(3.231.29.122) 您好!臺灣時間:2021/02/25 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳昱嘉
研究生(外文):Yu-Chia Chen
論文名稱:熱帶念珠菌六個同源基因對菌絲及生物膜生成的影響探討
論文名稱(外文):Investigation of six conserved transcriptional factors on the regulation of hyphal formation and biofilm development in Candida tropicalis
指導教授:林晉玄
指導教授(外文):Ching-Hsuan Lin
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:76
中文關鍵詞:熱帶念珠菌生物膜形成yeast-hyphae 型態轉換轉錄因子白色念珠菌
外文關鍵詞:Candida tropicalisbiofilmyeast-hyphae transitiontranscription factorCandida albicans
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
念珠菌屬 (Candida species) 包括白色念珠菌 (Candida albicans) 及熱帶念珠菌 (Candida tropicalis) 皆屬於伺機性致病真菌,可以在不同的型態間轉換以適應變化的環境。其中 yeast-hyphae 的型態轉換對念珠菌的毒性、寄主免疫系統反應等形態特徵高度相關,也是念珠菌生物膜形成的重要步驟。生物膜是微生物在自然界中主要增生的方式,也是造成人體永久感染的主因之一。熱帶念珠菌是台灣僅次於白色念珠菌常見的念珠菌;儘管如此,對抗真菌藥物 fluconazole 耐受性菌株產生的速度卻比白色念珠菌快。因此本研究欲瞭解與熱帶念珠菌致病力高度相關的菌絲生成及生物膜形成的相關機制。過去研究顯示,白色念珠菌主要由包含 CaBcr1、 CaBrg1、 CaEfg1、 CaNdt80、 CaRob1與 CaTec1的六個轉錄因子組成生物膜生成控制網;除了 CaBcr1 之外的五個轉錄因子也參與菌絲生長的調控。因此,我們猜測熱帶念珠菌的六個同源轉錄因子在調控生物膜及菌絲生成同樣扮演重要角色。首先實驗構築熱帶念珠菌六個同源轉錄因子基因的突變株及互補株,觀察其生物膜及菌絲生成變化。六個基因突變株生物膜生成皆有缺失,顯示熱帶念珠菌六個同源基因皆能正向調控生物膜的形成;而除了 CtNdt80 抑制菌絲生成外,其餘五個轉錄因子皆促進菌絲生成。利用即時聚合酶鏈式反應分析六個基因在菌絲生成時的表現量,發現在最適菌絲生成條件下,只有 CtROB1 的表現量明顯上升;然而,與菌絲生成高度相關的基因 CtUME6 的表現量在熱帶念珠菌六個同源基因突變株中,皆顯著下降。為了探尋六個基因調控生物膜及菌絲生成的可能機制,我們將熱帶念珠菌六個同源基因分別送入白色念珠菌相對應的基因突變株內。在 Cabcr1、 Caefg1 或 Catec1 突變株分別表現 CtBCR1、 CtEFG1 或 CtTEC1,可以恢復生物膜及菌絲生成能力;而表現 CtBRG1 或 CtROB1 對 Cabrg1 或 Carob1 突變株的生物膜或菌絲生長能力沒有影響。CtNDT80 雖然無法回復 Candt80 突變株的生物膜生成缺失,但在 Spider 液態培養基刺激下,可觀察到菌絲的生長 [Candt80Δ(0%)、Candt80Δ::CtNDT801 (8.46%)];除此之外,在 Ctndt80 突變株中表現 CaNDT80,菌絲的生成比例反而會顯著下降 [ Ctndt80Δ(63.10%)、Ctndt80Δ::CaNDT801 (36.48%)]。根據上述實驗結果,本研究發現 C. tropicalis 及 C. albicans 的六個同源基因調控生物膜及菌絲生成具有保守性功能;然而,NDT80對菌絲的調控在兩物種間有所不同,暗示著菌種間演化出複雜的菌絲生成調控迴路,而使單一基因保守性功能無法彰顯。
Candida albicans and Candida tropicalis are opportunistic fungi, which can undergo morphological transition to adapt different environments. The yeast-hyphae transition is considered to be highly related to Candida properties in virulence, and host-fungus interactions. In addition, the transition from yeast to hyphae is an important step for Candida biofilms, which are a major growth form in natural environments and a leading cause of persistent infections. C. tropicalis is not only the 2nd common commensal pathogen among Candida species in Taiwan, but also develops resistant strains against fluconazole faster than C. albicans. It has been known that regulatory network composed of CaBcr1, CaBrg1, CaEfg1, CaNdt80, CaRob1 and CaTec1 is involved in biofilm development in C. albicans. Except