(44.192.112.123) 您好!臺灣時間:2021/02/28 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊威霆
研究生(外文):Wei-Ting Yang
論文名稱:鑑尋參與攝護腺癌轉移的重要蛋白
論文名稱(外文):Identification of Critical Protein Targets Involved in Prostate Cancer Metastatic Progression
指導教授:李明學李明學引用關係
指導教授(外文):Ming-Shyue Lee
口試日期:2017-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:74
中文關鍵詞:攝護腺癌轉移基因敲落細胞移動侵襲群落生成非貼附性生長
外文關鍵詞:Prostate cancer metastasisGene knockdownCell migrationInvasionColony formationAnchorage-independent growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
攝護腺癌是全球男性第二常見的癌症。同時,攝護腺癌也高居我國國民第六大癌症死因。由於癌轉移是造成攝護腺癌病患死亡的主因,了解其背後的分子機制對於鑑尋新的生物標靶及治療方式相當重要。為了尋找調控攝護腺癌轉移的重要因子,我們利用攝護腺癌轉移模型 CWR22Rv1-M4 進行研究。在此,我的實驗結果顯示,M4 細胞的移動、侵襲及非貼附性生長能力皆高於 CWR22Rv1 細胞。次世代定序的結果揭示了許多 CWR22Rv1 與 M4 細胞間差異表現的基因。我們挑選出在細胞周圍作用者,包括 EPHA7, CASP4, MMP14, PAI3, PN1, PRSS8, DPP4, PRSS21 及 PRSS23。我更進一步使用 q-RT-PCR 驗證這些基因的差異表現。七個顯著高表現於 M4 細胞的基因包含 EPHA7, CASP4, MMP14, PAI3, PN1, PRSS8 及 DPP4;而兩個於 M4 細胞中顯著低表現的基因為 PRSS21 及 PRSS23。首先,我藉由文獻查詢及西方墨點法排除三個基因 (EPHA7, PN1及PRSS21)。為了探討以上基因的差異表現是否在攝護腺癌轉移過程中扮演角色,我使用基因敲落的方式,發現 PAI3 及 PRSS23 對於癌細胞的移動及侵襲能力無影響。同時,在 M4 細胞中敲落 MMP14 可降低細胞的移動及侵襲能力,而 DPP4 的敲落則會提升 M4 細胞的移動及侵襲能力。此外,DPP4 競爭型抑制劑 Diprotin A 可以提升 M4 細胞的移動及侵襲力。有趣的是,DPP4 的敲落會降低 M4 細胞的非貼附性生長能力,而在 CWR22Rv1 細胞中敲落 PRSS23 的表現可同時降低細胞的非貼附性生長及群落生成能力。以上結果為這些蛋白參與攝護腺癌轉移的可能提供新的見解。
Prostate cancer (PCa) is the second most common cancer among men worldwide. In Taiwan, PCa is the sixth cause of cancer-related mortality. In fact, metastasis contributes to most PCa casualties. Therefore, understanding the molecular mechanisms behind PCa metastasis is important for identifying novel biomarkers as well as developing new therapeutic approaches. In order to identify important factors regulating PCa metastasis, we applied a CWR22Rv1-M4 PCa metastatic progression model for the study. In this study, I showed that M4 cells had increased cell motility and anchorage-independent growth capacity when compared with parental CWR22Rv1 cells. Meanwhile, many genes with differential expressions between CWR22Rv1 and M4 cells were identified via next-generation sequencing (NGS) approach. We focused on genes functioning around pericellular surface, including EPHA7, CASP4, MMP14, PAI3, PN1, PRSS8, DPP4, PRSS21 and PRSS23. The differential expressions of the above genes were further validated with q-RT-PCR. Seven genes with significantly higher expressions in metastatic M4 cells were EPHA7, CASP4, MMP14, PAI3, PN1, PRSS8 and DPP4, while two genes with significantly lower expressions in M4 cells were PRSS21 and PRSS23. Three genes were excluded from my study after literature mining (EPHA7 and PN1) or western blot analysis (PRSS21). To explore if the rest of the genes participate in PCa metastatic progression, I applied short hairpin (sh) RNA knockdown approaches and found that PAI3 and PRSS23 had no significant impacts on PCa cell migration and invasion, suggesting that these two genes were not involved in the regulation of PCa cell motility. Knockdown of MMP14 decreased M4 cell migration and invasion, while DPP4 knockdown resulted in enhanced M4 cell motility. Furthermore, inhibiting DPP4 enzymatic activity with competitive inhibitor Diprotin A suppressed M4 cell motility. Interestingly, knockdown of DPP4 resulted in decreased anchorage-independent growth of M4 cells, whereas knockdown of PRSS23 in CWR22Rv1 cells resulted in decreased clonogenic and anchorage-independent growth. These results provided insights into potential involvements of these proteins in PCa metastatic progression.
