|
1World Health Organization. 2中華民國衛生福利部. 3Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA: a cancer journal for clinicians 67, 7-30, doi:10.3322/caac.21387 (2017). 4Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer metastasis reviews 8, 98-101 (1989). 5Bubendorf, L. et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Human pathology 31, 578-583 (2000). 6Tsai, C. H. et al. Metastatic Progression of Prostate Cancer Is Mediated by Autonomous Binding of Galectin-4-O-Glycan to Cancer Cells. Cancer research 76, 5756-5767, doi:10.1158/0008-5472.CAN-16-0641 (2016). 7Sato, H. et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61-65, doi:10.1038/370061a0 (1994). 8Itoh, Y. et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. The EMBO journal 20, 4782-4793, doi:10.1093/emboj/20.17.4782 (2001). 9Itoh, Y. et al. Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP. Mol Biol Cell 17, 5390-5399, doi:10.1091/mbc.E06-08-0740 (2006). 10Itoh, Y., Ito, N., Nagase, H. & Seiki, M. The second dimer interface of MT1-MMP, the transmembrane domain, is essential for ProMMP-2 activation on the cell surface. The Journal of biological chemistry 283, 13053-13062, doi:10.1074/jbc.M709327200 (2008). 11Knauper, V. et al. Cellular Mechanisms for Human Procollagenase-3 (MMP-13) Activation: EVIDENCE THAT MT1-MMP (MMP-14) AND GELATINASE A (MMP-2) ARE ABLE TO GENERATE ACTIVE ENZYME. Journal of Biological Chemistry 271, 17124-17131, doi:10.1074/jbc.271.29.17124 (1996). 12Wong, H. L. et al. When MT1-MMP meets ADAMs. Cell cycle (Georgetown, Tex.) 11, 2793-2798, doi:10.4161/cc.20949 (2012). 13Chan, K. M. et al. MT1-MMP inactivates ADAM9 to regulate FGFR2 signaling and calvarial osteogenesis. Dev Cell 22, 1176-1190, doi:10.1016/j.devcel.2012.04.014 (2012). 14Belkin, A. M. et al. Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. The Journal of biological chemistry 276, 18415-18422, doi:10.1074/jbc.M010135200 (2001). 15Ohuchi, E. et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. The Journal of biological chemistry 272, 2446-2451 (1997). 16Ohtake, Y., Tojo, H. & Seiki, M. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J Cell Sci 119, 3822-3832, doi:10.1242/jcs.03158 (2006). 17Koshikawa, N., Minegishi, T., Sharabi, A., Quaranta, V. & Seiki, M. Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. The Journal of biological chemistry 280, 88-93, doi:10.1074/jbc.M411824200 (2005). 18Bair, E. L. et al. Membrane type 1 matrix metalloprotease cleaves laminin-10 and promotes prostate cancer cell migration. Neoplasia 7, 380-389 (2005). 19Li, Y. et al. Cleavage of lumican by membrane-type matrix metalloproteinase-1 abrogates this proteoglycan-mediated suppression of tumor cell colony formation in soft agar. Cancer research 64, 7058-7064, doi:10.1158/0008-5472.CAN-04-1038 (2004). 20Fosang, A. J., Last, K., Fujii, Y., Seiki, M. & Okada, Y. Membrane-type 1 MMP (MMP-14) cleaves at three sites in the aggrecan interglobular domain. FEBS letters 430, 186-190 (1998). 21d''Ortho, M. P. et al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. European journal of biochemistry 250, 751-757 (1997). 22Abd El-Aziz, S. H., Endo, Y., Miyamaori, H., Takino, T. & Sato, H. Cleavage of growth differentiation factor 15 (GDF15) by membrane type 1-matrix metalloproteinase abrogates GDF15-mediated suppression of tumor cell growth. Cancer science 98, 1330-1335, doi:10.1111/j.1349-7006.2007.00547.x (2007). 23Tam, E. M., Morrison, C. J., Wu, Y. I., Stack, M. S. & Overall, C. M. Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc Natl Acad Sci U S A 101, 6917-6922, doi:10.1073/pnas.0305862101 (2004). 24McQuibban, G. A. et al. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100, 1160-1167 (2002). 25Schlondorff, J., Lum, L. & Blobel, C. P. Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that are distinct from the tumor necrosis factor alpha convertase. The Journal of biological chemistry 276, 14665-14674, doi:10.1074/jbc.M010741200 (2001). 