for CaBcr1, other five genes hold the ability to regulate filamentous gowth as well. In this study, we speculated the functions of six homologous genes in C. tropicalis are the same as those genes in C. albicans. Six gene mutants and complementary strains were constructed in C. tropicalis to observe the differences of hyphae and biofilm formation. Six mutant strains were deficient in biofilm development, which means they positively regulate biofilm formation in C. tropicalis. Besides, while CtBcr1, CtBrg1, CtEfg1, CtRob1 and CtTec1 promoted hyphae formation in C. tropicalis, CtNdt80 inhibited filamentation. RT-qPCR showed that only CtROB1 was highly expressed during filamentation, but CtUME6 expression level, which is one of determining factors for hyphae formation, was downregulated in all six mutant genes. To understand the possible mechanisms of six genes in regulating biofilm and filamentation in C. tropicalis, we transformed C. tropicalis homologous genes into C. albicans mutans strains, separately. Biofilm and filament ability could be recovered by expression of CtBCR1, CtEFG1 and CtTEC1 in Cabcr1, Caefg1 and Catec1 mutants; however, there were no differences in biofilm and hyphae development when expressing CtBRG1 or CtROB1 in Cabrg1 or Carob1 mutants. CtNdt80 could not recover biofilm deficiency of Candt80 mutant; nevertheless, Candt80 mutant would form hyphae when expressing CtNDT80 in Spider medium [Candt80Δ(0%)、Candt80Δ::CtNDT80 (8.46%)]. Besides, the percetange of filaments became lower when CaNDT80 expressed in Ctndt80 mutant [ Ctndt80Δ(63.10%)、Ctndt80Δ::CaNDT80 (36.48%)]. Taken together, our study demonstrates that each single transcriptional gene hold the conserved function in biofilm and in filamental growth; however, the filament regulatory circuit of Ndt80 is different in two species, implying that species may have evolved a sophisticated regulatory network for the control of hyphae formation, leading to contrain or varnish over a single gene’s function.
誌謝 i
中文摘要 ii
英文摘要 iv
目錄 vi
圖目錄 ix
表目錄 x
前言 1
念珠菌 (Candida species) 與念珠菌菌血症 (Candidemia) 1
白色念珠菌 (C. albicans) 1
白色念珠菌菌絲型態轉換調控 2
白色念珠菌生物膜特性 4
白色念珠菌活體外 (in vitro) 的生物膜生成調控 5
熱帶念珠菌生物膜形成與菌絲生成調控 6
實驗目的 8
材料與方法 9
實驗藥品與培養基 9
DNA 聚合酶鏈式反應 (Polymerase chain reaction, PCR) 9
洋菜膠體電泳分析 (Agarose gel electrophoresis) 9
DNA 片段回收 10
DNA 接合(Ligation)反應
 10
大腸桿菌菌株轉形作用(Transformation)
 10
大腸桿菌質體 DNA 抽取
 11
質體建構
 11
構築表現 C. tropicalis 同源基因的 C. albicans轉形菌株 14
構築大量表現 C. tropicalis 基因 (Ptet – Ctgene) 之 C. albicans 菌株 16
構築 C. tropicalis 六個同源基因互補菌株 16
構築表現 C. albicans 同源基因 C. tropicalis 轉形菌株 17