摘要 i
Abstract ii
Chapter 1. Introduction 1
1.1 Prostate cancer 2
1.2 Metastasis 2
1.3 CWR22Rv1 and M4 cells in a prostate cancer metastatic progression model 3
1.4 Matrix metalloproteinase 14 5
1.4.1 Substrates of MMP14 5
1.4.2 Roles of MMP14 in prostate cancer 6
1.5 Dipeptidyl peptidase 4 8
1.5.1 Substrates of DPP4 8
1.5.2 Physiological roles of DPP4 8
1.5.3 Roles of DPP4 in prostate cancer 9
1.6 Serine protease 23 11
1.7 Aim of the thesis 12
Chapter 2. Materials and Methods 13
Chapter 3. Results 26
3.01 M4 cells exhibit higher migration and invasion abilities than CWR22Rv1 cells. 27
3.02 CWR22Rv1 and M4 cells exhibit similar clonogenic abilities. 27
3.03 M4 cells exhibit higher anchorage-independent growth than CWR22Rv1 cells. 28
3.04 Differentially expressed genes in CWR22Rv1 and M4 cells. 28
3.05 PAI3 is not involved in M4 cell migration and invasion. 29
3.06 MMP14 promotes M4 cell migration and invasion. 30
3.07 MMP14 does not affect clonogenic formation of M4 cells. 30
3.08 DPP4 plays a negative role in M4 cell migration and invasion. 31
3.09 Enzymatic activity of DPP4 is involved in the DPP4-mediated suppression of M4 cell migration and invasion. 31
3.10 DPP4 does not affect clonogenic formation of M4 cells. 32
3.11 DPP4 promotes the anchorage-independent growth of M4 cells. 32
3.12 PRSS23 knockdown does not affect CWR22Rv1 cell migration and invasion. 33
3.13 PRSS23 promotes the clonogenic formation of CWR22Rv1 cells. 33
3.14 PRSS23 promotes the anchorage-independent growth of CWR22Rv1 cells. 34
Chapter 4. Discussions 35
Chapter 5. Figures and Tables 40
Chapter 6. References 62
1World Health Organization.
2中華民國衛生福利部.
3Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA: a cancer journal for clinicians 67, 7-30, doi:10.3322/caac.21387 (2017).
4Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer metastasis reviews 8, 98-101 (1989).
5Bubendorf, L. et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Human pathology 31, 578-583 (2000).
6Tsai, C. H. et al. Metastatic Progression of Prostate Cancer Is Mediated by Autonomous Binding of Galectin-4-O-Glycan to Cancer Cells. Cancer research 76, 5756-5767, doi:10.1158/0008-5472.CAN-16-0641 (2016).
7Sato, H. et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61-65, doi:10.1038/370061a0 (1994).
8Itoh, Y. et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. The EMBO journal 20, 4782-4793, doi:10.1093/emboj/20.17.4782 (2001).
9Itoh, Y. et al. Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP. Mol Biol Cell 17, 5390-5399, doi:10.1091/mbc.E06-08-0740 (2006).
10Itoh, Y., Ito, N., Nagase, H. & Seiki, M. The second dimer interface of MT1-MMP, the transmembrane domain, is essential for ProMMP-2 activation on the cell surface. The Journal of biological chemistry 283, 13053-13062, doi:10.1074/jbc.M709327200 (2008).
11Knauper, V. et al. Cellular Mechanisms for Human Procollagenase-3 (MMP-13) Activation: EVIDENCE THAT MT1-MMP (MMP-14) AND GELATINASE A (MMP-2) ARE ABLE TO GENERATE ACTIVE ENZYME. Journal of Biological Chemistry 271, 17124-17131, doi:10.1074/jbc.271.29.17124 (1996).
