跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 16:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳澤祥
研究生(外文):Tse-Hsiang Wu
論文名稱:RNA 聚合酶I 藉由DNA 甲基轉移酶3B 以及細胞骨架重組所進行的功能性調節
論文名稱(外文):Functional regulation of RNA polymerase I by DNA methyltransferase 3B and cytoskeletal reorganization
指導教授:張智芬李明學李明學引用關係
指導教授(外文):Zee-Fen ChangMing-Shyue Lee
口試日期:2016-07-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:RNA聚合酶IDNA甲基轉移酶3B細胞骨架
外文關鍵詞:RNA polymerase IDNA methyltransferase 3Bcytoskeleton
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Chapter I
DNA methyltransferase 3b (DNMT3b)已知在表徵遺傳學上的修飾作用扮演重要的調節角色。它主要的功能在於產生de novo 的DNA 甲基化作用(methylation),這個功能對於細胞生長(cell growth)以及維持基因組的穩定(genome stability)是必須的。利用HCT116 細胞,我們發現DNMT3b 剔除(knockout)的細胞表現高量的DNA 損傷訊號 (DNA damage signal),以H2AX foci 形式表現,經由抑制RNA
polymerase I(Pol I)的轉錄作用,可以明顯降低這些DNA 損傷訊號。雖然Pol I 主要的功能是核醣體RNA(ribosomal RNA)轉錄作用,但這些DNA 損傷訊號的位置並不在rRNA 基因上,除非細胞週期同步於有絲分裂期(mitotic progression)。我們進一步觀察到Pol I 的抑制作用可以減少在BKO 細胞中的基因組不穩定性(genome instability)。將原生型(wild-type)以及失去酵素活性(catalytic-dead)的DNMT3b 表現於BKO 細胞中,可以降低BKO 細胞中的DNA 損傷訊號以及基因組不穩定性,表示DNMT3b 在預防Pol I 所引導的DNA 損傷訊號所扮演的角色,不需要DNA 甲基化作用(DNA methylation)的參與。研究結果也顯示,PolI 可以和BLM 結合,並且防止轉錄作用所引導的R loop 形成。此外,我們利用ChIP-re-ChIP 的實驗來證明DNMT3b 缺乏會導致BLM 結合到 Pol I 調節的rDNA 基因上的數量減少。大量表現RNaseH1 在BKO 細胞中,可移除RNA/DNA
hybrid 以及減弱DNA 損傷訊號。根據這些發現,我們推測在HCT116 細胞中的DNMT3b 主要的功能角色是防止Pol I 轉錄作用所導致的R-loop 形成,進而維持基因組的穩定性。

Chapter II
目前已知ribosomal RNA(rRNA) 的合成作用是受到細胞能量(cellular energy)以及細胞增生狀態(proliferation status)來調節。在本篇研究中,我們發現到rRNA 基因轉錄作用會受到細胞骨架壓力(cytoskeletal stress)的影響。我們的結果顯示HeLa細胞外型被等向性(isotropic)的micropattern所限制住的時候,會導致rRNA轉錄作用顯著的減少,而這個機制是依賴ROCK才能完成;此一現象在長條形(elongated)的micropattern則不會發生。在細胞中表現一個活化型的ROCK也可以導致rRNA轉錄作用被抑制。等向性的限制與ROCK過度活化所形成的異常F-actin結構有很大的不同,但它們在rRNA轉錄作用的抑制作用卻是極為相似的,並且都可以藉由histone deacetylase (HDAC)的抑制作用或者過度表現Nesprin來回復rRNA轉錄作用。Nesprin是藉由類似護盾的機制將從actin filament傳遞到細胞核之間的作用力阻斷。我們進一步顯示在ROCK過度表現的情況下,HDAC1結合到rDNA基因的程度會增加,進而減少H3K9/14 乙醯化作用(acetylation)以及抑制轉錄作用。我們的結果證實一個表徵遺傳學控制活化rDNA基因的機制,是藉由接收到細胞骨架壓力進而抑制rRNA轉錄作用。
Chapter I
DNA methyltransferase 3b (DNMT3b) is an important regulator in epigenetic modification by de novo DNA methylation that is essential for cell growth and genome stability. Using HCT-116 cells, we found that DNMT3b knockout increases DNA damage signal indicating by H2AX foci, which are markedly reduced by inhibition of RNA polymerase I (Pol I) transcription repression. Although the major function of Pol I is ribosomal RNA transcription, H2AX was not associated with rRNA genes, unless cells were synchronized for mitotic progression. We further observed that Pol I inhibition was able to decrease genome instability in these BKO cells. Expression of wild-type and catalytic-dead DNMT3b in BKO cells abolished DNA damage signal and genome instability, suggesting the role of DNMT3b in preventing Pol I dependent DNA damage is independent of its DNA methylation function. It has been shown that Pol I is associated with BLM to prevent transcription-mediated R loop formation. The ChIP-re-ChIP analysis demonstrated that DNMT3b deficiency decreased the amount of BLM associated with Pol I-bound rDNA genes. Overexpression of RNase H1 that removes RNA/DNA hybrid diminished DNA damage signal in BKO cells. According to these findings, we proposed that DNMT3b in HCT116 might has a functional role in preventing polI transcription-mediated R-loop formation to maintain genome stability.

Chapter II
It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of dominant active ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress.
Chapter I – Regulation of Pol I-mediated ribosomal RNA transcription by DNMT3b in genome instability.................................................................................. 1
Abstract................................................................................................................. 2
中文摘要................................................................................................................ 3
