跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪凱琳
研究生(外文):Kai-Lin Hong
論文名稱:⼩孢⼦靈芝免疫調節蛋白質中三個色胺酸對其功能之影響
論文名稱(外文):Effects of the Three Tryptophan Residues on the Functions of an Immunomodulatory Protein from Ganoderma microsporum, GMI
指導教授:黃慶璨
指導教授(外文):Ching-Tsan Huang
口試日期:2017-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:真菌免疫調節蛋白質小孢子靈芝GMI細胞免疫抗腫瘤
外文關鍵詞:Fungal immunomodulatory proteins (FIPs)Ganoderma microsporumGMIimmunomodulatory functionsanti-cancer activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
靈芝為中國著名的藥用真菌,含有許多對人體有益的成分,如多醣體、三萜類及真菌免疫調節蛋白質 (Fungal Immunomodulatory Proteins, FIPs)。本實驗室自小孢子靈芝 (Ganoderma microsporum) 選殖出真菌免疫調節蛋白質基因GMI,並以嗜甲醇酵母菌Pichia pastoris表達系統生產。GMI已證實具刺激人類T細胞株分泌IL-2、降低發炎因子分泌、抑制腫瘤轉移及誘發腫瘤細胞凋亡等效果。GMI雖具多種功效,卻可能因彼此的交互作用,難以用於藥物發展。因此探討GMI與細胞表面受體結合的機制及與蛋白質結合相關的胺基酸是極為重要的。過去研究發現FIPs會使山羊血球凝集,生理活性與已知的凝集素 (Lectins) 相似,兩者皆為分子量小卻能對不同細胞造成不同作用的蛋白質。本研究擬探討GMI作用機制是否與凝集素相似,同樣藉由與細胞表面受體的醣分子結合,而影響其下游生理活性。目前結果顯示加特定醣分子,GMI活化Jurkat細胞分泌IL-2的功能會受影響,但抑制肺癌細胞A549生長的功能卻不受影響;以澱粉酶競爭細胞表面醣分子,可得到相似的結果。由此推測GMI是藉由與醣分子的結合而產生免疫活化的功能。此外,芳香族的胺基酸在蛋白質與醣結合能力扮演著重要的角色,其中又以色胺酸最為重要。因此將GMI上三個色胺酸置換成丙胺酸或甘胺酸。其中唯有將三個色胺酸同時至換掉時才會影響抗癌功能,但GMI-W25G、GMI-W110A、GMI-W12A/W25G/W110A會影響免疫活化功效。總而言之,在本研究中發現GMI活化Jurkat細胞分泌IL-2的功能與醣分子結合有關,而其序列上第25及110個胺基酸似乎扮演關鍵的角色。
Ganoderma is a traditional Asian medicine, which contains many bioactive compounds, such as triterpenoids, polysaccharides, and fungal immunomodulatory proteins (FIPs). GMI is a FIPs found in Ganoderma microsporum, and successfully produced by pichia pastoris, a heterologous protein expression system. It was proved that recombine GMI was able to stimulate Jurkat T cell secreting IL-2, reduced inflammation, and killed cancer cell. GMI was multifunction, but it is difficult to become a drug because of the interactions of those functions. As a result, the detail mechanism of how GMI interacts with the cell surface receptors and which amino acid play a critical role in those functions are important. In the previous studies, FIPs would cause hemagglutination, and the bio-activity were similar to lectins. Both of them were small proteins with different functions to different cells. In this study, we would like to investigate whether the functions of GMI was related to the binding ability to the glycosylation of cell surface receptors just like lectins. From the result, the immunomodulatory function of GMI would inhibit by adding specific carbohydrates and α-amylase; however, the anti-cancer activity of GMI would not affect. Besides, the aromatic amino acids, especially tryptophan, played a critical role in protein-glycan interactions. Thus, trying to replace the 3 tryptophans of GMI into alanine or glycine to see whether these three amino acids are critical to the functions of GMI. The result showed that only the replacement of three tryptophans in the same tine would affect the anti-cancer activity, and the replacement of the 25th or 110th amino acid would affect the immunomodulatory functions of GMI. Overall, the immunomodulatory functions of GMI seemed relative to its carbohydrate binding ability, and the 25th and 110th amino acid of GMI, tryptophan, somehow played an important role in it.