12Wong, H. L. et al. When MT1-MMP meets ADAMs. Cell cycle (Georgetown, Tex.) 11, 2793-2798, doi:10.4161/cc.20949 (2012).
13Chan, K. M. et al. MT1-MMP inactivates ADAM9 to regulate FGFR2 signaling and calvarial osteogenesis. Dev Cell 22, 1176-1190, doi:10.1016/j.devcel.2012.04.014 (2012).
14Belkin, A. M. et al. Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. The Journal of biological chemistry 276, 18415-18422, doi:10.1074/jbc.M010135200 (2001).
15Ohuchi, E. et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. The Journal of biological chemistry 272, 2446-2451 (1997).
16Ohtake, Y., Tojo, H. & Seiki, M. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J Cell Sci 119, 3822-3832, doi:10.1242/jcs.03158 (2006).
17Koshikawa, N., Minegishi, T., Sharabi, A., Quaranta, V. & Seiki, M. Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. The Journal of biological chemistry 280, 88-93, doi:10.1074/jbc.M411824200 (2005).
18Bair, E. L. et al. Membrane type 1 matrix metalloprotease cleaves laminin-10 and promotes prostate cancer cell migration. Neoplasia 7, 380-389 (2005).
19Li, Y. et al. Cleavage of lumican by membrane-type matrix metalloproteinase-1 abrogates this proteoglycan-mediated suppression of tumor cell colony formation in soft agar. Cancer research 64, 7058-7064, doi:10.1158/0008-5472.CAN-04-1038 (2004).
20Fosang, A. J., Last, K., Fujii, Y., Seiki, M. & Okada, Y. Membrane-type 1 MMP (MMP-14) cleaves at three sites in the aggrecan interglobular domain. FEBS letters 430, 186-190 (1998).
21d''Ortho, M. P. et al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. European journal of biochemistry 250, 751-757 (1997).
22Abd El-Aziz, S. H., Endo, Y., Miyamaori, H., Takino, T. & Sato, H. Cleavage of growth differentiation factor 15 (GDF15) by membrane type 1-matrix metalloproteinase abrogates GDF15-mediated suppression of tumor cell growth. Cancer science 98, 1330-1335, doi:10.1111/j.1349-7006.2007.00547.x (2007).
23Tam, E. M., Morrison, C. J., Wu, Y. I., Stack, M. S. & Overall, C. M. Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc Natl Acad Sci U S A 101, 6917-6922, doi:10.1073/pnas.0305862101 (2004).
24McQuibban, G. A. et al. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100, 1160-1167 (2002).
25Schlondorff, J., Lum, L. & Blobel, C. P. Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that are distinct from the tumor necrosis factor alpha convertase. The Journal of biological chemistry 276, 14665-14674, doi:10.1074/jbc.M010741200 (2001).
26Deryugina, E. I., Bourdon, M. A., Jungwirth, K., Smith, J. W. & Strongin, A. Y. Functional activation of integrin ?v?3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. International Journal of Cancer 86, 15-23, doi:10.1002/(sici)1097-0215(20000401)86:1<15::aid-ijc3>3.0.co;2-b (2000).
27Kajita, M. et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. The Journal of cell biology 153, 893-904 (2001).
28Endo, K. et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. The Journal of biological chemistry 278, 40764-40770, doi:10.1074/jbc.M306736200 (2003).
29Manon-Jensen, T., Multhaupt, H. A. & Couchman, J. R. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains. The FEBS journal 280, 2320-2331, doi:10.1111/febs.12174 (2013).
30Sithu, S. D. et al. Membrane-type 1-matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration. The Journal of biological chemistry 282, 25010-25019, doi:10.1074/jbc.M611273200 (2007).
31Ito, K. et al. Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of beta-catenin from cell-cell contacts. Oncogene 18, 7080-7090, doi:10.1038/sj.onc.1203191 (1999).
32Steinhusen, U. et al. Cleavage and shedding of E-cadherin after induction of apoptosis. The Journal of biological chemistry 276, 4972-4980, doi:10.1074/jbc.M006102200 (2001).
33Velasco-Loyden, G., Arribas, J. & Lopez-Casillas, F. The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1. The Journal of biological chemistry 279, 7721-7733, doi:10.1074/jbc.M306499200 (2004).
