|
1.Von Eiff, C., et al., Infections associated with medical devices. Drugs, 2005. 65(2): p. 179-214. 2.Dagenais, T.R.T. and N.P. Keller, Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clinical microbiology reviews, 2009. 22(3): p. 447-465. 3.Mirza, S.A., et al., The changing epidemiology of cryptococcosis: an update from population-based active surveillance in 2 large metropolitan areas, 1992–2000. Clinical infectious diseases, 2003. 36(6): p. 789-794. 4.Grothe, C., et al., Incidence of bloodstream infection among patients on hemodialysis by central venous catheter. Revista latino-americana de enfermagem, 2010. 18: p. 73-80. 5.Brown, A.J.P., et al., Stress adaptation in a pathogenic fungus. The journal of experimental biology, 2014. 217(1): p. 144-155. 6.Pfaller, M.A. and D.J. Diekema, Epidemiology of invasive candidiasis: a persistent public health problem. Clinical microbiology reviews, 2007. 20(1): p. 133-163. 7.Koh, A.Y., et al., Mucosal damage and neutropenia are required for Candida albicans dissemination. PLOS pathogens, 2008. 4(2): p. e35. 8.Schulze, J. and U. Sonnenborn, Yeasts in the gut: from commensals to infectious agents. Deutsches Ärzteblatt international, 2009. 106(51-52): p. 837-842. 9.Fidel, P.L. and J.D. Sobel, Immunopathogenesis of recurrent vulvovaginal candidiasis. Clinical microbiology reviews, 1996. 9(3): p. 335-348. 10.Sudbery, P., N. Gow, and J. Berman, The distinct morphogenic states of Candida albicans. Trends in microbiology, 2004. 12(7): p. 317-324. 11.Lohse, M.B. and A.D. Johnson, White-opaque switching in Candida albicans. Current opinion in microbiology, 2009. 12(6): p. 650-654. 12.Dalle, F., et al., Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cellular microbiology, 2010. 12(2): p. 248-271. 13.Scherwitz, C., Ultrastructure of human cutaneous candidosis. Journal of investigative dermatology, 1982. 78(3): p. 200-205. 14.Romani, L., F. Bistoni, and P. Puccetti, Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Current opinion in microbiology, 2003. 6(4): p. 338-343. 15.Lorenz, M.C., J.A. Bender, and G.R. Fink, Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryotic cell, 2004. 3(5): p. 1076-1087. 16.Whiteway, M. and C. Bachewich, Morphogenesis in Candida albicans. Annual review of microbiology, 2007. 61: p. 529-553. 17.Taschdjian, C.L., J.J. Burchall, and P.J. Kozinn, Rapid identification of Candida albicans by filamentation on serum and serum substitutes. A.M.A. Journal of diseases of children, 1960. 99(2): p. 212-215. 18.Buffo, J., M.A. Herman, and D.R. Soll, A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia, 1984. 85(1-2): p. 21-30. 19.Mardon, D., E. Balish, and A.W. Phillips, Control of dimorphism in a biochemical variant of Candida albicans. Journal of Bacteriology, 1969. 100(2): p. 701-707. 20.Simonetti, N., V. Strippoli, and A. Cassone, Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Nature, 1974. 250(5464): p. 344-346. 21.Liu, H., J. Kohler, and G. Fink, Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science, 1994. 266(5191): p. 1723-1726. 22.Lee, K.L., H.R. Buckley, and C.C. Campbell, An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia, 1975. 13(2): p. 148-153. 23.Hornby, J.M., et al., Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Applied and environmental microbiology, 2001. 67(7): p. 2982-2992. 24.Chen, H., et al., Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the national academy of sciences of the United States of America, 2004. 101(14): p. 5048-5052. 25.Rocha, C.R.C., et al., Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Molecular biology of the cell, 2001. 12(11): p. 3631-3643. 26.Cloutier, M., et al., The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal genetics and biology, 2003. 38(1): p. 133-141. 27.Stoldt, V.R., et al., Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. The EMBO journal, 1997. 16(8): p. 1982-1991. 28.Lane, S., et al., DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. Journal of biological chemistry, 2001. 276(52): p. 48988-48996. 29.Sellam, A., et al., Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans. Eukaryotic cell, 2010. 9(4): p. 634-644. 30.Xu, X.-L., et al., Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell host & microbe, 2008. 4(1): p. 28-39. 31.Klengel, T., et al., Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Current biology : CB, 2005. 15(22): p. 2021-2026. 32.Feng, Q., et al., Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. Journal of bacteriology, 1999. 181(20): p. 6339-6346. 33.Bockmühl, D.P., et al., Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Molecular microbiology, 2001. 