跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林之儀
研究生(外文):Chih-Yi Lin
論文名稱:四膜蟲之計畫性消除染色體內部序列以及小片段染色體之探討
論文名稱(外文):Programmed Elimination of Internal Chromosomal Sequences and Fragmented Chromosomes in Tetrahymena thermophila
指導教授:姚孟肇
指導教授(外文):Meng-Chao Yao
口試委員:呂俊毅蔡怡陞陳律佑王忠信
口試日期:2017-06-02
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:基因體與系統生物學學位學程
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:138
中文關鍵詞:四膜蟲計畫性去氧核醣核酸重組邊界元件順式邊界元件染色體切割端粒基因體分析
外文關鍵詞:Tetrhaymenaprogrammed DNA rearrangementsboundary determinationcis-acting elementchromosome breakagetelomeresgenomic analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
染色體完整性的維持在基因穩定上是至關重要的,但計畫性去氧核醣核酸重組現象卻可以在許多生物上觀察到。在四膜蟲的的細胞核分化過程中,幾千條序列被切除,並且將五條染色體分割成了幾百條小染色體。雖然核糖核酸已知會標記切除的區域,目前仍未知細胞是如何精準的決定切除邊界。前人研究指出,有些切切除片段的邊界可以由去氧核醣核酸上的順式作用元件決定,進一步推論可能由多種順式作用元件來影響不同群組的內部切除序列。
我們使用基因體定序分析,比較三個四膜蟲野生株之內部切除序列與其在切除邊界上的差異之後發現,內部切除序列在各個野生株內是高度保留的,但同一個內部切除序列在不同野生株上的切除邊界卻有所差異。除此之外,我們還發現有若干種反向重複序列分佈在內部切除序列的兩端。更甚者,同一種反向重複序列到切除邊界的位置在不同內部切除序列上是非常類似的,顯示他們可能作為順式作用元件。最近研究指出,有一個新的反式作用因子 (Lia3) 能夠辨認幾個內部切除序列,包含 M 序列外的順式作用元件 (A5G5)。為了更進一步了解順勢作用元件與其反式作用因子之間的關係,我們比較了野生株以及 Lia3 變異株之內部切除序列的切除邊界變化以尋找由 Lia3 影響之內部切除序列。我們發現有兩個順式作用元件:G-rich 以及 C-rich 的反向重複序列與決定Lia3 影響之內部切除序列的切除邊界非常有關。更有趣的是,這些順式作用元件與切除邊界的距離不受切除邊界差異的影響,進一步顯示順式作用元件是內部切除邊界的決定因子。
接著,我們發現小染色體在染色體切割後有不同的命運。在 326 條體小染色體中,50 條體小染色體在體染色體的發育過程中被選擇性去除了。有趣的是,這些體小染色體都在 6 到 20 次細胞複製之間被去除了。而我們能夠在這些體小染色體上面找到可能具有發育相關功能的基因。我們展示了在纖毛蟲有一種新的計畫性去氧核醣核酸重組模式,這種模式與之前在寄生型線蟲看到的機制類似,並且可能對於發育時期的基因調節上扮演重要的角色。
本篇論文對於計畫性去氧核醣核酸重組以及基因體消除的機制是經由內部序列以及小片段染色體切除的研究上提供了ㄧ個全面性的藍圖。
Maintenance of chromosome integrity is crucial for genetic stability. However, programmed DNA rearrangements are known to occur in many organisms. In the ciliate Tetrahymena, thousands of deletion sequences are removed and the five germline chromosomes are fragmented into hundreds of minichromosomes during somatic nuclear differentiation. Although RNA is known to target the region for deletion, it is not clear how the precise boundaries are determined. Previous studies have shown that flanking cis-acting sequences determine the boundaries of some elements and have suggested that there are several cis-acting elements, each affecting a different group of internal elimination sequences (IESs).