引論........................................................................................................................ 4
Rationale............................................................................................................. 11
結果與討論......................................................................................................... 12
材料與方法......................................................................................................... 19
Figures and Legends.......................................................................................... 23
參考文獻.............................................................................................................. 43
Chapter II – Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization ........................................... 46
Abstract............................................................................................................... 47
中文摘要.............................................................................................................. 48
引論...................................................................................................................... 49
Rationale............................................................................................................. 52
結果...................................................................................................................... 53
討論...................................................................................................................... 60
材料與方法......................................................................................................... 63
Figures and Legends.......................................................................................... 68
參考文獻.............................................................................................................. 80
Vita...................................................................................................................... 84
Appendix............................................................................................................. 85
Chapter I
Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, Wall M, Cluse L, Drygin D, Anderes K, Huser N, Proffitt C, Bliesath J, Haddach M, Schwaebe MK, Ryckman DM, Rice WG, Schmitt C, Lowe SW, Johnstone RW, Pearson RB, McArthur GA, Hannan RD (2012) Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer cell 22: 51-65
Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16: 341-350
Clemente-Blanco A, Mayan-Santos M, Schneider DA, Machin F, Jarmuz A, Tschochner H, Aragon L (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458: 219-222
El Hage A, French SL, Beyer AL, Tollervey D (2010) Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes & development 24: 1546-1558
Gagnon-Kugler T, Langlois F, Stefanovsky V, Lessard F, Moss T (2009) Loss of human ribosomal gene CpG methylation enhances cryptic RNA polymerase II transcription and disrupts ribosomal RNA processing. Molecular cell 35: 414-425
Gopalakrishnan S, Sullivan BA, Trazzi S, Della Valle G, Robertson KD (2009) DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Human molecular genetics 18: 3178-3193
Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. The Journal of biological chemistry 280: 13341-13348
Grierson PM, Lillard K, Behbehani GK, Combs KA, Bhattacharyya S, Acharya S, Groden J (2012) BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription. Human molecular genetics 21: 1172-1183
Grummt I (2007) Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Human molecular genetics 16 Spec No 1: R21-27
Grummt I (2013) The nucleolus-guardian of cellular homeostasis and genome integrity. Chromosoma 122: 487-497
Grummt I, Langst G (2013) Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochimica et biophysica acta 1829: 393-404
Hraiky C, Raymond MA, Drolet M (2000) RNase H overproduction corrects a defect at the level of transcription elongation during rRNA synthesis in the absence of DNA topoisomerase I in Escherichia coli. The Journal of biological chemistry 275: 11257-11263
