跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 06:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李世欽
研究生(外文):Shih-Chin Lee
論文名稱:探討 PPARα 促效劑對高脂飲食誘發小鼠代謝失調及情緒障礙之影響
論文名稱(外文):Effects of PPARα agonists on high-fat diet induced metabolic disorders and emotional disturbance in mice
指導教授:林甫容
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:156
中文關鍵詞:肥胖PPARαPPARα 促效劑代謝失調抗焦慮
外文關鍵詞:obesityPPARαPPARα agonistsmetabolic syndromeanti-anxiety
相關次數:
  • 被引用被引用:0
  • 點閱點閱:576
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
邁入 21 世紀的我們所面臨很大的危機就是逐年加劇的肥胖問題,肥胖為許多慢性疾病之危險因子,也是全球重要的公共衛生議題。過氧化物酶體增殖物活化受體α (Peroxisome proliferator-activated receptor alpha, PPARα) 為核受器的一員,可受配體 (ligands) 活化進而調控脂質代謝以達到改善肥胖及代謝症候群的效果。故本實驗旨在以 PPARα 轉錄活性分析平台對中草藥及海洋真菌萃取物做功效評估,並進一步篩選活性高之 PPARα 促效劑應用於飲食誘導肥胖之小鼠模式,觀察是否有改善代謝症候群、非酒精性脂肪肝及情緒失調的現象。
本實驗的第一部分以 PPARα 轉錄活性分析細胞實驗篩選自然界純物質及粗萃物成為 PPARα 促效劑潛力。結果顯示牛樟芝內的三萜類化合物 antcin B、C、H、K 均有具有顯著活化 PPARα 之能力,其中以 antcin B、H、K 活化效果最佳,約為正控制組 (1 µM WY14643) 的 120% 左右;此外自然界天然萃物薄姜木、芋葉括樓、台灣鬼督郵及海洋真菌萃取物 (NTOU4295、NTOU4296) 皆具有顯著活化 PPARα 之效果,活化倍率約為正控制組的 40-60%;牛樟芝內麥角固醇 EK100 雖不具有活化 PPARα 之能力,但先前研究發現其有抗發炎、降血糖及降血脂之功能,故在第二部分動物實驗選擇以 antcin K 以及 EK100 輔以正控制組降血脂藥物 fenofibrate 進行後續實驗,旨於探討給予 PPARα 促效劑於高脂飲食誘發小鼠代謝失調及情緒障礙之影響。
第二部份動物實驗採用 4 週齡大 C57BL/6J 公鼠,以 30% 高脂飼料餵食 8 週誘導肥胖,後續小鼠仍餵食高脂飲食但另以管餵方式給予 20 mg/kg/day BW 之 antcin K以及 EK100 持續 4 週,之後增大劑量為 40 mg/kg/day BW 再持續 4 週,另一組給予 PPARα 促效劑 250 mg/kg/day BW 之 fenofibrate 持續 8 週當正控制組,試驗期共 16 週。結果顯示,高脂飲食成功誘導小鼠肥胖,給予 fenofibrate 可顯著降低小鼠體重、脂肪組織及腓腸肌重量、脂肪細胞大小、血清總膽固醇/三酸甘油酯/游離脂肪酸含量、禁食血糖/胰島素以及胰島素阻抗指標 (HOMA-IR index),並可增加葡萄糖耐受性與胰島素敏感性、並有較高的個體氧氣消耗量及二氧化碳排出量進而增加能量消耗量。可惜的是給予 antcin K 及 EK100 沒有明顯改善小鼠代謝症候群的現象。有趣的是,以尾部懸吊試驗評估小鼠憂鬱狀況,發現給予 fenofibrate 顯著降低小鼠不動之秒數達到降低憂鬱行為之表現;此外,十字迷宮行為試驗評估抗焦慮狀況,發現給予 antcin K 以及 fenofibrate 可顯著提升小鼠進入開放臂之次數達到改善焦慮行為之表現。另外,給予 fenofibrate 雖有抗肥胖的效果,但與其餘組別相比卻有明顯肝腫大及較高 ALT 活性的情形,分析肝臟表現型,發現高脂飲食組有明顯非酒精性脂肪肝的現象,但給予 fenofibrate 能顯著降低肝臟三酸甘油酯含量、減少油滴之堆積,並能活化肝臟 PPARα 下游基因表現,例如參與脂肪酸氧化 (Cpt1a、Acox1)、脂肪酸運送 (Cd36、Fabp1)、脂肪酸合成 (Acaca、Fasn) 及膽固醇運輸 (Abca1) 等基因提升肝臟整體能量代謝達到改善非酒精性脂肪肝的效果。
綜合以上兩部分的實驗,給予 PPARα 促效劑 fenofibrate 具有顯著改善高脂飲食所誘發小鼠肥胖、代謝失調以及情緒障礙之效果,雖然 antcin K 以及 EK100 並無看到預期改善肥胖之效果,但是 antcin K 在行為試驗上有顯著抗焦慮之效果,詳細機制仍有待更進一步的探討。
Prevalence of obesity is rapidly increasing, and has led to increased morbidity and mortality of various chronic diseases. Obesity has become one of most serious public health challenges of the 21st century. Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor that belongs to the nuclear hormone receptor superfamily. Activation of PPARα has been shown to ameliorate obesity and metabolic syndrome through regulation of lipid metabolism. The aim of this study is to identify the natural PPARα agonists from Chinese herbs and marine fungus extracts using in vitro PPARα transactivation system. We further investigate the effects of selected PPAR agonists on metabolic abnormalities, non-alcoholic fatty liver disease (NAFLD) and emotional disturbance in diet-induced obesity mouse model.
In the first part of the study, the PPARα transactivation assay was used to identify the potential PPARα agonists from natural pure compounds and crude extracts. We showed that antcin B, C, H, K, triterpenoid compounds from Antrodia cinnamomea, significantly activated PPARα activity (120% vs. 1 μM Wy14643, 100%). In addition, the natural crude extracts from Vitex quinata (Lour.) F. N. Williams, Trichosanthes homophylla, Ainsliaea reflexa Merr, as well as few marine fungus extracts (NTOU4295, NTOU4296) increased PPARα activity (40-60% vs. 1 μM Wy14643, 100%). In contrast to antcins, EK100, an ergosterol from Antrodia cinnamomea, has limited effects on PPARα activation. Given that EK100 has been shown to exhibit anti-inflammatory, anti-diabetic and anti-hyperlipidemic effects, antcin K, EK100 and fenofibrate (hypolipidemic drugs as positive control) were tested in high-fat diet induced obese mouse model.
4-week-old C57BL/6J mice were fed with 30% high-fat diet to induce obesity for 8 weeks. The mice were treated with antcin K (20 mg/kg/day BW) for 4 weeks and then (40 mg/kg/day BW) for another 4 weeks, EK100 (20 mg/kg/day BW) for 4 weeks and then (40 mg/kg/day BW) for another 4 weeks, fenofibrate (250 mg/kg/day BW) for 8 weeks, or vehicle for 8 weeks afterward. We showed that high-fat diet has successfully induced mice obesity. Treatment of fenofibrate significantly reduced body weight, fat mass, gastrocnemius weight, adipocytes size, serum cholesterol / triglyceride / NEFA and fasting glucose / insulin / HOMR-IR index. In addition, treatment of fenofibrate in mice significantly improved glucose tolerance, insulin sensitivity, increased oxygen consumption and carbon dioxide production. Unexpectedly, antcin K and EK100 have limited effects on prevention of obesity. Interestingly, to further investigate antidepressant activity of PPARα agonists, tail suspension test was performed. We found that treatment of fenofibrate significantly reduced the immobility time compared to high-fat group, indicating less depression-like behavior. Furthermore, we also investigate antianxiety-like activity of PPARα agonists using elevated plus maze. We found that mice treatment with antcin K and fenofibrate significantly increased the time spent in open arms, suggesting less anxiety-like behavior. Although treatment of fenofibrate prevented obesity, the mice exhibited hepatomegaly and increased ALT activity. Besides, hepatic lipid accumulation was significantly decreased in fenofibrate-treated group, suggesting a significant effect on treatment of NAFLD. Exploring the mechanism, the expression of hepatic PPARα target genes, such as fatty acid oxidation (Cpt1a, Acox1), fatty acid transport (Cd36, Fabp1), fatty acid synthesis (Acaca, Fasn) and cholesterol transport (Abca1) was markedly elevated to increased energy metabolism rates in the liver and ameliorated the non-alcoholic fatty liver disease.
Taken together, treatment of PPARα agonist fenofibrate prevented obesity, metabolic disorders, emotional disturbance in high-fat diet fed C57BL/6J male mice. Although antcin K and EK100 treatment has limited effects in this study, the potential anti-anxiety function of antcin K remains to be further investigated.
中文摘要 I
ABSTRACT III
縮寫對照表 VI
總目錄 IX
圖目錄 XV
表目錄 XVIII
第一章 緒論 1
第一節 前言 1
第二節 文獻回顧 3
一、 肥胖 (Obesity) 3
1. 肥胖定義 3
2. 肥胖與代謝症候群 (Obesity and metabolic syndrome) 4
3. 肥胖與非酒精性脂肪肝 (Obesity and Non-alcoholic fatty liver disease, NAFLD) 5
4. 肥胖與行為失調 8
二、 脂肪組織 (Adipose tissue) 9
1. 白色脂肪細胞 (White adipocytes) 10
2. 棕色脂肪細胞 (Brown adipocytes) 11
3. 米色脂肪細胞 (Beige/Brite adipocytes) 12
三、 過氧化物酶體增殖物活化受體 (Peroxisome Proliferator-Activated Receptors, PPARs) 15
1. PPARs 簡介 15
2. PPARs 異形體 (Isoforms) 16
四、 PPARα 與脂肪組織 17
五、 PPARα與非酒精性脂肪肝 19
六、 PPARα 與行為失調 21
七、 PPARα 促效劑 fenofibrate 22
八、 牛樟芝 (Antrodia cinnamomea) 24
1. 牛樟芝簡介 24
2. 牛樟芝成分及生物活性 25
3. 牛樟芝三萜類化合物樟芝酸 K (antcin K) 26
4. 牛樟芝麥角固醇 Ergostatrien-3β-ol (EK100) 27
第三節 研究假說及實驗架構 28
一、 研究假說 28
二、 實驗架構 29
1. 第一部份實驗試驗對象 29
2. 第一部份實驗實驗樣品 29
3. 第一部份實驗分析項目 29
4. 第二部份實驗試驗對象 30
5. 第二部份實驗實驗飼料 30
6. 第二部份實驗試驗期 30
7. 第二部份實驗分析項目 30
第二章 自然界純物質及粗萃物作為 PPARΑ 促效劑潛力之篩選 31
第一節 前言 31
第二節 實驗材料與方法 32
一、 樣品來源 32
1. 純物質 32
2. 粗萃物 32
二、 CHO-K1細胞株PPARα轉錄活性分析試驗 32
1. 細胞株使用 32
2. 培養基與分析試劑 33
3. 短暫轉染使用試劑、分析試劑 33
4. CHO-K1 細胞培養方法 35
5. 短暫轉染 35
三、 數據分析 37
第三節 實驗結果 38
一、 樟芝酸 antcin 類對 PPARα 以及 PPARγ 轉錄活性影響 38
二、 其餘純物質對 PPARα 轉錄活性影響 38
三、 其餘粗萃物對 PPARα 轉錄活性影響 38
四、 其餘粗萃物對 PPARγ 轉錄活性影響 39
五、 antcin K、EK100、fenofibrate、fenofibric acid物對 PPARα 轉錄活性影響 39
第四節 討論 46
一、 樟芝酸 (antins) 顯著活化 PPARα 46
二、 自然界其餘 PPARα 促效劑 48
三、 麥角固醇 EK100 於 PPARα 轉錄活性分析之探討 50
四、 fenofibrate於 PPARα 轉錄活性分析之探討 50
五、 -COOH基團於PPARα 轉錄活性試驗之影響 51
第五節 結論 52
第三章 探討給予 PPARΑ 促效劑於高脂飲食誘發小鼠代謝失調及情緒障礙之影響 53
第一節 前言 53
第二節 實驗架構 55
一、 分析項目 56
第三節 材料與方法 56
一、 樣品來源 56
二、 管餵溶液配置 56
三、 C57BL/6J 公鼠飼養 57
四、 飼料使用與配置 58
五、 禁食血清樣本收集 58
六、 禁食血清三酸甘油酯分析 61
七、 禁食血清膽固醇分析 61
八、 禁食血糖分析 62
九、 禁食血清游離脂肪酸分析 62
十、 血清脂蛋白分布情形分析 63
十一、 血清胰島素分析 63
十二、 胰島素抗性指標 HOMA-IR index 計算 64
十三、 葡萄糖耐受性測試 (Intraperitoneal glucose tolerance test) 64
十四、 氧氣消耗量、二氧化碳生成量以及呼吸商分析 (Indirect calorimetry study) 65
十五、 寒冷暴露試驗 (Cold tolerance test) 65
十六、 尾部懸吊試驗 (Tail suspension test,TST) 66
十七、 高架十字迷宮 (Elevated plus maze, EPM) 66
十八、 動物犧牲及取樣 67
十九、 肝脂 (肝臟三酸甘油酯、肝臟膽固醇) 分析 68
1. 肝脂萃取方法 68
2. 肝臟三酸甘油酯分析 68
3. 肝臟膽固醇分析 68
二十、 血清天門冬胺酸轉胺酶 (AST)、血清丙胺酸轉胺酶 (ALT) 分析 69
二十一、 肝臟與脂肪組織切片 H & E 染色 69
二十二、 肝臟組織Oil red O染色 69
1. 冷凍切片 69
2. Oil red O配置 70
3. Oil red O 染色 70
二十三、 糞便膽酸分析 71
二十四、 肝臟基因表現分析 71
1. Total RNA 抽取 71
2. Total RNA 反轉錄為cDNA 72
3. Quantitative Real-time PCR 73
二十五、 數據分析 73
第四節 實驗結果 76
一、 肥胖指標 76
1. 體重變化量 76
2. 攝食量、攝食利用率、能量攝取、能量利用率 76
3. 組織絕對重量、相對重量 77
4. 白色脂肪組織數位攝影、肥胖指數、白色脂肪重量-體重相關性 78
5. 鼠蹊部白色脂肪組織 H&E 染色 78
二、 血清生化指標 79
1. 禁食血清三酸甘油酯 79
2. 禁食血清游離脂肪酸 79
3. 禁食血清膽固醇 79
4. 禁食血糖 79
5. 血清脂蛋白分布情形 80
6. 葡萄糖耐受性測試 80
7. 禁食血清胰島素與 HOMR-IR index 80
三、 新陳代謝分析 81
1. 氧氣消耗量 81
2. 二氧化碳生成量 81
3. 呼吸商 82
4. 每日能量消耗 82
5. 寒冷暴露試驗 83
6. 棕色脂肪組織 H&E 染色 83
四、 行為試驗分析 83
1. 尾部懸吊試驗 83
2. 高架十字迷宮 84
五、 肝臟表現型與基因表現分析 84
1. 肝臟數位攝影、肝臟 AST/ALT 分析 84
2. 肝臟脂肪分析 85
3. 肝臟組織切片 H&E 及 Oil red O 染色 85
4. 肝臟基因表現分析 86
5. 糞便膽酸分析 87
第五節 討論 115
一、 給予 fenofibrate 降低小鼠肥胖情形 115
二、 給予 fenofibrate 降低小鼠攝食量 117
三、 給予 fenofibrate 減少白色脂肪組織 118
四、 給予 fenofibrate 改善血清生化指標 119
五、 給予 fenofibrate 對脂蛋白分佈之影響 120
六、 給予 fenofibrate 提升葡萄萄耐受性並減緩胰島素阻抗 121
七、 給予 PPARα 促效劑 fenofibrate 提升能量消耗 122
八、 給予試驗飼料無顯著提升產熱效力之效果 123
九、 給予 fenofibrate 改善高脂飲食誘發之憂鬱行為 123
十、 給予 antcinK 以及 fenofibrate 改善高脂飲食誘發之焦慮行為 124
十一、 給予 fenofibrate 改善高脂飲食所造成之非酒精性脂肪肝 127
十二、 給予 fenofibrate 提升肝臟整體能量代謝 128
第六節 結論 134
第四章 總結論與未來展望 135
第五章 參考文獻 137
(2005). [A worldwide consensus definition for the metabolic syndrome]. Rev Panam Salud Publica 18, 451-454.
Abdelmegeed, M.A., Yoo, S.H., Henderson, L.E., Gonzalez, F.J., Woodcroft, K.J., and Song, B.J. (2011). PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. The Journal of nutrition 141, 603-610.
Abildgaard, A., Solskov, L., Volke, V., Harvey, B.H., Lund, S., and Wegener, G. (2011). A high-fat diet exacerbates depressive-like behavior in the Flinders Sensitive Line (FSL) rat, a genetic model of depression. Psychoneuroendocrinology 36, 623-633.
Alberti, K.G., Eckel, R.H., Grundy, S.M., Zimmet, P.Z., Cleeman, J.I., Donato, K.A., Fruchart, J.C., James, W.P., Loria, C.M., Smith, S.C., Jr., et al. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640-1645.
Angulo, P., and Lindor, K.D. (2002). Non-alcoholic fatty liver disease. Journal of gastroenterology and hepatology 17 Suppl, S186-190.
Aslani, S., Vieira, N., Marques, F., Costa, P.S., Sousa, N., and Palha, J.A. (2015). The effect of high-fat diet on rat''s mood, feeding behavior and response to stress. Translational psychiatry 5, e684.
Avogaro, P., and Crepaldi, G. (1965). Essential hyperlipidemia, obesity and diabetes. Diabetologia 1.
Badman, M.K., Pissios, P., Kennedy, A.R., Koukos, G., Flier, J.S., and Maratos-Flier, E. (2007). Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5, 426-437.
Balfour, J.A., McTavish, D., and Heel, R.C. (1990). Fenofibrate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs 40, 260-290.
Barbera, M.J., Schluter, A., Pedraza, N., Iglesias, R., Villarroya, F., and Giralt, M. (2001). Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 276, 1486-1493.
Bartelt, A., and Heeren, J. (2014). Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10, 24-36.
Bartness, T.J., Shrestha, Y.B., Vaughan, C.H., Schwartz, G.J., and Song, C.K. (2010). Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 318, 34-43.
Bellentani, S., and Marino, M. (2009). Epidemiology and natural history of non-alcoholic fatty liver disease (NAFLD). Annals of hepatology 8 Suppl 1, S4-8.
Bellentani, S., Saccoccio, G., Masutti, F., Croce, L.S., Brandi, G., Sasso, F., Cristanini, G., and Tiribelli, C. (2000). Prevalence of and risk factors for hepatic steatosis in Northern Italy. Annals of internal medicine 132, 112-117.
Bento-Abreu, A., Tabernero, A., and Medina, J.M. (2007). Peroxisome proliferator-activated receptor-alpha is required for the neurotrophic effect of oleic acid in neurons. Journal of neurochemistry 103, 871-881.
Bernardes, A., Souza, P.C., Muniz, J.R., Ricci, C.G., Ayers, S.D., Parekh, N.M., Godoy, A.S., Trivella, D.B., Reinach, P., Webb, P., et al. (2013). Molecular mechanism of peroxisome proliferator-activated receptor alpha activation by WY14643: a new mode of ligand recognition and receptor stabilization. J Mol Biol 425, 2878-2893.
Besler, C., Lüscher, T.F., and Landmesser, U. (2012). Molecular mechanisms of vascular effects of High-density lipoprotein: alterations in cardiovascular disease. EMBO Molecular Medicine 4, 251-268.
Bijland, S., Pieterman, E.J., Maas, A.C., van der Hoorn, J.W., van Erk, M.J., van Klinken, J.B., Havekes, L.M., van Dijk, K.W., Princen, H.M., and Rensen, P.C. (2010). Fenofibrate increases very low density lipoprotein triglyceride production despite reducing plasma triglyceride levels in APOE*3-Leiden.CETP mice. J Biol Chem 285, 25168-25175.
Biserni, A., Giannessi, F., Sciarroni, A.F., Milazzo, F.M., Maggi, A., and Ciana, P. (2008). In vivo imaging reveals selective peroxisome proliferator activated receptor modulator activity of the synthetic ligand 3-(1-(4-chlorobenzyl)-3-t-butylthio-5-isopropylindol-2-yl)-2,2-dimethylpropanoic acid (MK-886). Molecular pharmacology 73, 1434-1443.
Blumcke, S., Schwartzkopff, W., Lobeck, H., Edmondson, N.A., Prentice, D.E., and Blane, G.F. (1983). Influence of fenofibrate on cellular and subcellular liver structure in hyperlipidemic patients. Atherosclerosis 46, 105-116.
Borst, S.E. (2004). The role of TNF-alpha in insulin resistance. Endocrine 23, 177-182.
Bostrom, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., Rasbach, K.A., Bostrom, E.A., Choi, J.H., Long, J.Z., et al. (2012). A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463-468.
Boue, S., Fortgang, I., Levy, R.J., Jr., Bhatnagar, D., Burow, M., Fahey, G., and Heiman, M.L. (2016). A novel gastrointestinal microbiome modulator from soy pods reduces absorption of dietary fat in mice. Obesity (Silver Spring) 24, 87-95.
Caldwell, J. (1989). The biochemical pharmacology of fenofibrate. Cardiology 76 Suppl 1, 33-41; discussion 41-34.
Canfora, E.E., Jocken, J.W., and Blaak, E.E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11, 577-591.
Cannon, B., and Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. Physiol Rev 84, 277-359.
Cao, Y. (2010). Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9, 107-115.
Cariou, B., Charbonnel, B., and Staels, B. (2012). Thiazolidinediones and PPARgamma agonists: time for a reassessment. Trends Endocrinol Metab 23, 205-215.
Castren, E., and Rantamaki, T. (2010). The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Developmental neurobiology 70, 289-297.
Chakravarthy, M.V., Zhu, Y., Lopez, M., Yin, L., Wozniak, D.F., Coleman, T., Hu, Z., Wolfgang, M., Vidal-Puig, A., Lane, M.D., et al. (2007). Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. The Journal of clinical investigation 117, 2539-2552.
Chalasani, N., Younossi, Z., Lavine, J.E., Diehl, A.M., Brunt, E.M., Cusi, K., Charlton, M., and Sanyal, A.J. (2012). The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology (Baltimore, Md) 55, 2005-2023.
Chang, Y.Y., Liu, Y.C., Kuo, Y.H., Lin, Y.L., Wu, Y.S., Chen, J.W., and Chen, Y.C. (2017). Effects of antrosterol from Antrodia camphorata submerged whole broth on lipid homeostasis, antioxidation, alcohol clearance, and anti-inflammation in livers of chronic-alcohol fed mice. J Ethnopharmacol 202, 200-207.
Cohen, P., Levy, J.D., Zhang, Y., Frontini, A., Kolodin, D.P., Svensson, K.J., Lo, J.C., Zeng, X., Ye, L., Khandekar, M.J., et al. (2014). Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304-316.
Collino, M., Aragno, M., Mastrocola, R., Benetti, E., Gallicchio, M., Dianzani, C., Danni, O., Thiemermann, C., and Fantozzi, R. (2006). Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643. Free radical biology & medicine 41, 579-589.
Cong, W.N., Tao, R.Y., Tian, J.Y., Liu, G.T., and Ye, F. (2008). The establishment of a novel non-alcoholic steatohepatitis model accompanied with obesity and insulin resistance in mice. Life sciences 82, 983-990.
Contreras, A.V., Torres, N., and Tovar, A.R. (2013). PPAR-α as a Key Nutritional and Environmental Sensor for Metabolic Adaptation. Advances in Nutrition 4, 439-452.
Cryan, J.F., Valentino, R.J., and Lucki, I. (2005). Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29, 547-569.
Day, C.P., and James, O.F. (1998). Steatohepatitis: a tale of two "hits"? Gastroenterology 114, 842-845.
De La Iglesia, F.A., Lewis, J.E., Buchanan, R.A., Marcus, E.L., and McMahon, G. (1982). Light and electron microscopy of liver in hyperlipoproteinemic patients under long-term gemfibrozil treatment. Atherosclerosis 43, 19-37.
Degirolamo, C., Sabba, C., and Moschetta, A. (2016). Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 15, 51-69.
Del Mar Gonzalez-Barroso, M., Ricquier, D., and Cassard-Doulcier, A.M. (2000). The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. Obes Rev 1, 61-72.
Deplanque, D., Gele, P., Petrault, O., Six, I., Furman, C., Bouly, M., Nion, S., Dupuis, B., Leys, D., Fruchart, J.C., et al. (2003). Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 6264-6271.
Derkach, K.V., Bondareva, V.M., Chistyakova, O.V., Berstein, L.M., and Shpakov, A.O. (2015). The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats with High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes. International journal of endocrinology 2015, 245459.
Dias, D.A., Urban, S., and Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites 2, 303-336.
Donati, G., Stagni, B., Piscaglia, F., Venturoli, N., Morselli-Labate, A.M., Rasciti, L., and Bolondi, L. (2004). Increased prevalence of fatty liver in arterial hypertensive patients with normal liver enzymes: role of insulin resistance. Gut 53, 1020-1023.
Duval, C., Muller, M., and Kersten, S. (2007). PPAR alpha and dyslipidemia. Bba-Mol Cell Biol L 1771, 961-971.
Expert Panel on Detection, E., and Treatment of High Blood Cholesterol in, A. (2001). Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285, 2486-2497.
Fidaleo, M. (2009). Human health risk assessment for peroxisome proliferators: more than 30 years of research. Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie 61, 215-221.
Filippatos, T., and Milionis, H.J. (2008). Treatment of hyperlipidaemia with fenofibrate and related fibrates. Expert Opin Investig Drugs 17, 1599-1614.
Fisher, F.M., Kleiner, S., Douris, N., Fox, E.C., Mepani, R.J., