跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘桂香
研究生(外文):Kuei-Hsiang Pan
論文名稱:LMBD1羧基端區域對胰島素受體訊息傳遞之重要性
論文名稱(外文):The C-terminal domain of LMBD1 protein is critical for the insulin receptor signaling
指導教授:張明富
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:胰島素受體訊息傳遞路徑
外文關鍵詞:LMBD1insulin receptor signaling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞內能量平衡對於維持細胞正常生理功能扮演重要角色。LMBRD1基因所表現之LMBD1蛋白質先前被報導參與在溶酶體之維生素B12輸出。LMBD1被預測有九個穿膜功能區,主要分布於細胞膜、溶酶體及內質網上。先前實驗室研究指出LMBD1蛋白質選擇性調控心臟胰島素受體(IR)之內吞作用,而不參與轉鐵蛋白質受體(TrfR)之內吞作用。進一步結果顯示LMBD1蛋白質作為胰島素受體內吞作用之adaptor之角色。胰島素受體調控細胞內葡萄糖之恆定、細胞分裂、發育及代謝,以雙硫鍵形成雙體結構後始具有生理功能。細胞膜上胰島素受體之含量由依賴網格蛋白的胞吞作用(clathrin-mediated endocytosis)所調控。依賴網格蛋白的胞吞作用調控真核細胞之代謝及恆定,胞吞作用對於cargo之選擇性是由adaptor所提供。胰島素受體及轉鐵蛋白質受體皆由AP-2所調控,顯示LMBD1蛋白質可能提供胰島素受體於依賴網格蛋白胞吞作用之專一性adaptor。先前結果顯示LMBD1蛋白質與AP-2之間會透過YXXφ與WXXF功能區進行交互作用幫忙IR的內吞作用,TrfR的內吞作用則不經由LMBD1的協助,更進一步顯示LMBD1蛋白質在心臟胰島素受體內吞作用之重要性。
小鼠Lmbrd1異體蛋白質在心臟組織主要以LMBD1之形式存在。胰島素受體下游調控細胞內葡萄糖含量之GLUT4,在H9C2心肌細胞中Lmbrd1 knockdown後,發現細胞膜上GLUT4表現增加。本研究利用細胞培養及蛋白質化學方式欲釐清LMBD1蛋白質如何選擇性調控胰島素受體之內吞作用。結果顯示LMBD1蛋白質會利用其羧基端(433-493 a.a.),而非(433-540 a.a.),與胰島素受體進行交互作用。利用GST-LMBD1(433-493)競爭內生性之LMBD1蛋白質與IR的結合,確實會使IR下游訊息傳遞路徑之Akt磷酸化上升。綜合實驗結果可以推測LMBD1羧基端可能在IR之內吞作用中扮演具有選擇性之角色。
Energy homeostasis plays a critical role in maintaining cell normal functions. The LMBD1 protein which is encoded by the limb region 1 (LMBR1) domain containing 1 gene ( LMBRD1 ) has been suggested to be involved in the export of cobalamin in the lysosome. The LMBD1 protein possesses 9 putative transmembrane domains and distributes over plasma membrane, lysosome and endoplasmic reticulum. Our previous study showed that LMBD1 protein serves as specific adaptor for insulin receptor (IR) endocytosis. The IR encoded by a single gene INSR is a member of tyrosine kinase family and plays critical regulatory roles in glucose homeostasis, development, cell division, and metabolism. The recycle of IR on plasma membrane is controlled by clathrin-mediated endocytosis which is a common way to internalize cargos in eukaryotic cells such as, receptors and nutrients. In the process of endocytosis, the cargo specificity is determined by cargo-specific adaptors. LMBD1 use YXXφ and WXXF motifs to interact with adaptor protein-2 (AP-2) and is involved in the unique endocytosis of IR. Although TrfR and IR use the same adaptor AP-2, LMBD1 specially regulates the insulin receptor internalization. It seems that LMBD1 protein may be through interacting with IR to provide the selectivity to recognize.