Here, we compare IESs and their boundary variations among three wild type Tetrahymena strains by genome sequencing. We show that the IESs are highly conserved among strains even though their boundaries are variable. Furthermore, we have identified several flanking inverted repeats (IRs) at both ends of several IES groups. Localization of these IRs was consistent in groups, suggesting that they could serve as the cis-acting elements. Recently a novel G-quadruplex-binding protein, Lia3, was found to determine the precise boundary of the M element and several IESs flanked by a cis-acting element, A5G5. To further investigate the relationship between cis-acting elements and their binding proteins, we compared the IES boundary variation between wild type strains and Lia3 progeny to identify the group of IES that is affected by Lia3. We found that the G-rich and C-rich IRs were highly correlated with the boundary determination of Lia3-affected IESs. More interestingly, the distances of these IRs to the IES boundaries were consistent even if the boundaries varied among different IES forms, suggesting that the cis-acting elements were the determining factor of IES boundary determinations.
Next, we found that the fates of minichromosomes differ after chromosome breakage. Of the 326 somatic minichromosomes identified using genomic data, 50 were selectively eliminated from the mature somatic genome. Interestingly, many and probably most of these minichromosomes are eliminated during the growth period between 6 and 20 doublings right after conjugation. Genes with potential conjugation-specific functions were found in these minichromosomes. Our findings have revealed a new mode of programmed DNA elimination in ciliates similar to those observed in parasitic nematodes, which could play a role in developmental gene regulation.
The results of this thesis provide a global picture of programmed DNA rearrangement and the mechanism of DNA diminution by internal sequence deletions and minichromosome eliminations in Tetrahymena.
謝誌 1
摘要 3
Abstract 5
Table of contents 8
List of figures 11
List of tables 14
Chapter 1 Introduction 15
Chapter 2 Results 20
2.1 The Mechanism of Boundary Determination in the Internal Sequence Elimination 20
2.1.1 IES locations are conserved among B strains 21
2.1.2 The majority of IES boundaries show microheterogeneity among Tetrahymena strains 23
2.1.3 IESs are conserved within different inbred lines 24
2.1.4 cis-acting elements near IES boundaries could be involved in IES regulation 25
2.1.5 G-rich and C-rich inverted repeats are the cis-acting elements of Lia3-affected IESs 28
2.1.6 piggyBac transposon families in Tetrahymena 31
2.1.7 Discussion 34
2.2 The Mechanism of Programmed Minichromosome Elimination 38
2.2.1 Chromosome Breakage is Controlled by a Strong and Highly Conserved Motif 39
2.2.2 Chromosome Loss after Breakage at Cbs 41
2.2.3 Eliminated Chromosomes Disappeared after Conjugation 44
2.2.4 Genes in Eliminated Chromosomes are Expressed during Conjugation 47
2.2.5 Some Eliminated Minichromosomes are Retained in the MAC in Other Tetrahymena Species 49
2.2.6 Discussion 50
Chapter 3 Material and Methods 54
3.1 Cell and cell culture 54
3.2 Genomic DNA sequencing and alignment 55
3.3 IES identification 56
3.4 cis-acting element identification 57
3.5 Southern blotting 58
3.6 Telomere-anchored PCR 58
3.7 EMC analysis 59
3.8 mRNA sequencing and alignment 59
3.9 RT-PCR 60
3.10 Phylogenetic analysis 61
3.11 Chromatin immunoprecipitation sequencing analysis 61
3.12 Pulsed-field gel electrophoresis 62
Figures 63
Tables 107
References 130
1.Hande MP. DNA Repair Factors and Telomere-Chromosome Integrity in Mammalian Cells. Cytogenet Genome Res. 2004;104(1-4):116-22.
2.Tlsty TD, Romanov SR, Kozakiewicz BK, Holst CR, Haupt LM, Crawford YG. Loss of Chromosomal Integrity in Human Mammary Epithelial Cells Subsequent to Escape from Senescence. J Mammary Gland Biol Neoplasia. 2001;6(2):235-43.
3.Goepfert TM, Moreno-Smith M, Edwards DG, Pathak S, Medina D, Brinkley WR. Loss of Chromosomal Integrity Drives Rat Mammary Tumorigenesis. Int J Cancer. 2007;120(5):985-94.