刺激菌絲 (hyphae) 生長 17
活體外 (in vitro) 生物膜(Biofilm)生成 18
RNA 抽取 19
反轉錄聚合酶鏈式反應 (Reverse Transcription-PCR) 19
在菌絲生成條件下大量表現 C. tropicalis 基因 20
定量即時聚合酶鏈鎖反應 (Quantitative real-time polymerase chain reaction) 20
結果 21
壹、C. tropicalis 六個同源基因與生物膜及菌絲生成關聯性之探討 21
1. PCR 鑑定 Ctbcr1、 Ctbrg1、 Ctefg1、 Ctndt80、 Ctrob1、 Cttec1突變株及互補株 21
2. CtBCR1、 CtBRG1、 CtEFG1、 CtNDT80、 CtROB1、 CtTEC1六個轉錄因子正向調控生物膜生成。 21
3. CtBCR1、 CtBRG1、 CtEFG1、 CtROB1、 CtTEC1正向調控菌絲生長。然而,剔除CtNDT80 會導致 C. tropicalis 菌絲大量生成。 22
4. C. tropicalis 六個轉錄因子基因在serum 刺激的條件下, CtROB1表現量顯著上升。 23
5. C. tropicalis 六個同源基因突變株 CtUME6 表現量與野生株相比,明顯下降。 24
貳、測試 C. tropicalis 同源基因對 C. albicans 突變株生物膜與菌絲生成影響 25
1. PCR 鑑定C. tropicalis 六個同源基因送入 C. albicans 相對應突變株。 25
2. C. tropicalis BCR1、EFG1、TEC1 能恢復 C. albicans bcr1、efg1、tec1 突變株缺失的生物膜生成能力。 26
3. 在 serum 刺激下,表現 CtEFG1、 CtTEC1能增加 Caefg1、 Catec1 突變株的菌絲生成比例。 27
4. 以 Spider 液態培養基測試發現 CtNDT80 能部分回復Candt80 突變株的菌絲生成能力。 28
參、測試 C. albicans 同源基因對 C. tropicalis 突變株生物膜與菌絲生成影響 29
1. PCR 鑑定CaNDT80基因送入 Ctndt80突變株。 29
2. CtNdt80 正向調控 C. albicans 生物膜及菌絲生成 29
討論 31
未來研究方向 37
圖表 38
參考文獻 59
附錄一 70
附錄二 75
1.Von Eiff, C., et al., Infections associated with medical devices. Drugs, 2005. 65(2): p. 179-214.
2.Dagenais, T.R.T. and N.P. Keller, Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clinical microbiology reviews, 2009. 22(3): p. 447-465.
3.Mirza, S.A., et al., The changing epidemiology of cryptococcosis: an update from population-based active surveillance in 2 large metropolitan areas, 1992–2000. Clinical infectious diseases, 2003. 36(6): p. 789-794.
4.Grothe, C., et al., Incidence of bloodstream infection among patients on hemodialysis by central venous catheter. Revista latino-americana de enfermagem, 2010. 18: p. 73-80.
5.Brown, A.J.P., et al., Stress adaptation in a pathogenic fungus. The journal of experimental biology, 2014. 217(1): p. 144-155.
6.Pfaller, M.A. and D.J. Diekema, Epidemiology of invasive candidiasis: a persistent public health problem. Clinical microbiology reviews, 2007. 20(1): p. 133-163.
7.Koh, A.Y., et al., Mucosal damage and neutropenia are required for Candida albicans dissemination. PLOS pathogens, 2008. 4(2): p. e35.
8.Schulze, J. and U. Sonnenborn, Yeasts in the gut: from commensals to infectious agents. Deutsches Ärzteblatt international, 2009. 106(51-52): p. 837-842.
9.Fidel, P.L. and J.D. Sobel, Immunopathogenesis of recurrent vulvovaginal candidiasis. Clinical microbiology reviews, 1996. 9(3): p. 335-348.
10.Sudbery, P., N. Gow, and J. Berman, The distinct morphogenic states of Candida albicans. Trends in microbiology, 2004. 12(7): p. 317-324.