Kitano K (2014) Structural mechanisms of human RecQ helicases WRN and BLM. Frontiers in genetics 5: 366
Kuo YY, Chang ZF (2007) GATA-1 and Gfi-1B interplay to regulate Bcl-xL transcription. Molecular and cellular biology 27: 4261-4272
Majumder S, Ghoshal K, Datta J, Smith DS, Bai S, Jacob ST (2006) Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription. The Journal of biological chemistry 281: 22062-22072
Mayer C, Grummt I (2005) Cellular stress and nucleolar function. Cell cycle 4: 1036-1038
Mayer C, Grummt I (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25: 6384-6391
McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annual review of cell and developmental biology 24: 131-157
Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257
Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature genetics 19: 219-220
Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416: 552-556
Robertson KD (2002) DNA methylation and chromatin - unraveling the tangled web. Oncogene 21: 5361-5379
Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic acids research 27: 2291-2298
Russell J, Zomerdijk JC (2005) RNA-polymerase-I-directed rDNA transcription, life and works. Trends in biochemical sciences 30: 87-96
Sidorova JM, Kehrli K, Mao F, Monnat R, Jr. (2013) Distinct functions of human RECQ helicases WRN and BLM in replication fork recovery and progression after hydroxyurea-induced stalling. DNA repair 12: 128-139
Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, Grummt I (2001) NoRC--a novel member of mammalian ISWI-containing chromatin remodeling machines. The EMBO journal 20: 4892-4900
Toku S, Nabeshima Y, Ogata K (1983) Effects of low dose actinomycin D treatment in vivo on the biosynthesis of ribosomal proteins in rat liver. Journal of biochemistry 93: 349-359
Wickramasinghe VO, Venkitaraman AR (2016) RNA Processing and Genome Stability: Cause and Consequence. Molecular cell 61: 496-505
Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nature cell biology 16: 2-9

Chapter II
Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K
(1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase.
Science 275: 1308-1311
Amano M, Chihara K, Nakamura N, Kaneko T, Matsuura Y, Kaibuchi K (1999) The
COOH terminus of Rho-kinase negatively regulates rho-kinase activity. The Journal
of biological chemistry 274: 32418-32424
Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi
K (1996) Phosphorylation and activation of myosin by Rho-associated kinase
(Rho-kinase). Journal of Biological Chemistry 271: 20246-20249
Bierhoff H, Dundr M, Michels AA, Grummt I (2008) Phosphorylation by casein
kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from
elongating RNA polymerase I. Molecular and cellular biology 28: 4988-4998
Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus
under stress. Molecular cell 40: 216-227
Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D
(2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. The
Journal of cell biology 172: 41-53
Dvorsky R, Blumenstein L, Vetter IR, Ahmadian MR (2004) Structural insights into
the interaction of ROCKI with the switch regions of RhoA. The Journal of biological
chemistry 279: 7098-7104
Grummt I (2007) Different epigenetic layers engage in complex crosstalk to define
the epigenetic state of mammalian rRNA genes. Human molecular genetics 16:
R21-R27
Grummt I (2013) The nucleolus-guardian of cellular homeostasis and genome
integrity. Chromosoma 122: 487-497
Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S
(2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated
81
kinases. Molecular pharmacology 57: 976-983
Kruhlak M, Crouch EE, Orlov M, Montaño C, Gorski SA, Nussenzweig A, Misteli T,
Phair RD, Casellas R (2007) The ATM repair pathway inhibits RNA polymerase I
transcription in response to chromosome breaks. Nature 447: 730-734
Le Beyec J, Xu R, Lee S-Y, Nelson CM, Rizki A, Alcaraz J, Bissell MJ (2007) Cell
shape regulates global histone acetylation in human mammary epithelial cells.