34Rozanov, D. V., Hahn-Dantona, E., Strickland, D. K. & Strongin, A. Y. The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. The Journal of biological chemistry 279, 4260-4268, doi:10.1074/jbc.M311569200 (2004).
35Egawa, N. et al. Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells. The Journal of biological chemistry 281, 37576-37585, doi:10.1074/jbc.M606993200 (2006).
36Domoto, T., Takino, T., Guo, L. & Sato, H. Cleavage of hepatocyte growth factor activator inhibitor-1 by membrane-type MMP-1 activates matriptase. Cancer science 103, 448-454, doi:10.1111/j.1349-7006.2011.02162.x (2012).
37Jin, G. et al. MT1-MMP cleaves Dll1 to negatively regulate Notch signalling to maintain normal B-cell development. The EMBO journal 30, 2281-2293, doi:10.1038/emboj.2011.136 (2011).
38Butler, G. S., Dean, R. A., Tam, E. M. & Overall, C. M. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding. Molecular and cellular biology 28, 4896-4914, doi:10.1128/MCB.01775-07 (2008).
39Takino, T. et al. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene 22, 4617-4626, doi:10.1038/sj.onc.1206542 (2003).
40Nangia-Makker, P. et al. Galectin-3 cleavage: a novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer research 67, 11760-11768, doi:10.1158/0008-5472.CAN-07-3233 (2007).
41Hiraoka, N., Allen, E., Apel, I. J., Gyetko, M. R. & Weiss, S. J. Matrix Metalloproteinases Regulate Neovascularization by Acting as Pericellular Fibrinolysins. Cell 95, 365-377, doi:10.1016/s0092-8674(00)81768-7 (1998).
42Cardillo, M. R., Di Silverio, F. & Gentile, V. Quantitative immunohistochemical and in situ hybridization analysis of metalloproteinases in prostate cancer. Anticancer research 26, 973-982 (2006).
43Sroka, I. C., McDaniel, K., Nagle, R. B. & Bowden, G. T. Differential localization of MT1-MMP in human prostate cancer tissue: role of IGF-1R in MT1-MMP expression. The Prostate 68, 463-476, doi:10.1002/pros.20718 (2008).
44Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81-92 (1999).
45Zhou, Z. et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97, 4052-4057, doi:10.1073/pnas.060037197 (2000).
46Holmbeck, K. et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118, 147-156, doi:10.1242/jcs.01581 (2005).
47Bonfil, R. D. et al. Prostate cancer-associated membrane type 1-matrix metalloproteinase: a pivotal role in bone response and intraosseous tumor growth. The American journal of pathology 170, 2100-2111, doi:10.2353/ajpath.2007.060720 (2007).
48Cao, J., Chiarelli, C., Kozarekar, P. & Adler, H. L. Membrane type 1-matrix metalloproteinase promotes human prostate cancer invasion and metastasis. Thrombosis and haemostasis 93, 770-778, doi:10.1160/TH04-08-0555 (2005).
49Udayakumar, T. S. et al. Membrane Type-1-Matrix Metalloproteinase Expressed by Prostate Carcinoma Cells Cleaves Human Laminin-5 β3 Chain and Induces Cell Migration. Cancer research 63, 2292 (2003).
50Cao, J. et al. Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. The Journal of biological chemistry 283, 6232-6240, doi:10.1074/jbc.M705759200 (2008).
51Udayakumar, T. S., Nagle, R. B. & Bowden, G. T. Fibroblast growth factor-1 transcriptionally induces membrane type-1 matrix metalloproteinase expression in prostate carcinoma cell line. The Prostate 58, 66-75, doi:10.1002/pros.10293 (2004).
52Sroka, I. C., Nagle, R. B. & Bowden, G. T. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells. Neoplasia 9, 406-417, doi:10.1593/neo.07193 (2007).
53Nagakawa, O. et al. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines. Cancer Lett 155, 173-179 (2000).
54Engel, M. et al. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci U S A 100, 5063-5068, doi:10.1073/pnas.0230620100 (2003).
55Rasmussen, H. B., Branner, S., Wiberg, F. C. & Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nature structural biology 10, 19-25, doi:10.1038/nsb882 (2003).