26Deryugina, E. I., Bourdon, M. A., Jungwirth, K., Smith, J. W. & Strongin, A. Y. Functional activation of integrin ?v?3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. International Journal of Cancer 86, 15-23, doi:10.1002/(sici)1097-0215(20000401)86:1<15::aid-ijc3>3.0.co;2-b (2000). 27Kajita, M. et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. The Journal of cell biology 153, 893-904 (2001). 28Endo, K. et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. The Journal of biological chemistry 278, 40764-40770, doi:10.1074/jbc.M306736200 (2003). 29Manon-Jensen, T., Multhaupt, H. A. & Couchman, J. R. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains. The FEBS journal 280, 2320-2331, doi:10.1111/febs.12174 (2013). 30Sithu, S. D. et al. Membrane-type 1-matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration. The Journal of biological chemistry 282, 25010-25019, doi:10.1074/jbc.M611273200 (2007). 31Ito, K. et al. Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of beta-catenin from cell-cell contacts. Oncogene 18, 7080-7090, doi:10.1038/sj.onc.1203191 (1999). 32Steinhusen, U. et al. Cleavage and shedding of E-cadherin after induction of apoptosis. The Journal of biological chemistry 276, 4972-4980, doi:10.1074/jbc.M006102200 (2001). 33Velasco-Loyden, G., Arribas, J. & Lopez-Casillas, F. The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1. The Journal of biological chemistry 279, 7721-7733, doi:10.1074/jbc.M306499200 (2004). 34Rozanov, D. V., Hahn-Dantona, E., Strickland, D. K. & Strongin, A. Y. The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. The Journal of biological chemistry 279, 4260-4268, doi:10.1074/jbc.M311569200 (2004). 35Egawa, N. et al. Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells. The Journal of biological chemistry 281, 37576-37585, doi:10.1074/jbc.M606993200 (2006). 36Domoto, T., Takino, T., Guo, L. & Sato, H. Cleavage of hepatocyte growth factor activator inhibitor-1 by membrane-type MMP-1 activates matriptase. Cancer science 103, 448-454, doi:10.1111/j.1349-7006.2011.02162.x (2012). 37Jin, G. et al. MT1-MMP cleaves Dll1 to negatively regulate Notch signalling to maintain normal B-cell development. The EMBO journal 30, 2281-2293, doi:10.1038/emboj.2011.136 (2011). 38Butler, G. S., Dean, R. A., Tam, E. M. & Overall, C. M. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding. Molecular and cellular biology 28, 4896-4914, doi:10.1128/MCB.01775-07 (2008). 39Takino, T. et al. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene 22, 4617-4626, doi:10.1038/sj.onc.1206542 (2003). 40Nangia-Makker, P. et al. Galectin-3 cleavage: a novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer research 67, 11760-11768, doi:10.1158/0008-5472.CAN-07-3233 (2007). 41Hiraoka, N., Allen, E., Apel, I. J., Gyetko, M. R. & Weiss, S. J. Matrix Metalloproteinases Regulate Neovascularization by Acting as Pericellular Fibrinolysins. Cell 95, 365-377, doi:10.1016/s0092-8674(00)81768-7 (1998). 42Cardillo, M. R., Di Silverio, F. & Gentile, V. Quantitative immunohistochemical and in situ hybridization analysis of metalloproteinases in prostate cancer. Anticancer research 26, 973-982 (2006). 43Sroka, I. C., McDaniel, K., Nagle, R. B. & Bowden, G. T. Differential localization of MT1-MMP in human prostate cancer tissue: role of IGF-1R in MT1-MMP expression. The Prostate 68, 463-476, doi:10.1002/pros.20718 (2008). 44Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81-92 (1999). 45Zhou, Z. et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97, 4052-4057, doi:10.1073/pnas.060037197 (2000). 46Holmbeck, K. et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118, 147-156, doi:10.1242/jcs.01581 (2005). 47Bonfil, R. D. et al. Prostate cancer-associated membrane type 1-matrix metalloproteinase: a pivotal role in bone response and intraosseous tumor growth. The American journal of pathology 170, 2100-2111, doi:10.2353/ajpath.2007.060720 (2007). 48Cao, J., Chiarelli, C., Kozarekar, P. & Adler, H. L. Membrane type 1-matrix metalloproteinase promotes human prostate cancer invasion and metastasis. Thrombosis and haemostasis 93, 770-778, doi:10.1160/TH04-08-0555 (2005). 