|
[1]J. S.Kelsey, N. M.Fastman, andD. D.Blumberg, “Evidence of an evolutionarily conserved LMBR1 domain-containing protein that associates with endocytic cups and plays a role in cell migration in dictyostelium discoideum.,” Eukaryot. Cell, vol. 11, no. 4, pp. 401–16, Apr.2012. [2]P.Wojnar, M.Lechner, P.Merschak, andB.Redl, “Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display.,” J. Biol. Chem., vol. 276, no. 23, pp. 20206–12, Jun.2001. [3]L. A.Lettice et al., “Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly.,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 11, pp. 7548–53, May2002. [4]F.Rutsch et al., “Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism,” Nat. Genet., vol. 41, no. 2, pp. 234–239, Feb.2009. [5]Y. C.Ta, “Mechanisms of LMBD1 and its associated proteins involved in the vitamin B12 transport. Master Thesis.,” NTU, 2013. [6]J. C.Deme et al., “Purification and interaction analyses of two human lysosomal vitamin B 12 transporters: LMBD1 and ABCD4,” Mol. Membr. Biol., vol. 31, no. 7–8, pp. 250–261, Nov.2014. [7]K.Kawaguchi, T.Okamoto, M.Morita, T.Imanaka, and D. C.Rees, “Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1,” Sci. Rep., vol. 6, no. 1, p. 30183, Sep.2016. [8]L. T. L.Tseng, C. L.Lin, K. Y.Tzen, S. C.Chang, and M. F.Chang, “LMBD1 protein serves as a specific adaptor for insulin receptor internalization,” J. Biol. Chem., vol. 288, no. 45, pp. 32424–32432, 2013. [9]L. T. L.Tseng, C. L. Lin, K. H. Pan, K. Y. Tzen, M. J. Su, C. T. Tsai, Y. H. Li, P. C. Li, F. T. Chiang, S. C. Chiang, M. F. Chang,“Single allele Lmbrd1 knockout results in cardiac hypertrophy,” J. Formos. Med. Assoc., pp. 1–9, 2017. [10]W. T.Hsu, “Functional analysis of LMBRD1 in neuronal differentiation. Master Thesis.,” NTU, 2010. [11]C. Y.Lin, “Roles of LMBD1 protein in retinoic acid-induced dendritic spine formation. Master Thesis.,” NTU, 2014. [12]Y. H.Lin, “The mechanism of LMBD1 protein involved in neuronal spine formation. Master Thesis.,” NTU, 2016. [13]Y.Wang, S. C.Chang, C.Huang, Y.Li, C.Lee, and M. F. Chang, “Novel Nuclear Export Signal-Interacting Protein , NESI , Critical for the Assembly of Hepatitis Delta Virus,” J. Virol.,vol. 79, no. 13, pp. 8113–8120, 2005. [14]C.Huang, J.Y.Jiang, S. C.Chang, Y.G.Tsay, M.R.Chen, andM.F.Chang, “Nuclear export signal-interacting protein forms complexes with lamin A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta antigen.,” J. Virol., vol. 87, no. 3, pp. 1596–604, 2013. [15]C. Y.Lu, “Lmbrd1 regulates the subcellular localizations of nucleocytoplasmic transport proteinscas and importin-α. Master Thesis.,” NTU, 2012. [16]Y. P.Li, “Biochemical characterization of NESI protein involved in the nuclear export pathway. Master Thesis.,” NTU, 2005. [17]Y. L.Chiu, “Functional analysis of the putative actin-binding domain of NESI protein. Master Thesis.,” NTU, 2007. [18]F.Schwenk, U.Baron, andK.Rajewsky, “A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells.,” Nucleic Acids Res., vol. 23, no. 24, pp. 5080–1, Dec.1995. [19]I.Buers, P.Pennekamp, Y.Nitschke, C.Lowe, B.VSkryabin, andF.Rutsch, “Lmbrd1 expression is essential for the initiation of gastrulation,” J. Cell. Mol. Med., vol. 20, no. 8, pp. 1523–1533, Aug.2016. [20]D. J.Hepler, G. L.Wenk, B. L.Cribbs, D. S.Olton, andJ. T.Coyle, “Memory impairments following basal forebrain lesions.,” Brain Res., vol. 346, no. 1, pp. 8–14, Oct.1985. [21]R. J.Hamm, B. R.Pike, D. M.O’Dell, B. G.Lyeth, andL. W.Jenkins, “The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury.,” J. Neurotrauma, vol. 11, no. 2, pp. 187–96, Apr.1994. [22]K. M.Rodrigue andN.Raz, “Shrinkage of the Entorhinal Cortex over Five Years Predicts Memory Performance in Healthy Adults,” J. Neurosci., vol. 24, no. 4, pp. 956–963, Jan.2004. [23]J. P.Aggleton et al., “Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology,” Neuropsychologia, vol. 43, no. 12, pp. 1810–1823, Jan.2005. [24]E. T.Rolls, “Neurophysiology and cognitive functions of the striatum.,” Rev. Neurol. (Paris)., vol. 150, no. 8–9, pp. 648–60. [25]J. M.Scimeca andD.Badre, “Striatal contributions to declarative memory retrieval.,” Neuron, vol. 75, no. 3, pp. 380–92, Aug.2012. [26]W.Hwu, S.Muramatsu, S.Tseng, K.Tzen, andN.Lee, “Gene Therapy for Aromatic L -Amino Acid Decarboxylase Deficiency,” Sci. Transl. Med., vol. 61, no. 134, p. 134ra61, 2012. [27]N. C.Lee et al., “Regulation of the dopaminergic system in a murine model of aromatic l-amino acid decarboxylase deficiency,” Neurobiol. Dis., vol. 52, pp. 177–190, 2013. [28]Boundless, “Types of Neurotransmitters by Function.” Boundless, 2016. [29]J.