4.Jackson SP, Bartek J. The DNA-Damage Response in Human Biology and Disease. Nature. 2009;461(7267):1071-8.
5.Khanna KK, Jackson SP. DNA Double-Strand Breaks: Signaling, Repair and the Cancer Connection. Nat Genet. 2001;27(3):247-54.
6.Sandell LL, Zakian VA. Loss of a Yeast Telomere: Arrest, Recovery, and Chromosome Loss. Cell. 1993;75(4):729-39.
7.Pimpinelli S, Goday C. Unusual Kinetochores and Chromatin Diminution in Parascaris. Trends Genet. 1989;5(9):310-5.
8.Wang J, Davis RE. Programmed DNA Elimination in Multicellular Organisms. Curr Opin Genet Dev. 2014;27:26-34.
9.Boveri T. Ueber Differenzierung Der Zellkerne Wahrend Der Furchung Des Eies Von Ascaris Megalocephala. Anat Anz. 1887;2:6.
10.Goday C, Pimpinelli S. Chromosome Organization and Heterochromatin Elimination in Parascaris. Science. 1984;224(4647):411-3.
11.Muller F, Tobler H. Chromatin Diminution in the Parasitic Nematodes Ascaris Suum and Parascaris Univalens. Int J Parasitol. 2000;30(4):391-9.
12.Muller F, Bernard V, Tobler H. Chromatin Diminution in Nematodes. Bioessays. 1996;18(2):133-8.
13.Wang J, Mitreva M, Berriman M, Thorne A, Magrini V, Koutsovoulos G, et al. Silencing of Germline-Expressed Genes by DNA Elimination in Somatic Cells. Dev Cell. 2012;23(5):1072-80.
14.Jentsch S, Tobler H, Muller F. New Telomere Formation During the Process of Chromatin Diminution in Ascaris Suum. Int J Dev Biol. 2002;46(1):143-8.
15.Muller F, Wicky C, Spicher A, Tobler H. New Telomere Formation after Developmentally Regulated Chromosomal Breakage During the Process of Chromatin Diminution in Ascaris Lumbricoides. Cell. 1991;67(4):815-22.
16.Goday C, Gonzalez-Garcia JM, Esteban MR, Giovinazzo G, Pimpinelli S. Kinetochores and Chromatin Diminution in Early Embryos of Parascaris Univalens. J Cell Biol. 1992;118(1):23-32.
17.Etter A, Aboutanos M, Tobler H, Muller F. Eliminated Chromatin of Ascaris Contains a Gene That Encodes a Putative Ribosomal Protein. Proc Natl Acad Sci U S A. 1991;88(5):1593-6.
18.Etter A, Bernard V, Kenzelmann M, Tobler H, Muller F. Ribosomal Heterogeneity from Chromatin Diminution in Ascaris Lumbricoides. Science. 1994;265(5174):954-6.
19.Spicher A, Etter A, Bernard V, Tobler H, Muller F. Extremely Stable Transcripts May Compensate for the Elimination of the Gene Fert-1 from All Ascaris Lumbricoides Somatic Cells. Dev Biol. 1994;164(1):72-86.
20.Baroin A, Prat A, Caron F. Telomeric Site Position Heterogeneity in Macronuclear DNA of Paramecium Primaurelia. Nucleic Acids Res. 1987;15(4):1717-28.
21.Forney JD, Blackburn EH. Developmentally Controlled Telomere Addition in Wild-Type and Mutant Paramecia. Mol Cell Biol. 1988;8(1):251-8.
22.Ammermann D, Steinbruck G, von Berger L, Hennig W. The Development of the Macronucleus in the Ciliated Protozoan Stylonychia Mytilus. Chromosoma. 1974;45(4):401-29.
23.Meyer GF, Lipps HJ. Chromatin Elimination in the Hypotrichous Ciliate Stylonychia Mytilus. Chromosoma. 1980;77(3):285-97.
24.Meyer GF, Lipps HJ. The Formation of Polytene Chromosomes During Macronuclear Development of the Hypotrichous Ciliate Stylonychia Mytilus. Chromosoma. 1981;82(2):309-14.
25.Baird SE, Klobutcher LA. Characterization of Chromosome Fragmentation in Two Protozoans and Identification of a Candidate Fragmentation Sequence in Euplotes Crassus. Genes Dev. 1989;3(5):585-97.
26.Herrick G, Hunter D, Williams K, Kotter K. Alternative Processing During Development of a Macronuclear Chromosome Family in Oxytricha Fallax. Genes Dev. 1987;1(10):1047-58.
27.Gall JG. The Molecular Biology of Ciliated Protozoa. Academic Press, INC. 1986.
28.Yao MC, Chao JL. Rna-Guided DNA Deletion in Tetrahymena: An Rnai-Based Mechanism for Programmed Genome Rearrangements. Annu Rev Genet. 2005;39:537-59.
29.Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, et al. Structure of the Germline Genome of Tetrahymena Thermophila and Relationship to the Massively Rearranged Somatic Genome. Elife. 2016;5.
30.Chalker DL, Yao MC. Nongenic, Bidirectional Transcription Precedes and May Promote Developmental DNA Deletion in Tetrahymena Thermophila. Genes Dev. 2001;15(10):1287-98.
31.Malone CD, Hannon GJ. Small Rnas as Guardians of the Genome. Cell. 2009;136(4):656-68.
32.Chalker DL, Fuller P, Yao MC. Communication between Parental and Developing Genomes During Tetrahymena Nuclear Differentiation Is Likely Mediated by Homologous Rnas. Genetics. 2005;169(1):149-60.
33.Yifan L, Sean DT, Tara LM, Jeffrey S, Donald FH, C. David A. Rnai-Dependent H3k27 Methylation Is Required for Heterochromatin Formation and DNA Elimination in Tetrahymena. Genes Dev. 2007;21:1530-45.
34.Madireddi MT, Coyne RS, Smothers JF, Mickey KM, Yao MC, Allis CD. Pdd1p, a Novel Chromodomain-Containing Protein, Links Heterochromatin Assembly and DNA Elimination in Tetrahymena. Cell. 1996;87(1):75-84.
35.Taverna SD, Coyne RS, Allis CD. Methylation of Histone H3 at Lysine 9 Targets Programmed DNA Elimination in Tetrahymena. Cell. 2002;110(6):701-11.
36.Liu Y, Taverna SD, Muratore TL, Shabanowitz J, Hunt DF, Allis CD. Rnai-Dependent H3k27 Methylation Is Required for Heterochromatin Formation and DNA Elimination in Tetrahymena. Genes Dev. 2007;21(12):1530-45.
37.Cheng CY, Vogt A, Mochizuki K, Yao MC. A Domesticated Piggybac Transposase Plays Key Roles in Heterochromatin Dynamics and DNA Cleavage During Programmed DNA Deletion in Tetrahymena Thermophila. Mol Biol Cell.21(10):1753-62.
38.Austerberry CF, Snyder RO, Yao MC. Sequence Microheterogeneity Is Generated at Junctions of Programmed DNA Deletions in Tetrahymena Thermophila. Nucleic Acids Res. 1989;17(18):7263-72.
39.Saveliev SV, Cox MM. Developmentally Programmed DNA Deletion in Tetrahymena Thermophila by a Transposition-Like Reaction Pathway. EMBO J. 1996;15(11):2858-69.
40.Lin IT, Chao JL, Yao MC. An Essential Role for the DNA Breakage-Repair Protein Ku80 in Programmed DNA Rearrangements in Tetrahymena Thermophila. Mol Biol Cell. 2012;23(11):2213-25.
41.Cheng CY, Young JM, Lin CG, Chao JL, Malik HS, Yao MC. The Piggybac Transposon-Derived Genes Tpb1 and Tpb6 Mediate Essential Transposon-Like Excision During the Developmental Rearrangement of Key Genes in Tetrahymena Thermophila. Genes Dev. 2016;30(24):2724-36.