42(5): p. 1243-1257. 34.Hall, R.A., et al., The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryotic cell, 2011. 10(8): p. 1034-1042. 35.Leberer, E., et al., Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Molecular microbiology, 2001. 42(3): p. 673-687. 36.Biswas, K. and J. Morschhäuser, The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Molecular microbiology, 2005. 56(3): p. 649-669. 37.Csank, C., et al., Roles of the Candida albicans mitogen-activated protein kinase Homolog, Cek1p, in hyphal development and systemic candidiasis. Infection and immunity, 1998. 66(6): p. 2713-2721. 38.Román, E., C. Nombela, and J. Pla, The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Molecular and Cellular Biology, 2005. 25(23): p. 10611-10627. 39.Lu, Y., C. Su, and H. Liu, Candida albicans hyphal initiation and elongation. Trends in microbiology, 2014. 22(12): p. 707-714. 40.Braun, B.R. and A.D. Johnson, Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science, 1997. 277(5322): p. 105-109. 41.Braun, B.R., D. Kadosh, and A.D. Johnson, NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. The EMBO journal, 2001. 20(17): p. 4753-4761. 42.Murad, A.A., et al., NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. The EMBO journal, 2001. 20(17): p. 4742-4752. 43.Shapiro, R.S., et al., Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol, 2009. 19(8): p. 621-9. 44.Bockmühl, D.P. and J.F. Ernst, A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics, 2001. 157(4): p. 1523-1530. 45.Cao, F., et al., The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Molecular biology of the cell, 2006. 17(1): p. 295-307. 46.Lu, Y., et al., Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proceedings of the national academy of sciences of the United States of America, 2014. 111(5): p. 1975-1980. 47.Cleary, I.A., et al., BRG1 and NRG1 form a novel feedback circuit regulating C. albicans hypha formation and virulence. Molecular microbiology, 2012. 85(3): p. 557-573. 48.Lu, Y., C. Su, and H. Liu, A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLOS pathogens, 2012. 8(4): p. e1002663. 49.Lu, Y., et al., Synergistic regulation of hyphal elongation by hypoxia, CO2, and nutrient conditions controls the virulence of Candida albicans. Cell host & microbe, 2013. 14(5): p. 499-509. 50.Chapa y Lazo, B., S. Bates, and P. Sudbery, The G1 cyclin Cln3 regulates morphogenesis in Candida albicans. Eukaryotic cell, 2005. 4(1): p. 90-94. 51.Bachewich, C., D.Y. Thomas, and M. Whiteway, Depletion of a polo-like kinase in Candida albicans activates cyclase-dependent hyphal-like growth. Molecular biology of the cell, 2003. 14(5): p. 2163-2180. 52.Zheng, X.-D., et al., Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. The EMBO journal, 2007. 26(16): p. 3760-3769. 53.Sudbery, P.E., Growth of Candida albicans hyphae. Nat Rev Micro, 2011. 9(10): p. 737-748. 54.BAILLIE, G.S. and L.J. DOUGLAS, Role of dimorphism in the development of Candida albicans biofilms. Journal of Medical Microbiology, 1999. 48(7): p. 671-679. 55.Kolter, R. and E.P. Greenberg, Microbial sciences: the superficial life of microbes. Nature, 2006. 441(7091): p. 300-302. 56.Donlan, R.M. and J.W. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 2002. 15(2): p. 167-193. 57.Silva, S., et al., Adherence and biofilm formation of non-Candida albicans Candida species. Trends in microbiology, 2011. 19(5): p. 241-247. 58.Douglas, L.J., Candida biofilms and their role in infection. Trends in microbiology, 2003. 11(1): p. 30-36. 59.Baillie, G.S. and L.J. Douglas, Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J antimicrob chemother, 2000. 46(3): p. 397-403. 60.Soll, D.R. and K.J. Daniels, Plasticity of Candida albicans Biofilms. Microbiology and molecular biology reviews, 2016. 80(3): p. 565-595. 61.Chandra, J., et al., Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. Journal of bacteriology, 2001. 183(18): p. 5385-5394. 62.Finkel, J.S. and A.P. Mitchell, Genetic contorl of Candid albicans biofilm development. Nature reviews. microbiology, 2011. 9(2): p. 109-118. 63.Mayer, F.L., D. Wilson, and B. Hube, Candida albicans pathogenicity mechanisms. Virulence, 2013. 4(2): p. 119-128. 64.Green, C.B., et al., Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology, 2005. 151(4): p. 1051-1060. 65.Li, F., et al., Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryotic cell, 2007. 6(6): p. 931-939. 66.Nobile, C.J. and A.P. Mitchell, Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Current biology, 2005. 15(12): p. 1150-1155. 