49Udayakumar, T. S. et al. Membrane Type-1-Matrix Metalloproteinase Expressed by Prostate Carcinoma Cells Cleaves Human Laminin-5 β3 Chain and Induces Cell Migration. Cancer research 63, 2292 (2003). 50Cao, J. et al. Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. The Journal of biological chemistry 283, 6232-6240, doi:10.1074/jbc.M705759200 (2008). 51Udayakumar, T. S., Nagle, R. B. & Bowden, G. T. Fibroblast growth factor-1 transcriptionally induces membrane type-1 matrix metalloproteinase expression in prostate carcinoma cell line. The Prostate 58, 66-75, doi:10.1002/pros.10293 (2004). 52Sroka, I. C., Nagle, R. B. & Bowden, G. T. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells. Neoplasia 9, 406-417, doi:10.1593/neo.07193 (2007). 53Nagakawa, O. et al. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines. Cancer Lett 155, 173-179 (2000). 54Engel, M. et al. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci U S A 100, 5063-5068, doi:10.1073/pnas.0230620100 (2003). 55Rasmussen, H. B., Branner, S., Wiberg, F. C. & Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nature structural biology 10, 19-25, doi:10.1038/nsb882 (2003). 56Thoma, R. et al. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 11, 947-959 (2003). 57Chung, K. M. et al. The dimeric transmembrane domain of prolyl dipeptidase DPP-IV contributes to its quaternary structure and enzymatic activities. Protein science : a publication of the Protein Society 19, 1627-1638, doi:10.1002/pro.443 (2010). 58Chien, C. H. et al. One site mutation disrupts dimer formation in human DPP-IV proteins. The Journal of biological chemistry 279, 52338-52345, doi:10.1074/jbc.M406185200 (2004). 59Chien, C. H., Tsai, C. H., Lin, C. H., Chou, C. Y. & Chen, X. Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 45, 7006-7012, doi:10.1021/bi060401c (2006). 60Umezawa, H. et al. Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. The Journal of antibiotics 37, 422-425 (1984). 61Rahfeld, J., Schierhorn, M., Hartrodt, B., Neubert, K. & Heins, J. Are diprotin A (Ile-Pro-Ile) and diprotin B (Val-Pro-Leu) inhibitors or substrates of dipeptidyl peptidase IV? Biochimica et biophysica acta 1076, 314-316, doi:http://dx.doi.org/10.1016/0167-4838(91)90284-7 (1991). 62Baetta, R. & Corsini, A. Pharmacology of dipeptidyl peptidase-4 inhibitors: similarities and differences. Drugs 71, 1441-1467, doi:10.2165/11591400-000000000-00000 (2011). 63Ohnuma, K., Dang, N. H. & Morimoto, C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends in immunology 29, 295-301, doi:10.1016/j.it.2008.02.010 (2008). 64Loster, K., Zeilinger, K., Schuppan, D. & Reutter, W. The cysteine-rich region of dipeptidyl peptidase IV (CD 26) is the collagen-binding site. Biochemical and biophysical research communications 217, 341-348, doi:10.1006/bbrc.1995.2782 (1995). 65Cheng, H. C., Abdel-Ghany, M. & Pauli, B. U. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. The Journal of biological chemistry 278, 24600-24607, doi:10.1074/jbc.M303424200 (2003). 66Smith, R. E., Talhouk, J. W., Brown, E. E. & Edgar, S. E. The significance of hypersialylation of dipeptidyl peptidase IV (CD26) in the inhibition of its activity by Tat and other cationic peptides. CD26: a subverted adhesion molecule for HIV peptide binding. AIDS research and human retroviruses 14, 851-868, doi:10.1089/aid.1998.14.851 (1998). 67Dinjens, W. N. et al. Adenosine deaminase complexing protein (ADCP) expression and metastatic potential in prostatic adenocarcinomas. J Pathol 160, 195-201, doi:10.1002/path.1711600303 (1990). 68Wilson, M. J. et al. Dipeptidylpeptidase IV activities are elevated in prostate cancers and adjacent benign hyperplastic glands. Journal of andrology 21, 220-226 (2000). 69Bogenrieder, T. et al. Expression and localization of aminopeptidase A, aminopeptidase N, and dipeptidyl peptidase IV in benign and malignant human prostate tissue. The Prostate 33, 225-232, doi:10.1002/(SICI)1097-0045(19971201)33:4<225::AID-PROS1>3.0.CO;2-G (1997). 70Wilson, M. J. et al. Elevation of dipeptidylpeptidase iv activities in the prostate peripheral zone and prostatic secretions of men with prostate cancer: possible prostate cancer disease marker. The Journal of urology 174, 1124-1128, doi:10.1097/01.ju.0000168621.84017.5c (2005). 