42.Yao MC, Zheng K, Yao CH. A Conserved Nucleotide Sequence at the Sites of Developmentally Regulated Chromosomal Breakage in Tetrahymena. Cell. 1987;48(5):779-88.
43.Challoner PB, Blackburn EH. Conservation of Sequences Adjacent to the Telomeric C4a2 Repeats of Ciliate Macronuclear Ribosomal Rna Gene Molecules. Nucleic Acids Res. 1986;14(15):6299-311.
44.Yao MC, Yao CH, Monks B. The Controlling Sequence for Site-Specific Chromosome Breakage in Tetrahymena. Cell. 1990;63(4):763-72.
45.Fan Q, Yao M. New Telomere Formation Coupled with Site-Specific Chromosome Breakage in Tetrahymena Thermophila. Mol Cell Biol. 1996;16(3):1267-74.
46.Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, et al. Macronuclear Genome Sequence of the Ciliate Tetrahymena Thermophila, a Model Eukaryote. PLoS Biol. 2006;4(9):e286.
47.Yao MC, Gall JG. A Single Integrated Gene for Ribosomal Rna in a Eucaryote, Tetrahymena Pyriformis. Cell. 1977;12(1):121-32.
48.Yao MC, Kimmel AR, Gorovsky MA. A Small Number of Cistrons for Ribosomal Rna in the Germinal Nucleus of a Eukaryote, Tetrahymena Pyriformis. Proc Natl Acad Sci U S A. 1974;71(8):3082-6.
49.Engberg J, Christiansen G, Leick V. Autonomous Rdna Molecules Containing Single Copies of the Ribosomal Rna Genes in the Macronucleus of Tetrahymena Pyriformis. Biochem Biophys Res Commun. 1974;59(4):1356-65.
50.Gall JG. Free Ribosomal Rna Genes in the Macronucleus of Tetrahymena. Proc Natl Acad Sci U S A. 1974;71(8):3078-81.
51.Yao MC, Zhu SG, Yao CH. Gene Amplification in Tetrahymena Thermophila: Formation of Extrachromosomal Palindromic Genes Coding for Rrna. Mol Cell Biol. 1985;5(6):1260-7.
52.Coyne RS, Yao MC. Evolutionary Conservation of Sequences Directing Chromosome Breakage and Rdna Palindrome Formation in Tetrahymenine Ciliates. Genetics. 1996;144(4):1479-87.
53.Eileen P. Hamilton SW, Sandra Dunn, Virginia Merriam, Cindy Lin, Linh Vong, Jessica Russell-Colantonio, and Eduardo Orias. The Highly Conserved Family of Tetrahymena Thermophila Chromosome Breakage Elements Contains an Invariant 10-Base-Pair Core. Eukaryot Cell. 2006;5(4):9.
54.Yao MC, Gorovsky MA. Comparison of the Sequences of Macro- and Micronuclear DNA of Tetrahymena Pyriformis. Chromosoma. 1974;48(1):1-18.
55.Yao MC, Choi J, Yokoyama S, Austerberry CF, Yao CH. DNA Elimination in Tetrahymena: A Developmental Process Involving Extensive Breakage and Rejoining of DNA at Defined Sites. Cell. 1984;36(2):433-40.
56.Austerberry CF, Yao MC. Sequence Structures of Two Developmentally Regulated, Alternative DNA Deletion Junctions in Tetrahymena Thermophila. Mol Cell Biol. 1988;8(9):3947-50.
57.Godiska R, Yao MC. A Programmed Site-Specific DNA Rearrangement in Tetrahymena Thermophila Requires Flanking Polypurine Tracts. Cell. 1990;61(7):1237-46.
58.Godiska R, James C, Yao MC. A Distant 10-Bp Sequence Specifies the Boundaries of a Programmed DNA Deletion in Tetrahymena. Genes Dev. 1993;7(12A):2357-65.
59.Carle CM, Zaher HS, Chalker DL. A Parallel G Quadruplex-Binding Protein Regulates the Boundaries of DNA Elimination Events of Tetrahymena Thermophila. PLoS Genet. 2016;12(3):e1005842.
60.Austerberry CF, Yao MC. Nucleotide Sequence Structure and Consistency of a Developmentally Regulated DNA Deletion in Tetrahymena Thermophila. Mol Cell Biol. 1987;7(1):435-43.
61.Chalker DL, La Terza A, Wilson A, Kroenke CD, Yao MC. Flanking Regulatory Sequences of the Tetrahymena R Deletion Element Determine the Boundaries of DNA Rearrangement. Mol Cell Biol. 1999;19(8):5631-41.
62.Wells JM, Ellingson JL, Catt DM, Berger PJ, Karrer KM. A Small Family of Elements with Long Inverted Repeats Is Located near Sites of Developmentally Regulated DNA Rearrangement in Tetrahymena Thermophila. Mol Cell Biol. 1994;14(9):5939-49.
63.Patil NS, Hempen PM, Udani RA, Karrer KM. Alternate Junctions and Microheterogeneity of Tlr1, a Developmentally Regulated DNA Rearrangement in Tetrahymena Thermophila. J Eukaryot Microbiol. 1997;44(5):518-22.
64.Patil NS, Karrer KM. A Developmentally Regulated Deletion Element with Long Terminal Repeats Has Cis-Acting Sequences in the Flanking DNA. Nucleic Acids Res. 2000;28(6):1465-72.
65.Fillingham JS, Bruno D, Pearlman RE. Cis-Acting Requirements in Flanking DNA for the Programmed Elimination of Mse2.9: A Common Mechanism for Deletion of Internal Eliminated Sequences from the Developing Macronucleus of Tetrahymena Thermophila. Nucleic Acids Res. 2001;29(2):488-98.
66.Fan X, Abbott TE, Larson D, Chen K. Breakdancer: Identification of Genomic Structural Variation from Paired-End Read Mapping. Curr Protoc Bioinformatics. 2014;45:15 6 1-1.
67.Collins K, Gorovsky MA. Tetrahymena Thermophila. Curr Biol. 2005;15(9):R317-8.
68.Cheng CY, Vogt A, Mochizuki K, Yao MC. A Domesticated Piggybac Transposase Plays Key Roles in Heterochromatin Dynamics and DNA Cleavage During Programmed DNA Deletion in Tetrahymena Thermophila. Mol Biol Cell. 2010;21(10):1753-62.
69.Xu HF, Xia QY, Liu C, Cheng TC, Zhao P, Duan J, et al. Identification and Characterization of Piggybac-Like Elements in the Genome of Domesticated Silkworm, Bombyx Mori. Mol Genet Genomics. 2006;276(1):31-40.
70.Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ. Transposon Mutagenesis of Baculoviruses: Analysis of Trichoplusia Ni Transposon Ifp2 Insertions within the Fp-Locus of Nuclear Polyhedrosis Viruses. Virology. 1989;172(1):156-69.
71.Wang J, Du Y, Wang S, Brown SJ, Park Y. Large Diversity of the Piggybac-Like Elements in the Genome of Tribolium Castaneum. Insect Biochem Mol Biol. 2008;38(4):490-8.
72.Baudry C, Malinsky S, Restituito M, Kapusta A, Rosa S, Meyer E, et al. Piggymac, a Domesticated Piggybac Transposase Involved in Programmed Genome Rearrangements in the Ciliate Paramecium Tetraurelia. Genes Dev. 2009;23(21):2478-83.
73.Austerberry CF, Allis CD, Yao MC. Specific DNA Rearrangements in Synchronously Developing Nuclei of Tetrahymena. Proc Natl Acad Sci U S A. 1984;81(23):7383-7.
74.Gros J, Rosu F, Amrane S, De Cian A, Gabelica V, Lacroix L, et al. Guanines Are a Quartet''s Best Friend: Impact of Base Substitutions on the Kinetics and Stability of Tetramolecular Quadruplexes. Nucleic Acids Res. 2007;35(9):3064-75.
75.Cassidy-Hanley D, Bisharyan Y, Fridman V, Gerber J, Lin C, Orias E, et al. Genome-Wide Characterization of Tetrahymena Thermophila Chromosome Breakage Sites. Ii. Physical and Genetic Mapping. Genetics. 2005;170(4):1623-31.
76.Stover NA, Krieger CJ, Binkley G, Dong Q, Fisk DG, Nash R, et al. Tetrahymena Genome Database (Tgd): A New Genomic Resource for Tetrahymena Thermophila Research. Nucleic Acids Res. 2006;34(Database issue):D500-3.
77.Tetrahymena thermophila SB210 wgssp, http://www.ncbi.nlm.nih.gov/nuccore/AFSS00000000.2/.
78.Coyne RS, Nikiforov MA, Smothers JF, Allis CD, Yao MC. Parental Expression of the Chromodomain Protein Pdd1p Is Required for Completion of Programmed DNA Elimination and Nuclear Differentiation. Mol Cell. 1999;4(5):865-72.
79.Kataoka K, Mochizuki K. Phosphorylation of an Hp1-Like Protein Regulates Heterochromatin Body Assembly for DNA Elimination. Dev Cell. 2015;35(6):775-88.
80.Xiong J, Lu X, Zhou Z, Chang Y, Yuan D, Tian M, et al. Transcriptome Analysis of the Model Protozoan, Tetrahymena Thermophila, Using Deep Rna Sequencing. PLoS One. 2012;7(2):e30630.
81.Tetrahymena Comparative Sequencing Project BIoHaM, https://www.ncbi.nlm.nih.gov/bioproject/?term=Tetrahymena%20broad%20institute.
82.Karamysheva Z, Wang L, Shrode T, Bednenko J, Hurley LA, Shippen DE. Developmentally Programmed Gene Elimination in Euplotes Crassus Facilitates a Switch in the Telomerase Catalytic Subunit. Cell. 2003;113(5):565-76.
83.Gorovsky MA, Yao MC, Keevert JB, Pleger GL. Isolation of Micro- and Macronuclei of Tetrahymena Pyriformis. Methods Cell Biol. 1975;9(0):311-27.
84.Liu Y, Schroder J, Schmidt B. Musket: A Multistage K-Mer Spectrum-Based Error Corrector for Illumina Sequence Data. Bioinformatics. 2013;29(3):308-15.
85.Li H, Durbin R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25(14):1754-60.
86.Langmead B, Salzberg SL. Fast Gapped-Read Alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9.
87.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map Format and Samtools. Bioinformatics. 2009;25(16):2078-9.
88.Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (Igv): High-Performance Genomics Data Visualization and Exploration. Brief Bioinform. 2013;14(2):178-92.
89.Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential Gene and Transcript Expression Analysis of Rna-Seq Experiments with Tophat and Cufflinks. Nat Protoc. 2012;7(3):562-78.
90.Saitou N, Nei M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol. 1987;4(4):406-25.
91.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. Mega5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 2011;28(10):2731-9.
92.Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 1985;39:783-91.
93.Zuckerkandl E, Pauling L. Evolutionary Divergence and Convergence in Proteins. Evolving genes and proteins. 1965:97-166.
94.Schwartz DC, Cantor CR. Separation of Yeast Chromosome-Sized Dnas by Pulsed Field Gradient Gel Electrophoresis. Cell. 1984;37(1):67-75.
95.Lukaszewicz A, Howard-Till RA, Novatchkova M, Mochizuki K, Loidl J. Mre11 and Com1/Sae2 Are Required for Double-Strand Break Repair and Efficient Chromosome Pairing During Meiosis of the Protist Tetrahymena. Chromosoma. 2010;119(5):505-18.
96.Yao MC, Fuller P, Xi X. Programmed DNA Deletion as an Rna-Guided System of Genome Defense. Science. 2003;300(5625):1581-4.
97.Crooks GE, Hon G, Chandonia JM, Brenner SE. Weblogo: A Sequence Logo Generator. Genome Res. 2004;14(6):1188-90.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top