, doi:S0969212601006621 [pii] (2001).
88Goedecke, K., Pignot, M., Goody, R. S., Scheidig, A. J. & Weinhold, E. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Nat Struct Biol 8, 121-125, doi:10.1038/84104 (2001).
89Gong, W., O''Gara, M., Blumenthal, R. M. & Cheng, X. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic acids research 25, 2702-2715, doi:gka457 [pii] (1997).
90Schubert, H. L., Phillips, J. D. & Hill, C. P. Structures along the catalytic pathway of PrmC/HemK, an N5-glutamine AdoMet-dependent methyltransferase. Biochemistry 42, 5592-5599, doi:10.1021/bi034026p (2003).
91Scheuermann, T. H., Lolis, E. & Hodsdon, M. E. Tertiary structure of thiopurine methyltransferase from Pseudomonas syringae, a bacterial orthologue of a polymorphic, drug-metabolizing enzyme. Journal of molecular biology 333, 573-585 (2003).
92Horton, J. R., Sawada, K., Nishibori, M. & Cheng, X. Structural basis for inhibition of histamine N-methyltransferase by diverse drugs. Journal of molecular biology 353, 334-344, doi:10.1016/j.jmb.2005.08.040 (2005).
93Cheng, X. & Blumenthal, R. M. S-Adenosylmethionine-dependent Methyltransferases: Structures and Functions, World Scientific, Singapore. (1999).
94Struck, A. W., Thompson, M. L., Wong, L. S. & Micklefield, J. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. Chembiochem : a European journal of chemical biology 13, 2642-2655, doi:10.1002/cbic.201200556 (2012).
95Grove, T. L. et al. A radically different mechanism for S-adenosylmethionine-dependent methyltransferases. Science 332, 604-607, doi:10.1126/science.1200877 (2011).
96Horowitz, S. et al. Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases. Journal of the American Chemical Society 135, 15536-15548, doi:10.1021/ja407140k (2013).
97Takata, Y. et al. Catalytic mechanism of glycine N-methyltransferase. Biochemistry 42, 8394-8402, doi:10.1021/bi034245a (2003).
98Kozbial, P. Z. & Mushegian, A. R. Natural history of S-adenosylmethionine-binding proteins. BMC structural biology 5, 19, doi:10.1186/1472-6807-5-19 (2005).
99Schapira, M. Structural Chemistry of Human SET Domain Protein Methyltransferases. Current chemical genomics 5, 85-94, doi:10.2174/1875397301005010085 (2011).
100Andreoli, F., Barbosa, A. J., Parenti, M. D. & Del Rio, A. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Current pharmaceutical design 19, 578-613 (2013).
101Komoto, J. et al. Catalytic mechanism of guanidinoacetate methyltransferase: crystal structures of guanidinoacetate methyltransferase ternary complexes. Biochemistry 43, 14385-14394, doi:10.1021/bi0486785 (2004).
102Lee, S. G., Kim, Y., Alpert, T. D., Nagata, A. & Jez, J. M. Structure and reaction mechanism of phosphoethanolamine methyltransferase from the malaria parasite Plasmodium falciparum: an antiparasitic drug target. The Journal of biological chemistry 287, 1426-1434, doi:10.1074/jbc.M111.315267 (2012).
103Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography Part A 276, 307-326, doi:doi:10.1016/S0076-6879(97)76066-X (1997).
104Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica. Section D, Biological crystallography 66, 213-221, doi:10.1107/S0907444909052925 (2010).
105Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta crystallographica. Section D, Biological crystallography 60, 2126-2132, doi:10.1107/S0907444904019158 (2004).
106Schrodinger, L. L. C. The PyMOL Molecular Graphics System, Version 1.3r1. (2010).
107Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. Journal of molecular biology 234, 779-815, doi:10.1006/jmbi.1993.1626 (1993).
108Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research 25, 4876-4882 (1997).
109Matsumura, I. A quarter century of reaping what we SOE. BioTechniques 54, 127-128, doi:10.2144/000114001 (2013).
110Drinkwater, N. et al. Molecular recognition of physiological substrate noradrenaline by the adrenaline-synthesizing enzyme PNMT and factors influencing its methyltransferase activity. The Biochemical journal 422, 463-471, doi:10.1042/BJ20090702 (2009).
111Fabrega, C., Hausmann, S., Shen, V., Shuman, S. & Lima, C. D. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Molecular cell 13, 77-89 (2004).
112Lu, C. et al. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nature structural & molecular biology 15, 1076-1083, doi:10.1038/nsmb.1494 (2008).
113O''Hagan, D. & Schmidberger, J. W. Enzymes that catalyse SN2 reaction mechanisms. Natural product reports 27, 900-918, doi:10.1039/b919371p (2010).
114Li, X. et al. Residues in human arsenic (+3 oxidation state) methyltransferase forming potential hydrogen bond network around S-adenosylmethionine. PloS one 8, e76709, doi:10.1371/journal.pone.0076709 (2013).
115Peng, Y. et al. Structural basis of substrate recognition in thiopurine s-methyltransferase. Biochemistry 47, 6216-6225, doi:10.1021/bi800102x (2008).
116Hu, P. & Zhang, Y. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: an ab initio QM/MM-FE study with multiple initial structures. Journal of the American Chemical Society 128, 1272-1278, doi:10.1021/ja056153+ (2006).
117Poulin, M. B. et al. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36. Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.1521036113 (2016).
118Perez, C., Koshy, C., Yildiz, O. & Ziegler, C. Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490, 126-130, doi:10.1038/nature11403 (2012).