56Thoma, R. et al. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 11, 947-959 (2003).
57Chung, K. M. et al. The dimeric transmembrane domain of prolyl dipeptidase DPP-IV contributes to its quaternary structure and enzymatic activities. Protein science : a publication of the Protein Society 19, 1627-1638, doi:10.1002/pro.443 (2010).
58Chien, C. H. et al. One site mutation disrupts dimer formation in human DPP-IV proteins. The Journal of biological chemistry 279, 52338-52345, doi:10.1074/jbc.M406185200 (2004).
59Chien, C. H., Tsai, C. H., Lin, C. H., Chou, C. Y. & Chen, X. Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 45, 7006-7012, doi:10.1021/bi060401c (2006).
60Umezawa, H. et al. Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. The Journal of antibiotics 37, 422-425 (1984).
61Rahfeld, J., Schierhorn, M., Hartrodt, B., Neubert, K. & Heins, J. Are diprotin A (Ile-Pro-Ile) and diprotin B (Val-Pro-Leu) inhibitors or substrates of dipeptidyl peptidase IV? Biochimica et biophysica acta 1076, 314-316, doi:http://dx.doi.org/10.1016/0167-4838(91)90284-7 (1991).
62Baetta, R. & Corsini, A. Pharmacology of dipeptidyl peptidase-4 inhibitors: similarities and differences. Drugs 71, 1441-1467, doi:10.2165/11591400-000000000-00000 (2011).
63Ohnuma, K., Dang, N. H. & Morimoto, C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends in immunology 29, 295-301, doi:10.1016/j.it.2008.02.010 (2008).
64Loster, K., Zeilinger, K., Schuppan, D. & Reutter, W. The cysteine-rich region of dipeptidyl peptidase IV (CD 26) is the collagen-binding site. Biochemical and biophysical research communications 217, 341-348, doi:10.1006/bbrc.1995.2782 (1995).
65Cheng, H. C., Abdel-Ghany, M. & Pauli, B. U. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. The Journal of biological chemistry 278, 24600-24607, doi:10.1074/jbc.M303424200 (2003).
66Smith, R. E., Talhouk, J. W., Brown, E. E. & Edgar, S. E. The significance of hypersialylation of dipeptidyl peptidase IV (CD26) in the inhibition of its activity by Tat and other cationic peptides. CD26: a subverted adhesion molecule for HIV peptide binding. AIDS research and human retroviruses 14, 851-868, doi:10.1089/aid.1998.14.851 (1998).
67Dinjens, W. N. et al. Adenosine deaminase complexing protein (ADCP) expression and metastatic potential in prostatic adenocarcinomas. J Pathol 160, 195-201, doi:10.1002/path.1711600303 (1990).
68Wilson, M. J. et al. Dipeptidylpeptidase IV activities are elevated in prostate cancers and adjacent benign hyperplastic glands. Journal of andrology 21, 220-226 (2000).
69Bogenrieder, T. et al. Expression and localization of aminopeptidase A, aminopeptidase N, and dipeptidyl peptidase IV in benign and malignant human prostate tissue. The Prostate 33, 225-232, doi:10.1002/(SICI)1097-0045(19971201)33:4<225::AID-PROS1>3.0.CO;2-G (1997).
70Wilson, M. J. et al. Elevation of dipeptidylpeptidase iv activities in the prostate peripheral zone and prostatic secretions of men with prostate cancer: possible prostate cancer disease marker. The Journal of urology 174, 1124-1128, doi:10.1097/01.ju.0000168621.84017.5c (2005).
71Nazarian, A. et al. Inhibition of circulating dipeptidyl peptidase 4 activity in patients with metastatic prostate cancer. Molecular & cellular proteomics : MCP 13, 3082-3096, doi:10.1074/mcp.M114.038836 (2014).
72Wesley, U. V., McGroarty, M. & Homoyouni, A. Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer research 65, 1325-1334, doi:10.1158/0008-5472.CAN-04-1852 (2005).
73Sun, Y. X. et al. CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clinical & experimental metastasis 25, 765-776, doi:10.1007/s10585-008-9188-9 (2008).