11.Lohse, M.B. and A.D. Johnson, White-opaque switching in Candida albicans. Current opinion in microbiology, 2009. 12(6): p. 650-654.
12.Dalle, F., et al., Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cellular microbiology, 2010. 12(2): p. 248-271.
13.Scherwitz, C., Ultrastructure of human cutaneous candidosis. Journal of investigative dermatology, 1982. 78(3): p. 200-205.
14.Romani, L., F. Bistoni, and P. Puccetti, Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Current opinion in microbiology, 2003. 6(4): p. 338-343.
15.Lorenz, M.C., J.A. Bender, and G.R. Fink, Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryotic cell, 2004. 3(5): p. 1076-1087.
16.Whiteway, M. and C. Bachewich, Morphogenesis in Candida albicans. Annual review of microbiology, 2007. 61: p. 529-553.
17.Taschdjian, C.L., J.J. Burchall, and P.J. Kozinn, Rapid identification of Candida albicans by filamentation on serum and serum substitutes. A.M.A. Journal of diseases of children, 1960. 99(2): p. 212-215.
18.Buffo, J., M.A. Herman, and D.R. Soll, A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia, 1984. 85(1-2): p. 21-30.
19.Mardon, D., E. Balish, and A.W. Phillips, Control of dimorphism in a biochemical variant of Candida albicans. Journal of Bacteriology, 1969. 100(2): p. 701-707.
20.Simonetti, N., V. Strippoli, and A. Cassone, Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Nature, 1974. 250(5464): p. 344-346.
21.Liu, H., J. Kohler, and G. Fink, Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science, 1994. 266(5191): p. 1723-1726.
22.Lee, K.L., H.R. Buckley, and C.C. Campbell, An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia, 1975. 13(2): p. 148-153.
23.Hornby, J.M., et al., Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Applied and environmental microbiology, 2001. 67(7): p. 2982-2992.
24.Chen, H., et al., Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the national academy of sciences of the United States of America, 2004. 101(14): p. 5048-5052.
25.Rocha, C.R.C., et al., Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Molecular biology of the cell, 2001. 12(11): p. 3631-3643.
26.Cloutier, M., et al., The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal genetics and biology, 2003. 38(1): p. 133-141.
27.Stoldt, V.R., et al., Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. The EMBO journal, 1997. 16(8): p. 1982-1991.
28.Lane, S., et al., DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. Journal of biological chemistry, 2001. 276(52): p. 48988-48996.
29.Sellam, A., et al., Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans. Eukaryotic cell, 2010. 9(4): p. 634-644.
30.Xu, X.-L., et al., Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell host & microbe, 2008. 4(1): p. 28-39.
31.Klengel, T., et al., Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Current biology : CB, 2005. 15(22): p. 2021-2026.
32.Feng, Q., et al., Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. Journal of bacteriology, 1999. 181(20): p. 6339-6346.
33.Bockmühl, D.P., et al., Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Molecular microbiology, 2001. 42(5): p. 1243-1257.
34.Hall, R.A., et al., The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryotic cell, 2011. 10(8): p. 1034-1042.
35.Leberer, E., et al., Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Molecular microbiology, 2001. 42(3): p. 673-687.
36.Biswas, K. and J. Morschhäuser, The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Molecular microbiology, 2005. 56(3): p. 649-669.
37.Csank, C., et al., Roles of the Candida albicans mitogen-activated protein kinase Homolog, Cek1p, in hyphal development and systemic candidiasis. Infection and immunity, 1998. 66(6): p. 2713-2721.
38.Román, E., C. Nombela, and J. Pla, The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Molecular and Cellular Biology, 2005. 25(23): p. 10611-10627.
39.Lu, Y., C. Su, and H. Liu, Candida albicans hyphal initiation and elongation. Trends in microbiology, 2014. 22(12): p. 707-714.
40.Braun, B.R. and A.D. Johnson, Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science, 1997. 277(5322): p. 105-109.
41.Braun, B.R., D. Kadosh, and A.D. Johnson, NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. The EMBO journal, 2001. 20(17): p. 4753-4761.