-A.Girault andP.Greengard, “The Neurobiology of Dopamine Signaling,” Arch. Neurol., vol. 61, no. 5, p. 641, 2004. [30]R.Brisch et al., “The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue.,” Front. psychiatry, vol. 5, p. 47, 2014. [31]A.Gröger, R.Kolb, R.Schäfer, U.Klose, andS.Guarnieri, “Dopamine Reduction in the Substantia Nigra of Parkinson’s Disease Patients Confirmed by In Vivo Magnetic Resonance Spectroscopic Imaging,” PLoS One, vol. 9, no. 1, p. e84081, Jan.2014. [32]R.Chen, C. A.Furman, andM. E.Gnegy, “Dopamine transporter trafficking: rapid response on demand,” Futur. Neurol, vol. 5, no. 1, p. 123, 2010. [33]A.Penmatsa, K. H.Wang, andE.Gouaux, “X-ray structure of dopamine transporter elucidates antidepressant mechanism.,” Nature, vol. 503, no. 7474, pp. 85–90, 2013. [34]T.Sorkina, B. R.Hoover, N. R.Zahniser, andA.Sorkin, “Constitutive and protein kinase C-induced internalization of the dopamine transporter is mediated by a clathrin-dependent mechanism,” Traffic, vol. 6, no. 2, pp. 157–170, 2005. [35]D. S.Wheeler et al., “Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine,” Proc. Natl. Acad. Sci., p. 201511670, 2015. [36]M. A.Cervinski, J. D.Foster, andR. A.Vaughan, “Syntaxin 1A regulates dopamine transporter activity, phosphorylation and surface expression,” Neuroscience, vol. 170, no. 2, pp. 408–416, 2010. [37]J.Swant et al., “α-Synuclein stimulates a dopamine transporter-dependent chloride current and modulates the activity of the transporter.,” J. Biol. Chem., vol. 286, no. 51, pp. 43933–43, Dec.2011. [38]J.-M.Beaulieu andR. R.Gainetdinov, “The physiology, signaling, and pharmacology of dopamine receptors.,” Pharmacol. Rev., vol. 63, no. 1, pp. 182–217, 2011. [39]A. I.Nash, “Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs,” J. Chem. Neuroanat., 2016. [40]J. D.Foster et al., “Dopamine Transporter Phosphorylation Site Threonine 53 Regulates Substrate Reuptake and Amphetamine-stimulated Efflux,” J. Biol. Chem., vol. 287, no. 35, pp. 29702–29712, Aug.2012. [41]R.Chen et al., “Protein kinase Cβ is a modulator of the dopamine D2 autoreceptor-activated trafficking of the dopamine transporter,” J. Neurochem., vol. 125, no. 5, pp. 663–672, Jun.2013. [42]K. D.Luderman, R.Chen, M. J.Ferris, S. R.Jones, andM. E.Gnegy, “Protein kinase C beta regulates the D2-Like dopamine autoreceLuderman, K. D., Chen, R., Ferris, M. J., Jones, S. R., &Gnegy, M. E. (2015). Protein kinase C beta regulates the D2-Like dopamine autoreceptor. Neuropharmacology, 89, 335–341. https://doi.org/1,” Neuropharmacology, vol. 89, pp. 335–341, Feb.2015. [43]F. J. S.Lee, L.Pei, A.Moszczynska, B.Vukusic, P. J.Fletcher, andF.Liu, “Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor.,” EMBO J., vol. 26, no. 8, pp. 2127–2136, 2007. [44]M.Miranda, C. C.Wu, T.Sorkina, D. R.Korstjens, andA.Sorkin, “Enhanced ubiquitylation and accelerated degradation of the dopamine transporter mediated by protein kinase C,” J. Biol. Chem., vol. 280, no. 42, pp. 35617–35624, 2005. [45]H.P.Wang, “Roles of lmbrd1 gene in cell mitosis,” NTU, 2015. [46]N. K.Speed et al., “Akt-dependent and isoform-specific regulation of dopamine transporter cell surface expression,” ACS Chem. Neurosci., vol. 1, no. 7, pp. 476–481, 2010. [47]B. G.Garcia, Y.Wei, J. aMoron, R. Z.Lin, J. aJavitch, and aGalli, “Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution.,” Mol. Pharmacol., vol. 68, no. 1, pp. 102–109, 2005.
|