71Nazarian, A. et al. Inhibition of circulating dipeptidyl peptidase 4 activity in patients with metastatic prostate cancer. Molecular & cellular proteomics : MCP 13, 3082-3096, doi:10.1074/mcp.M114.038836 (2014). 72Wesley, U. V., McGroarty, M. & Homoyouni, A. Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer research 65, 1325-1334, doi:10.1158/0008-5472.CAN-04-1852 (2005). 73Sun, Y. X. et al. CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clinical & experimental metastasis 25, 765-776, doi:10.1007/s10585-008-9188-9 (2008). 74Ware, J. L., Lieberman, A. P., Webb, K. S. & Vollmer, R. T. Factors influencing phenotypic diversity of human prostate carcinoma cells metastasizing in athymic nude mice. Experimental cell biology 53, 163-169 (1985). 75Gonzalez-Gronow, M., Grenett, H. E., Weber, M. R., Gawdi, G. & Pizzo, S. V. Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase-9 by prostate cancer cells. Biochemical Journal 355, 397, doi:10.1042/0264-6021:3550397 (2001). 76Gonzalez-Gronow, M., Misra, U. K., Gawdi, G. & Pizzo, S. V. Association of plasminogen with dipeptidyl peptidase IV and Na+/H+ exchanger isoform NHE3 regulates invasion of human 1-LN prostate tumor cells. The Journal of biological chemistry 280, 27173-27178, doi:10.1074/jbc.M500383200 (2005). 77Gonzalez-Gronow, M., Hershfield, M. S., Arredondo-Vega, F. X. & Pizzo, S. V. Cell surface adenosine deaminase binds and stimulates plasminogen activation on 1-LN human prostate cancer cells. The Journal of biological chemistry 279, 20993-20998, doi:10.1074/jbc.M401023200 (2004). 78Miyakoshi, K. et al. The identification of novel ovarian proteases through the use of genomic and bioinformatic methodologies. Biology of reproduction 75, 823-835, doi:10.1095/biolreprod.106.052290 (2006). 79Wahlberg, P., Nylander, A., Ahlskog, N., Liu, K. & Ny, T. Expression and localization of the serine proteases high-temperature requirement factor A1, serine protease 23, and serine protease 35 in the mouse ovary. Endocrinology 149, 5070-5077, doi:10.1210/en.2007-1736 (2008). 80Chen, I. H. et al. PRSS23 is essential for the Snail-dependent endothelial-to-mesenchymal transition during valvulogenesis in zebrafish. Cardiovascular research 97, 443-453, doi:10.1093/cvr/cvs355 (2013). 81D''Souza, R. C. et al. Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF-beta. Sci Signal 7, rs5, doi:10.1126/scisignal.2004856 (2014). 82LeBleu, V. S. et al. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nature medicine 19, 227-231, doi:http://www.nature.com/nm/journal/v19/n2/abs/nm.2989.html#supplementary-information (2013). 83Jarzab, B. et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer research 65, 1587-1597, doi:10.1158/0008-5472.can-04-3078 (2005). 84Chan, H. S. et al. Serine protease PRSS23 is upregulated by estrogen receptor alpha and associated with proliferation of breast cancer cells. PLoS One 7, e30397, doi:10.1371/journal.pone.0030397 (2012). 85Munshi, A., Hobbs, M. & Meyn, R. E. Clonogenic cell survival assay. Methods in molecular medicine 110, 21-28, doi:10.1385/1-59259-869-2:021 (2005). 86Crowley, L. C., Christensen, M. E. & Waterhouse, N. J. Measuring Survival of Adherent Cells with the Colony-Forming Assay. Cold Spring Harb Protoc 2016, pdb prot087171, doi:10.1101/pdb.prot087171 (2016). 87Borowicz, S. et al. The soft agar colony formation assay. J Vis Exp, e51998, doi:10.3791/51998 (2014). 88Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. The Journal of cell biology 124, 619-626 (1994). 89Sabbota, A. L. et al. Shedding of RANKL by tumor-associated MT1-MMP activates Src-dependent prostate cancer cell migration. Cancer research 70, 5558-5566, doi:10.1158/0008-5472.CAN-09-4416 (2010). 90Orkin, R. W. et al. A murine tumor producing a matrix of basement membrane. The Journal of experimental medicine 145, 204-220 (1977). 91Kleinman, H. K. et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21, 6188-6193, doi:10.1021/bi00267a025 (1982). 