42.Murad, A.A., et al., NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. The EMBO journal, 2001. 20(17): p. 4742-4752.
43.Shapiro, R.S., et al., Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol, 2009. 19(8): p. 621-9.
44.Bockmühl, D.P. and J.F. Ernst, A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics, 2001. 157(4): p. 1523-1530.
45.Cao, F., et al., The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Molecular biology of the cell, 2006. 17(1): p. 295-307.
46.Lu, Y., et al., Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proceedings of the national academy of sciences of the United States of America, 2014. 111(5): p. 1975-1980.
47.Cleary, I.A., et al., BRG1 and NRG1 form a novel feedback circuit regulating C. albicans hypha formation and virulence. Molecular microbiology, 2012. 85(3): p. 557-573.
48.Lu, Y., C. Su, and H. Liu, A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLOS pathogens, 2012. 8(4): p. e1002663.
49.Lu, Y., et al., Synergistic regulation of hyphal elongation by hypoxia, CO2, and nutrient conditions controls the virulence of Candida albicans. Cell host & microbe, 2013. 14(5): p. 499-509.
50.Chapa y Lazo, B., S. Bates, and P. Sudbery, The G1 cyclin Cln3 regulates morphogenesis in Candida albicans. Eukaryotic cell, 2005. 4(1): p. 90-94.
51.Bachewich, C., D.Y. Thomas, and M. Whiteway, Depletion of a polo-like kinase in Candida albicans activates cyclase-dependent hyphal-like growth. Molecular biology of the cell, 2003. 14(5): p. 2163-2180.
52.Zheng, X.-D., et al., Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. The EMBO journal, 2007. 26(16): p. 3760-3769.
53.Sudbery, P.E., Growth of Candida albicans hyphae. Nat Rev Micro, 2011. 9(10): p. 737-748.
54.BAILLIE, G.S. and L.J. DOUGLAS, Role of dimorphism in the development of Candida albicans biofilms. Journal of Medical Microbiology, 1999. 48(7): p. 671-679.
55.Kolter, R. and E.P. Greenberg, Microbial sciences: the superficial life of microbes. Nature, 2006. 441(7091): p. 300-302.
56.Donlan, R.M. and J.W. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 2002. 15(2): p. 167-193.
57.Silva, S., et al., Adherence and biofilm formation of non-Candida albicans Candida species. Trends in microbiology, 2011. 19(5): p. 241-247.
58.Douglas, L.J., Candida biofilms and their role in infection. Trends in microbiology, 2003. 11(1): p. 30-36.
59.Baillie, G.S. and L.J. Douglas, Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J antimicrob chemother, 2000. 46(3): p. 397-403.
60.Soll, D.R. and K.J. Daniels, Plasticity of Candida albicans Biofilms. Microbiology and molecular biology reviews, 2016. 80(3): p. 565-595.
61.Chandra, J., et al., Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. Journal of bacteriology, 2001. 183(18): p. 5385-5394.
62.Finkel, J.S. and A.P. Mitchell, Genetic contorl of Candid albicans biofilm development. Nature reviews. microbiology, 2011. 9(2): p. 109-118.
63.Mayer, F.L., D. Wilson, and B. Hube, Candida albicans pathogenicity mechanisms. Virulence, 2013. 4(2): p. 119-128.
64.Green, C.B., et al., Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology, 2005. 151(4): p. 1051-1060.
65.Li, F., et al., Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryotic cell, 2007. 6(6): p. 931-939.
66.Nobile, C.J. and A.P. Mitchell, Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Current biology, 2005. 15(12): p. 1150-1155.
67.Nett, J., et al., Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrobial agents and chemotherapy, 2007. 51(2): p. 510-520.
68.Nett, J.E., et al., Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrobial agents and chemotherapy, 2010. 54(8): p. 3505-3508.
69.Nobile, C.J., et al., Biofilm matrix regulation by Candida albicans Zap1. PLOS biology, 2009. 7(6): p. e1000133.
70.Taff, H.T., et al., A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLOS pathogens, 2012. 8(8): p. e1002848.