74Ware, J. L., Lieberman, A. P., Webb, K. S. & Vollmer, R. T. Factors influencing phenotypic diversity of human prostate carcinoma cells metastasizing in athymic nude mice. Experimental cell biology 53, 163-169 (1985).
75Gonzalez-Gronow, M., Grenett, H. E., Weber, M. R., Gawdi, G. & Pizzo, S. V. Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase-9 by prostate cancer cells. Biochemical Journal 355, 397, doi:10.1042/0264-6021:3550397 (2001).
76Gonzalez-Gronow, M., Misra, U. K., Gawdi, G. & Pizzo, S. V. Association of plasminogen with dipeptidyl peptidase IV and Na+/H+ exchanger isoform NHE3 regulates invasion of human 1-LN prostate tumor cells. The Journal of biological chemistry 280, 27173-27178, doi:10.1074/jbc.M500383200 (2005).
77Gonzalez-Gronow, M., Hershfield, M. S., Arredondo-Vega, F. X. & Pizzo, S. V. Cell surface adenosine deaminase binds and stimulates plasminogen activation on 1-LN human prostate cancer cells. The Journal of biological chemistry 279, 20993-20998, doi:10.1074/jbc.M401023200 (2004).
78Miyakoshi, K. et al. The identification of novel ovarian proteases through the use of genomic and bioinformatic methodologies. Biology of reproduction 75, 823-835, doi:10.1095/biolreprod.106.052290 (2006).
79Wahlberg, P., Nylander, A., Ahlskog, N., Liu, K. & Ny, T. Expression and localization of the serine proteases high-temperature requirement factor A1, serine protease 23, and serine protease 35 in the mouse ovary. Endocrinology 149, 5070-5077, doi:10.1210/en.2007-1736 (2008).
80Chen, I. H. et al. PRSS23 is essential for the Snail-dependent endothelial-to-mesenchymal transition during valvulogenesis in zebrafish. Cardiovascular research 97, 443-453, doi:10.1093/cvr/cvs355 (2013).
81D''Souza, R. C. et al. Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF-beta. Sci Signal 7, rs5, doi:10.1126/scisignal.2004856 (2014).
82LeBleu, V. S. et al. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nature medicine 19, 227-231, doi:http://www.nature.com/nm/journal/v19/n2/abs/nm.2989.html#supplementary-information (2013).
83Jarzab, B. et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer research 65, 1587-1597, doi:10.1158/0008-5472.can-04-3078 (2005).
84Chan, H. S. et al. Serine protease PRSS23 is upregulated by estrogen receptor alpha and associated with proliferation of breast cancer cells. PLoS One 7, e30397, doi:10.1371/journal.pone.0030397 (2012).
85Munshi, A., Hobbs, M. & Meyn, R. E. Clonogenic cell survival assay. Methods in molecular medicine 110, 21-28, doi:10.1385/1-59259-869-2:021 (2005).
86Crowley, L. C., Christensen, M. E. & Waterhouse, N. J. Measuring Survival of Adherent Cells with the Colony-Forming Assay. Cold Spring Harb Protoc 2016, pdb prot087171, doi:10.1101/pdb.prot087171 (2016).
87Borowicz, S. et al. The soft agar colony formation assay. J Vis Exp, e51998, doi:10.3791/51998 (2014).
88Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. The Journal of cell biology 124, 619-626 (1994).
89Sabbota, A. L. et al. Shedding of RANKL by tumor-associated MT1-MMP activates Src-dependent prostate cancer cell migration. Cancer research 70, 5558-5566, doi:10.1158/0008-5472.CAN-09-4416 (2010).
90Orkin, R. W. et al. A murine tumor producing a matrix of basement membrane. The Journal of experimental medicine 145, 204-220 (1977).
91Kleinman, H. K. et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21, 6188-6193, doi:10.1021/bi00267a025 (1982).
92Kleinman, H. K. & Martin, G. R. Matrigel: basement membrane matrix with biological activity. Seminars in cancer biology 15, 378-386, doi:10.1016/j.semcancer.2005.05.004 (2005).
93Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886-1890, doi:10.1002/pmic.200900758 (2010).
94Vanhoof, G., De Meester, I., van Sande, M., Scharpe, S. & Yaron, A. Distribution of proline-specific aminopeptidases in human tissues and body fluids. European journal of clinical chemistry and clinical biochemistry : journal of the Forum of European Clinical Chemistry Societies 30, 333-338 (1992).