119Ressl, S., Terwisscha van Scheltinga, A. C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458, 47-52, doi:10.1038/nature07819 (2009).
120Schiefner, A. et al. Cation-pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. The Journal of biological chemistry 279, 5588-5596, doi:10.1074/jbc.M309771200 (2004).
121Smith, B. C. & Denu, J. M. Chemical mechanisms of histone lysine and arginine modifications. Biochimica et biophysica acta 1789, 45-57, doi:10.1016/j.bbagrm.2008.06.005 (2009).
122Southall, S. M., Cronin, N. B. & Wilson, J. R. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Nucleic acids research 42, 661-671, doi:10.1093/nar/gkt776 (2014).
123Lee, S. G. & Jez, J. M. Evolution of structure and mechanistic divergence in di-domain methyltransferases from nematode phosphocholine biosynthesis. Structure 21, 1778-1787, doi:10.1016/j.str.2013.07.023 (2013).
124Mato, J. M. & Lu, S. C. Role of S-adenosyl-L-methionine in liver health and injury. Hepatology 45, 1306-1312, doi:10.1002/hep.21650 (2007).
125Mato, J. M., Martinez-Chantar, M. L. & Lu, S. C. Methionine metabolism and liver disease. Annual review of nutrition 28, 273-293, doi:10.1146/annurev.nutr.28.061807.155438 (2008).
126Cook, R. J. & Wagner, C. Glycine N-methyltransferase is a folate binding protein of rat liver cytosol. Proceedings of the National Academy of Sciences of the United States of America 81, 3631-3634 (1984).
127Yeo, E. J. & Wagner, C. Tissue distribution of glycine N-methyltransferase, a major folate-binding protein of liver. Proceedings of the National Academy of Sciences of the United States of America 91, 210-214 (1994).
128Yeo, E. J., Briggs, W. T. & Wagner, C. Inhibition of glycine N-methyltransferase by 5-methyltetrahydrofolate pentaglutamate. The Journal of biological chemistry 274, 37559-37564 (1999).
129Luka, Z., Mudd, S. H. & Wagner, C. Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. The Journal of biological chemistry 284, 22507-22511, doi:10.1074/jbc.R109.019273 (2009).
130Luka, Z. et al. 5-methyltetrahydrofolate is bound in intersubunit areas of rat liver folate-binding protein glycine N-methyltransferase. The Journal of biological chemistry 282, 4069-4075, doi:10.1074/jbc.M610384200 (2007).
131Chu, U. B. et al. Noncompetitive inhibition of indolethylamine-N-methyltransferase by N,N-dimethyltryptamine and N,N-dimethylaminopropyltryptamine. Biochemistry 53, 2956-2965, doi:10.1021/bi500175p (2014).
132Monecke, T., Dickmanns, A., Strasser, A. & Ficner, R. Structure analysis of the conserved methyltransferase domain of human trimethylguanosine synthase TGS1. Acta crystallographica. Section D, Biological crystallography 65, 332-338, doi:10.1107/S0907444909003102 (2009).
133Fu, Z. et al. Crystal structure of glycine N-methyltransferase from rat liver. Biochemistry 35, 11985-11993, doi:10.1021/bi961068n
bi961068n [pii] (1996).
134Pattanayek, R., Newcomer, M. E. & Wagner, C. Crystal structure of apo-glycine N-methyltransferase (GNMT). Protein Sci 7, 1326-1331, doi:10.1002/pro.5560070608 (1998).
135Pakhomova, S., Luka, Z., Grohmann, S., Wagner, C. & Newcomer, M. E. Glycine N-methyltransferases: a comparison of the crystal structures and kinetic properties of recombinant human, mouse and rat enzymes. Proteins 57, 331-337, doi:10.1002/prot.20209 (2004).
136Ogawa, H., Gomi, T., Takusagawa, F. & Fujioka, M. Structure, function and physiological role of glycine N-methyltransferase. The international journal of biochemistry & cell biology 30, 13-26 (1998).
137He, C. et al. Co-expression of genes ApGSMT2 and ApDMT2 for glycinebetaine synthesis in maize enhances the drought tolerance of plants. Molecular Breeding 31, 559-573, doi:10.1007/s11032-012-9815-7 (2013).
138He, Y. et al. Heterologous expression of ApGSMT2 and ApDMT2 genes from Aphanothece halophytica enhanced drought tolerance in transgenic tobacco. Molecular Biology Reports 38, 657-666, doi:10.1007/s11033-010-0152-9 (2011).
139Lai, S.-J., Lai, M.-C., Lee, R.-J., Chen, Y.-H. & Yen, H. E. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. Plant Molecular Biology 85, 429-441, doi:10.1007/s11103-014-0195-8 (2014).
140Singh, M. et al. The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic. Microbiology-Sgm 159, 641-648, doi:10.1099/mic.0.065078-0 (2013).
141Waditee-Sirisattha, R. et al. Anabaena sp PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt. Archives of microbiology 194, 909-914, doi:10.1007/s00203-012-0824-z (2012).
142Tsuchimoto, S. et al. Development of transgenic plants in jatropha with drought tolerance. Plant Biotechnology 29, 137-143, doi:10.5511/plantbiotechnology.12.0406d (2012).
143Wu, W. L. et al. Phosphoproteomic analysis of Methanohalophilus portucalensis FDF1(T) identified the role of protein phosphorylation in methanogenesis and osmoregulation. Scientific reports 6, 29013, doi:10.1038/srep29013 (2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top