In this study, how LMBD1 protein provides the selectivity in the endocytosis of IR was examined. To dissect the functional motifs of LMBD1 protein, GST-pull down assay was performed. Results showed that LMBD1(433-499), but not LMBD1(433-540) interacted with IR. GST-LMBD1(433-493) competed the interaction of endogenous LMBD1 with IR, and increased the phosphorylation of Akt in the IR downstream signaling pathway. These results provide further evidence in understanding how LMBD1, through the domain from amino acid residues 433 to 493, interacts with IR with cargo selectivity in the IR endocytosis.
中 文 摘 要 I
英 文 摘 要 II
縮 寫 表 IV
緒 論 1
研 究 主 題 9
材 料 來 源 10
實 驗 方 法 18
實 驗 結 果 38
討 論 42
圖 表 46
參考文獻 65
Aggleton, J.P., Vann, S.D., Denby, C., Dix, S., Mayes, A.R., Roberts, N., and Yonelinas, A.P. (2005). Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology. Neuropsychologia 43, 1810-1823.
Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., and Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30, 586-623.
Boulton, T.G., Nye, S.H., Robbins, D.J., Ip, N.Y., Radziejewska, E., Morgenbesser, S.D., DePinho, R.A., Panayotatos, N., Cobb, M.H., and Yancopoulos, G.D. (1991). ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663-675.
Buers, I., Pennekamp, P., Nitschke, Y., Lowe, C., Skryabin, B.V., and Rutsch, F. (2016). Lmbrd1 expression is essential for the initiation of gastrulation. J Cell Mol Med 20, 1523-1533.
Chiu, Y.L. (2007). Functional analysis of the putative actin-binding domain of NESI protein (NTU).
Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J.H., Masiarz, F., Kan, Y.W., Goldfine, I.D., et al. (1985). The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40, 747-758.
Frangioni, J.V., Beahm, P.H., Shifrin, V., Jost, C.A., and Neel, B.G. (1992). The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68, 545-560.
Frankel, A.D., and Pabo, C.O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189-1193.
HAMM, R.J., PIKE, B.R., O''DELL, D.M., LYETH, B.G., and JENKINS, L.W. (1994). The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. Journal of neurotrauma 11, 187-196.
Hepler, D.J., Wenk, G.L., Cribbs, B.L., Olton, D.S., and Coyle, J.T. (1985). Memory impairments following basal forebrain lesions. Brain Research 346, 8-14.
Hsu, W.T. (2010). Functional analysis of LMBRD1 in neuronal differentiation (NTU).
Huang, C., Jiang, J.Y., Chang, S.C., Tsay, Y.G., Chen, M.R., and Chang, M.F. (2013). Nuclear export signal-interacting protein forms complexes with lamin A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta antigen. J Virol 87, 1596-1604.
Jackson, L.P., Kelly, B.T., McCoy, A.J., Gaffry, T., James, L.C., Collins, B.M., Honing, S., Evans, P.R., and Owen, D.J. (2010). A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141, 1220-1229.
Kadlecova, Z., Spielman, S.J., Loerke, D., Mohanakrishnan, A., Reed, D.K., and Schmid, S.L. (2017). Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J Cell Biol 216, 167-179.
Kawaguchi, K., Okamoto, T., Morita, M., and Imanaka, T. (2016). Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1. Sci Rep 6, 30183.
Kelly, B.T., Graham, S.C., Liska, N., Dannhauser, P.N., Honing, S., Ungewickell, E.J., and Owen, D.J. (2014). Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch. Science 345, 459-463.
Kelsey, J.S., Fastman, N.M., and Blumberg, D.D. (2012). Evidence of an evolutionarily conserved LMBR1 domain-containing protein that associates with endocytic cups and plays a role in cell migration in dictyostelium discoideum. Eukaryot Cell 11, 401-416.
Kirchhausen, T., Owen, D., and Harrison, S.C. (2014). Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 6, a016725.