95de Meester, I., Vanhoof, G., Lambeir, A. M. & Scharpe, S. Use of immobilized adenosine deaminase (EC 3.5.4.4) for the rapid purification of native human CD26/dipeptidyl peptidase IV (EC 3.4.14.5). J Immunol Methods 189, 99-105 (1996).
96Schrimpf, S. P. et al. Identification of dipeptidyl peptidase IV as the antigen of a monoclonal anti-prostasome antibody. The Prostate 38, 35-39 (1999).
97Utleg, A. G. et al. Proteomic analysis of human prostasomes. The Prostate 56, 150-161, doi:10.1002/pros.10255 (2003).
98Poliakov, A., Spilman, M., Dokland, T., Amling, C. L. & Mobley, J. A. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. The Prostate 69, 159-167, doi:10.1002/pros.20860 (2009).
99Ronquist, K. G. et al. Prostasomes from four different species are able to produce extracellular adenosine triphosphate (ATP). Biochimica et biophysica acta 1830, 4604-4610, doi:10.1016/j.bbagen.2013.05.019 (2013).
100Skoczek, M., Nosek, M. & Weroński, P. Voltammetric monitoring of prostasome aggregation and self-fusion. Electrochimica Acta 190, 1078-1086, doi:10.1016/j.electacta.2015.12.144 (2016).
101Wilson, M. J. et al. Prostate specific origin of dipeptidylpeptidase IV (CD-26) in human seminal plasma. The Journal of urology 160, 1905-1909 (1998).
102Carlsson, L., Ronquist, G., Eliasson, R., Egberg, N. & Larsson, A. Flow cytometric technique for determination of prostasomal quantity, size and expression of CD10, CD13, CD26 and CD59 in human seminal plasma. Int J Androl 29, 331-338, doi:10.1111/j.1365-2605.2005.00601.x (2006).
103Nilsson, B. O., Lennartsson, L., Carlsson, L., Nilsson, S. & Ronquist, G. Expression of prostasome-like granules by the prostate cancer cell lines PC3, Du145 and LnCaP grown in monolayer. Upsala journal of medical sciences 104, 199-206 (1999).
104Johnson, R. C., Augustin-Voss, H. G., Zhu, D. Z. & Pauli, B. U. Endothelial cell membrane vesicles in the study of organ preference of metastasis. Cancer research 51, 394-399 (1991).
105Johnson, R. C., Zhu, D., Augustin-Voss, H. G. & Pauli, B. U. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. The Journal of cell biology 121, 1423-1432 (1993).
106Cheng, H. C., Abdel-Ghany, M., Elble, R. C. & Pauli, B. U. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. The Journal of biological chemistry 273, 24207-24215 (1998).
107Abdel-Ghany, M., Cheng, H.-C., Levine, R. A. & Pauli, B. U. Truncated Dipeptidyl Peptidase IV Is a Potent Anti-Adhesion and Anti-Metastasis Peptide for Rat Breast Cancer Cells. Invasion and Metastasis 18, 35-43, doi:10.1159/000024497 (1999).
108Cheng, H.-C., Abdel-Ghany, M., Zhang, S. & Pauli, B. U. Is the Fischer 344/CRJ rat a protein-knock-out model for dipeptidyl peptidase IV-mediated lung metastasis of breast cancer? Clinical and Experimental Metastasis 17, 609-615, doi:10.1023/a:1006757525190 (1999).
109Tsai, C. H. et al. HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene 33, 4643-4652, doi:10.1038/onc.2013.412 (2014).
110Weinberg, R. The Biology of Cancer, Second Edition. (Taylor & Francis Group, 2013).
111Itoh, Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix biology : journal of the International Society for Matrix Biology 44-46, 207-223, doi:10.1016/j.matbio.2015.03.004 (2015).
112Rohrborn, D., Wronkowitz, N. & Eckel, J. DPP4 in Diabetes. Front Immunol 6, 386, doi:10.3389/fimmu.2015.00386 (2015).
113Klemann, C., Wagner, L., Stephan, M. & von Horsten, S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4''s (DPP4) entanglement in the immune system. Clinical and experimental immunology 185, 1-21, doi:10.1111/cei.12781 (2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