92Kleinman, H. K. & Martin, G. R. Matrigel: basement membrane matrix with biological activity. Seminars in cancer biology 15, 378-386, doi:10.1016/j.semcancer.2005.05.004 (2005). 93Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886-1890, doi:10.1002/pmic.200900758 (2010). 94Vanhoof, G., De Meester, I., van Sande, M., Scharpe, S. & Yaron, A. Distribution of proline-specific aminopeptidases in human tissues and body fluids. European journal of clinical chemistry and clinical biochemistry : journal of the Forum of European Clinical Chemistry Societies 30, 333-338 (1992). 95de Meester, I., Vanhoof, G., Lambeir, A. M. & Scharpe, S. Use of immobilized adenosine deaminase (EC 3.5.4.4) for the rapid purification of native human CD26/dipeptidyl peptidase IV (EC 3.4.14.5). J Immunol Methods 189, 99-105 (1996). 96Schrimpf, S. P. et al. Identification of dipeptidyl peptidase IV as the antigen of a monoclonal anti-prostasome antibody. The Prostate 38, 35-39 (1999). 97Utleg, A. G. et al. Proteomic analysis of human prostasomes. The Prostate 56, 150-161, doi:10.1002/pros.10255 (2003). 98Poliakov, A., Spilman, M., Dokland, T., Amling, C. L. & Mobley, J. A. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. The Prostate 69, 159-167, doi:10.1002/pros.20860 (2009). 99Ronquist, K. G. et al. Prostasomes from four different species are able to produce extracellular adenosine triphosphate (ATP). Biochimica et biophysica acta 1830, 4604-4610, doi:10.1016/j.bbagen.2013.05.019 (2013). 100Skoczek, M., Nosek, M. & Weroński, P. Voltammetric monitoring of prostasome aggregation and self-fusion. Electrochimica Acta 190, 1078-1086, doi:10.1016/j.electacta.2015.12.144 (2016). 101Wilson, M. J. et al. Prostate specific origin of dipeptidylpeptidase IV (CD-26) in human seminal plasma. The Journal of urology 160, 1905-1909 (1998). 102Carlsson, L., Ronquist, G., Eliasson, R., Egberg, N. & Larsson, A. Flow cytometric technique for determination of prostasomal quantity, size and expression of CD10, CD13, CD26 and CD59 in human seminal plasma. Int J Androl 29, 331-338, doi:10.1111/j.1365-2605.2005.00601.x (2006). 103Nilsson, B. O., Lennartsson, L., Carlsson, L., Nilsson, S. & Ronquist, G. Expression of prostasome-like granules by the prostate cancer cell lines PC3, Du145 and LnCaP grown in monolayer. Upsala journal of medical sciences 104, 199-206 (1999). 104Johnson, R. C., Augustin-Voss, H. G., Zhu, D. Z. & Pauli, B. U. Endothelial cell membrane vesicles in the study of organ preference of metastasis. Cancer research 51, 394-399 (1991). 105Johnson, R. C., Zhu, D., Augustin-Voss, H. G. & Pauli, B. U. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. The Journal of cell biology 121, 1423-1432 (1993). 106Cheng, H. C., Abdel-Ghany, M., Elble, R. C. & Pauli, B. U. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. The Journal of biological chemistry 273, 24207-24215 (1998). 107Abdel-Ghany, M., Cheng, H.-C., Levine, R. A. & Pauli, B. U. Truncated Dipeptidyl Peptidase IV Is a Potent Anti-Adhesion and Anti-Metastasis Peptide for Rat Breast Cancer Cells. Invasion and Metastasis 18, 35-43, doi:10.1159/000024497 (1999). 108Cheng, H.-C., Abdel-Ghany, M., Zhang, S. & Pauli, B. U. Is the Fischer 344/CRJ rat a protein-knock-out model for dipeptidyl peptidase IV-mediated lung metastasis of breast cancer? Clinical and Experimental Metastasis 17, 609-615, doi:10.1023/a:1006757525190 (1999). 109Tsai, C. H. et al. HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene 33, 4643-4652, doi:10.1038/onc.2013.412 (2014). 110Weinberg, R. The Biology of Cancer, Second Edition. (Taylor & Francis Group, 2013). 111Itoh, Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix biology : journal of the International Society for Matrix Biology 44-46, 207-223, doi:10.1016/j.matbio.2015.03.004 (2015). 112Rohrborn, D., Wronkowitz, N. & Eckel, J. DPP4 in Diabetes. Front Immunol 6, 386, doi:10.3389/fimmu.2015.00386 (2015). 113Klemann, C., Wagner, L., Stephan, M. & von Horsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4''s (DPP4) entanglement in the immune system. Clinical and experimental immunology 185, 1-21, doi:10.1111/cei.12781 (2016).
|