71.Fonzi, W.A., PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β-1,3- and β-1,6-Glucans. Journal of bacteriology, 1999. 181(22): p. 7070-7079.
72.Sarthy, A.V., et al., Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-β-glucosyltransferase. Microbiology, 1997. 143(2): p. 367-376.
73.Uppuluri, P., et al., Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLOS Pathogens, 2010. 6(3): p. e1000828.
74.Uppuluri, P., et al., The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryotic cell, 2010. 9(10): p. 1531-1537.
75.Nobile, C.J., et al., A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell, 2012. 148(1-2): p. 126-138.
76.Chang, T.-P., et al., Distribution and drug susceptibilities of Candida species causing candidemia from a medical center in central Taiwan. Journal of infection and chemotherapy, 2013. 19(6): p. 1065-1071.
77.Porman, A.M., et al., MTL–independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in regulating switching and filamentation. PLOS genetics, 2013. 9(3): p. e1003369.
78.Porman, A.M., et al., Discovery of a phenotypic switch regulating sexual mating in the opportunistic fungal pathogen Candida tropicalis. Proceedings of the national academy of sciences of the United States of America, 2011. 108(52): p. 21158-21163.
79.Zhang, Q., et al., Regulation of filamentation in the human fungal pathogen Candida tropicalis. Molecular microbiology, 2016. 99(3): p. 528-545.
80.Al-Fattani, M.A. and L.J. Douglas, Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. Journal of medical microbiology, 2006. 55(8): p. 999-1008.
81.Araújo, D., M. Henriques, and S. Silva, Portrait of Candida species biofilm regulatory network genes. Trends in microbiology. 25(1): p. 62-75.
82.Mancera, E., et al., Finding a missing gene: EFG1 regulates morphogenesis in Candida tropicalis. G3: Genes|Genomes|Genetics, 2015. 5(5): p. 849-856.
83.Du, H., et al., Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLOS one, 2012. 7(1): p. e29707.
84.Schweizer, A., et al., The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Molecular microbiology, 2000. 38(3): p. 435-445.
85.Barchiesi, F., et al., Experimental induction of fluconazole resistance in Candida tropicalis ATCC 750. Antimicrobial agents and chemotherapy, 2000. 44(6): p. 1578-1584.
86.Butler, G., et al., Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009. 459(7247): p. 657-662.
87.Silva, S., et al., Silicone colonization by non-Candida albicans Candida species in the presence of urine. Journal of medical microbiology, 2010. 59(7): p. 747-754.
88.Carlisle, P.L. and D. Kadosh, Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryotic cell, 2010. 9(9): p. 1320-1328.
89.Lackey, E., et al., Comparative evolution of morphological regulatory functions in Candida Species. Eukaryotic cell, 2013. 12(10): p. 1356-1368.
90.Noble, S.M., B.A. Gianetti, and J.N. Witchley, Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat rev micro, 2017. 15(2): p. 96-108.
91.Yang, Y.-L., et al., Distribution and antifungal susceptibility of Candida species isolated from different age populations in Taiwan. Medical mycology, 2006. 44(3): p. 237-242.
92.Banerjee, M., et al., UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Molecular biology of the cell, 2008. 19(4): p. 1354-1365.
93.Pérez-Martín, J., et al., Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Seminars in cell & developmental biology, 2016. 57: p. 93-99.
94.Butler, D.K., et al., The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Fungal genetics and biology, 2006. 43(8): p. 573-582.
95.Bensen, E.S., et al., The mitotic cyclins Clb2p and Clb4p affect morphogenesis in Candida albicans. Molecular biology of the cell, 2005. 16(7): p. 3387-3400.
96.Nobile, C.J., et al., Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLOS pathogens, 2006. 2(7): p. e63.
97.Hepworth, S.R., H. Friesen, and J. Segall, NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Molecular and cellular biology, 1998. 18(10): p. 5750-5761.
98.Alby, K., D. Schaefer, and R.J. Bennett, Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature, 2009. 460(7257): p. 890-893.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