67.Nett, J., et al., Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrobial agents and chemotherapy, 2007. 51(2): p. 510-520. 68.Nett, J.E., et al., Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrobial agents and chemotherapy, 2010. 54(8): p. 3505-3508. 69.Nobile, C.J., et al., Biofilm matrix regulation by Candida albicans Zap1. PLOS biology, 2009. 7(6): p. e1000133. 70.Taff, H.T., et al., A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLOS pathogens, 2012. 8(8): p. e1002848. 71.Fonzi, W.A., PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β-1,3- and β-1,6-Glucans. Journal of bacteriology, 1999. 181(22): p. 7070-7079. 72.Sarthy, A.V., et al., Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-β-glucosyltransferase. Microbiology, 1997. 143(2): p. 367-376. 73.Uppuluri, P., et al., Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLOS Pathogens, 2010. 6(3): p. e1000828. 74.Uppuluri, P., et al., The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryotic cell, 2010. 9(10): p. 1531-1537. 75.Nobile, C.J., et al., A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell, 2012. 148(1-2): p. 126-138. 76.Chang, T.-P., et al., Distribution and drug susceptibilities of Candida species causing candidemia from a medical center in central Taiwan. Journal of infection and chemotherapy, 2013. 19(6): p. 1065-1071. 77.Porman, A.M., et al., MTL–independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in regulating switching and filamentation. PLOS genetics, 2013. 9(3): p. e1003369. 78.Porman, A.M., et al., Discovery of a phenotypic switch regulating sexual mating in the opportunistic fungal pathogen Candida tropicalis. Proceedings of the national academy of sciences of the United States of America, 2011. 108(52): p. 21158-21163. 79.Zhang, Q., et al., Regulation of filamentation in the human fungal pathogen Candida tropicalis. Molecular microbiology, 2016. 99(3): p. 528-545. 80.Al-Fattani, M.A. and L.J. Douglas, Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. Journal of medical microbiology, 2006. 55(8): p. 999-1008. 81.Araújo, D., M. Henriques, and S. Silva, Portrait of Candida species biofilm regulatory network genes. Trends in microbiology. 25(1): p. 62-75. 82.Mancera, E., et al., Finding a missing gene: EFG1 regulates morphogenesis in Candida tropicalis. G3: Genes|Genomes|Genetics, 2015. 5(5): p. 849-856. 83.Du, H., et al., Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLOS one, 2012. 7(1): p. e29707. 84.Schweizer, A., et al., The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Molecular microbiology, 2000. 38(3): p. 435-445. 85.Barchiesi, F., et al., Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750. Antimicrobial agents and chemotherapy, 2000. 44(6): p. 1578-1584. 86.Butler, G., et al., Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009. 459(7247): p. 657-662. 87.Silva, S., et al., Silicone colonization by non-Candida albicans Candida species in the presence of urine. Journal of medical microbiology, 2010. 59(7): p. 747-754. 88.Carlisle, P.L. and D. Kadosh, Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryotic cell, 2010. 9(9): p. 1320-1328. 89.Lackey, E., et al., Comparative evolution of morphological regulatory functions in Candida Species. Eukaryotic cell, 2013. 12(10): p. 1356-1368. 90.Noble, S.M., B.A. Gianetti, and J.N. Witchley, Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat rev micro, 2017. 15(2): p. 96-108. 91.Yang, Y.-L., et al., Distribution and antifungal susceptibility of Candida species isolated from different age populations in Taiwan. Medical mycology, 2006. 44(3): p. 237-242. 92.Banerjee, M., et al., UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Molecular biology of the cell, 2008. 19(4): p. 1354-1365. 93.Pérez-Martín, J., et al., Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Seminars in cell & developmental biology, 2016. 57: p. 93-99. 94.Butler, D.K., et al., The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Fungal genetics and biology, 2006. 43(8): p. 573-582. 95.Bensen, E.S., et al., The mitotic cyclins Clb2p and Clb4p affect morphogenesis in Candida albicans. Molecular biology of the cell, 2005. 16(7): p. 3387-3400. 96.Nobile, C.J., et al., Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLOS pathogens, 2006. 2(7): p. e63. 97.Hepworth, S.R., H. Friesen, and J. Segall, NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Molecular and cellular biology, 1998. 18(10): p. 5750-5761. 98.Alby, K., D. Schaefer, and R.J. Bennett, Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature, 2009. 460(7257): p. 890-893.
|