Experimental cell research 313: 3066-3075
Lecuit T, Lenne P-F, Munro E (2011) Force generation, transmission, and integration
during cell and tissue morphogenesis. Annual review of cell and developmental
biology 27: 157-184
Lee HH, Chang ZF (2008) Regulation of RhoA-dependent ROCKII activation by
Shp2. The Journal of cell biology 181: 999-1012
Lee HH, Tien SC, Jou TS, Chang YC, Jhong JG, Chang ZF (2010) Src-dependent
phosphorylation of ROCK participates in regulation of focal adhesion dynamics.
Journal of cell science 123: 3368-3377
Mammoto A, Ingber DE (2009) Cytoskeletal control of growth and cell fate switching.
Current opinion in cell biology 21: 864-870
Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections
between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear
structure. Proceedings of the National Academy of Sciences 94: 849-854
Mayer C, Bierhoff H, Grummt I (2005) The nucleolus as a stress sensor: JNK2
inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes
& development 19: 933-941
McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to
chromosome biology. Annual review of cell and developmental biology 24: 131-157
Munjal A, Lecuit T (2014) Actomyosin networks and tissue morphogenesis.
Development 141: 1789-1793
82
Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie
S, Daitoku H, Okuwaki M, Nagata K (2008) Epigenetic control of rDNA loci in
response to intracellular energy status. Cell 133: 627-639
Murrell M, Oakes PW, Lenz M, Gardel ML (2015) Forcing cells into shape: the
mechanics of actomyosin contractility. Nature Reviews Molecular Cell Biology 16:
486-498
Narumiya S, Ishizaki T, Uehata M (2000) Use and properties of ROCK-specific
inhibitor Y-27632. Methods in enzymology 325: 273-284
Ostlund C, Folker ES, Choi JC, Gomes ER, Gundersen GG, Worman HJ (2009)
Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton
(LINC) complex proteins. Journal of cell science 122: 4099-4108
Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical
plasticity of the nucleus in stem cell differentiation. Proceedings of the National
Academy of Sciences 104: 15619-15624
Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nature
reviews Molecular cell biology 4: 446-456
Russell J, Zomerdijk JC (2005) RNA-polymerase-I-directed rDNA transcription, life
and works. Trends in biochemical sciences 30: 87-96
Shankar S, Srivastava RK (2008) Histone deacetylase inhibitors: mechanisms and
clinical significance in cancer: HDAC inhibitor-induced apoptosis. In Programmed
Cell Death in Cancer Progression and Therapy, pp 261-298. Springer
Shivashankar G (2011) Mechanosignaling to the cell nucleus and gene regulation.
Annual review of biophysics 40: 361-378
Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D (2008) Structural requirements
for the assembly of LINC complexes and their function in cellular mechanical
stiffness. Experimental cell research 314: 1892-1905
Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ
(2003) Dissecting temporal and spatial control of cytokinesis with a myosin II
83
Inhibitor. Science 299: 1743-1747
Tsang CK, Zheng XS (2007) TOR-in (g) the nucleus. Cell Cycle 6: 25-29
Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin
II takes centre stage in cell adhesion and migration. Nature reviews Molecular cell
biology 10: 778-790
Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance:
mechanically coupling the extracellular matrix with the nucleus. Nature reviews
Molecular cell biology 10: 75-82
Worman HJ, Gundersen GG (2006) Here come the SUNs: a nucleocytoskeletal
missing link. Trends Cell Biol 16: 67-69
Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis
JA, Shanahan CM (2001) Nesprins: a novel family of spectrin-repeat-containing
proteins that localize to the nuclear membrane in multiple tissues. Journal of cell
science 114: 4485-4498
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top