Kosaka, T., and Ikeda, K. (1983). Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J Cell Biol 97, 499-507.
Lettice, L.A., Horikoshi, T., Heaney, S.J., van Baren, M.J., van der Linde, H.C., Breedveld, G.J., Joosse, M., Akarsu, N., Oostra, B.A., Endo, N., et al. (2002). Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci U S A 99, 7548-7553.
Li, Y.P. (2005). Biochemical characterization of NESI protein involved in the nuclear export pathway (NTU).
Lin, C.Y. (2014). Roles of LMBD1 protein in retinoic acid-induced dendritic spine formation. In (NTU).
Lin, Y.H. (2016). The Mechanism of LMBD1 protein Involved in Neuronal Spine Formation (NTU).
Lu, C.Y. (2012). LMBRD1 regulates the subcellular localizations of nucleocytoplasmic transport proteins CAS and Importinα (NTU).
McMahon, H.T., and Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12, 517-533.
Razeghi, P., Young, M.E., Alcorn, J.L., Moravec, C.S., Frazier, O.H., and Taegtmeyer, H. (2001). Metabolic gene expression in fetal and failing human heart. Circulation 104, 2923-2931.
Rodrigue, K.M., and Raz, N. (2004). Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults. The Journal of neuroscience 24, 956-963.
Rutsch, F., Gailus, S., Miousse, I.R., Suormala, T., Sagne, C., Toliat, M.R., Nurnberg, G., Wittkampf, T., Buers, I., Sharifi, A., et al. (2009). Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat Genet 41, 234-239.
Schmid, E.M., and McMahon, H.T. (2007). Integrating molecular and network biology to decode endocytosis. Nature 448, 883-888.
Schwenk, F., Baron, U., and Rajewsky, K. (1995). A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Research 23, 5080-5081.
Sciacca, L., Costantino, A., Pandini, G., Mineo, R., Frasca, F., Scalia, P., Sbraccia, P., Goldfine, I.D., Vigneri, R., and Belfiore, A. (1999). Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene 18, 2471-2479.
Sweet, L.J., Morrison, B.D., and Pessin, J.E. (1987). Isolation of functional alpha beta heterodimers from the purified human placental alpha 2 beta 2 heterotetrameric insulin receptor complex. A structural basis for insulin binding heterogeneity. J Biol Chem 262, 6939-6942.
Szablewski, L. (2017). Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 230, 70-75.
Ta, Y.C. (2013). Mechanisms of LMBD1 and its associated proteins involved in the vitamin B12 transport. (NTU).
Taguchi, A., and White, M.F. (2008). Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 70, 191-212.
Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7, 85-96.
Tosoni, D., Puri, C., Confalonieri, S., Salcini, A.E., De Camilli, P., Tacchetti, C., and Di Fiore, P.P. (2005). TTP specifically regulates the internalization of the transferrin receptor. Cell 123, 875-888.
Tseng, L.T., Lin, C.L., Pan, K.H., Tzen, K.Y., Su, M.J., Tsai, C.T., Li, Y.H., Li, P.C., Chiang, F.T., Chang, S.C., et al. (2017). Single allele Lmbrd1 knockout results in cardiac hypertrophy. J Formos Med Assoc.
Tseng, L.T., Lin, C.L., Tzen, K.Y., Chang, S.C., and Chang, M.F. (2013). LMBD1 protein serves as a specific adaptor for insulin receptor internalization. J Biol Chem 288, 32424-32432.
Tseng, T.L. (2013). The Role of LMBD1 in Regulating Cardiac Insulin Signaling (NTU).
Wang, Y.H., Chang, S.C., Huang, C., Li, Y.P., Lee, C.H., and Chang, M.-F. (2005). Novel Nuclear Export Signal-Interacting Protein, NESI, Critical for the Assembly of Hepatitis Delta Virus. J Virol 79, 8113-8120.
Wojnar, P., Lechner, M., Merschak, P., and Redl, B. (2001). Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. J Biol Chem 276, 20206-20212.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top