摘要 III
Abstract V
目錄 VII
表目錄 XII
圖目錄 XIII
第一章前言 1
一、靈芝 1
二、靈芝生理活性成分 2
1. 靈芝多醣體 2
2. 三萜類 2
3. 核酸類 3
4. 真菌免疫調節蛋白質 3
三、小孢子靈芝免疫調節蛋白質 4
1. 蛋白質結構 4
2. 免疫調節活性 5
3. 抗腫瘤活性 5
四、凝集素 (Lectins) 6
1. 動物中的凝集素 6
2. 植物中的凝集素 7
3. 凝集素的應用 7
五、Alanine scanning 8
六、Pichia pastoris表達系統 8
七、研究動機 9
1. 目的 9
2. 策略 10
3. 欲達成目標 11
第二章、材料方法 16
一、 細菌與真菌實驗 16
1. 培養基與藥品 16
2. 菌株與培養條件 18
3. 質體建構與轉形株 19
4. 嗜甲醇酵母菌電穿孔轉形法 21
5. 轉形株篩選 22
二、蛋白質表現與分析 22
1. 蛋白質表現 22
2. 蛋白質純化與濃縮 23
3. 蛋白質定量 24
4. 聚丙烯醯胺膠體電泳 24
5. 西方墨點法 25
三、細胞培養與分析 27
1. 試劑與培養基 27
2. 細胞株及培養條件 27
3. 抗腫瘤活性測試 28
4. 細胞免疫活性測試 29
二、 統計分析 31
第三章、實驗結果 35
一、 嗜甲醇酵母菌表現系統表現免疫調節蛋白質 35
1. 突變質體構築 35
2. 表現菌株篩選 35
3. 蛋白質表現、純化與分析 36
二、 抗腫瘤活性測試 37
1. 醣結合競爭測試 (Sugar binding Competition assay) 37
2. 澱粉酶影響GMI抗腫瘤活性 37
3. 突變型GMI抗腫瘤活性 38
三、 細胞免疫活性測試 38
1. 醣結合競爭測試 (Sugar binding Competition assay) 38
2. 澱粉酶影響GMI免疫調節作用 39
3. 突變型GMI免疫調節作用測定 39
第四章、討論 70
一、 Alanine scanning 70
二、 抗腫瘤活性測試 70
三、 細胞免疫活性測試 71
第五章、總結 73
第六章、未來展望 74
一、 Alanine scanning 74
二、 抗腫瘤活性測試 74
三、 細胞免疫活性測試 74
第七章、參考文獻 76
1.許瑞祥 (1993) 靈芝概論 (萬年).
2.Ainsworth GC (2010) AINSWORTH AND BISBY''S DICTIONARY OF THE FUNGI. Tenth Edition. Quarterly Review of Biology 85(1):113-114.
3.Paterson RR (2006) Ganoderma - a therapeutic fungal biofactory. Phytochemistry 67(18):1985-2001.
4.Xu Z, et al. (2011) Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am J Chin Med 39(1):15-27.
5.Hennicke F, et al. (2016) Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry 127:29-37.
6.Chai H, et al. (1997) Constituents from the fruiting body of Ganoderma lucidum (Fr.) Karst. Zhongguo Zhong Yao Za Zhi 22(9):552-553, 576.
7.Laszczyk MN (2009) Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med 75(15):1549-1560.
8.Min BS, et al. (1998) Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull (Tokyo) 46(10):1607-1612.
9.Xu JW, et al. (2010) Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol 87(2):457-466.
10.Kino K, et al. (1989) Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem 264(1):472-478.
11.Tanaka S, et al. (1989) Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions. J Biol Chem 264(28):16372-16377.
12.van der Hem LG, et al. (1995) Ling Zhi-8: studies of a new immunomodulating agent. Transplantation 60(5):438-443.
13.Ko JL, et al. (1995) A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem 228(2):244-249.
14.Hsu HC, et al. (1997) Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem J 323 ( Pt 2):557-565.
15.林采蔆 (2005) 靈芝屬免疫調節蛋白 GMI 與 GFO-1 基因之選殖與 Pichia pastoris 之異源表現. 國立台灣大學生化科技學系博士論文.
16.Huang L, et al. (2009) Crystal structure of LZ-8 from the medicinal fungus Ganoderma lucidium. Proteins 75(2):524-527.
17.Li QZ, et al. (2011) Recent status and prospects of the fungal immunomodulatory protein family. Crit Rev Biotechnol 31(4):365-375.
18.吳明玥 (2008) 利用熱休克蛋白質 5’端非轉譯區片段調控免疫調節蛋白質 GMI 於米麴菌表達系統之產量. 國立台灣大學生化科技學系碩士論文.
19.Lin WH, et al. (1997) Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem 272(32):20044-20048.
20.蔣友邦 (2012) 小孢子靈芝免疫調節蛋白質 GMI 雙體化對其免疫調節 功能之影響. 國立台灣大學生化科技學系碩士論文.
21.Hsin IL, et al. (2015) GMI, an Immunomodulatory Protein from Ganoderma microsporum, Potentiates Cisplatin-Induced Apoptosis via Autophagy in Lung Cancer Cells. Mol Pharm 12(5):1534-1543.
22.Lin CH, et al. (2010) GMI, a Ganoderma immunomodulatory protein, down-regulates tumor necrosis factor alpha-induced expression of matrix metalloproteinase 9 via NF-kappaB pathway in human alveolar epithelial A549 cells. J Agric Food Chem 58(22):12014-12021.
23.Hsin IL, et al. (2011) GMI, an immunomodulatory protein from Ganoderma microsporum, induces autophagy in non-small cell lung cancer cells. Autophagy 7(8):873-882.
24.Van Damme EJM, et al. (1998) Handbook of Plant Lectins: Properties and Biomedical Applications (John Wiley & Sons).
25.Sharon N (1993) Lectin-carbohydrate complexes of plants and animals: an atomic view. Trends in biochemical sciences 18(6):221-226 %@ 0968-0004.
26.Maverakis E, et al. (2015) Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun 57:1-13.
27.Oldroyd GE, et al. (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519-546.
28.Komath SS, et al. (2006) Beyond carbohydrate binding: new directions in plant lectin research. Org Biomol Chem 4(6):973-988.
29.Lam SK, et al. (2011) Lectins: production and practical applications. Appl Microbiol Biotechnol 89(1):45-55.
30.Dan X, et al. (2016) Development and Applications of Lectins as Biological Tools in Biomedical Research. Med Res Rev 36(2):221-247.
31.Michels CVA (2002) Genetic Techniques for Biological Research : a Case Study Approach (J. Wiley, New York)
32.Daly R, et al. (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18(2):119-138.
33.Wang XF, et al. (2013) In vitro rapid evolution of fungal immunomodulatory proteins by DNA family shuffling. Appl Microbiol Biotechnol 97(6):2455-2465.
34.Wang Y, et al. (2016) Discovery and Characterization of the Highly Active Fungal Immunomodulatory Protein Fip-vvo82. J Chem Inf Model 56(10):2103-2114.
35.翁瑞芸 (2011) 小孢子靈芝免疫調節蛋白質 GMI 之功能與結構分析. 國立台灣大學生化科技學系碩士論文.
36.謝宛伶 (2014) 小孢子靈芝免疫調節蛋白質 GMI 部分片段之生理活性分析. 國立台灣大學生化科技學系碩士論文.
37.Liu YF, et al. (2012) IFN-gamma induction on carbohydrate binding module of fungal immunomodulatory protein in human peripheral mononuclear cells. J Agric Food Chem 60(19):4914-4922.
38.Hudson KL, et al. (2015) Carbohydrate-Aromatic Interactions in Proteins. J Am Chem Soc 137(48):15152-15160.
39.Doxey AC, et al. (2010) Structural motif screening reveals a novel, conserved carbohydrate-binding surface in the pathogenesis-related protein PR-5d. BMC Struct Biol 10:23.
40.Payne CM, et al. (2011) Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. J Biol Chem 286(47):41028-41035.
41.許巧青 (2015) 利用 2A 短胜肽連接不同綠色螢光蛋白質 探討螢光強度與目標蛋白質之間的關係. 國立台灣大學生化科技學系碩士論文.
42.Julius D, et al. (1983) Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 32(3):839-852.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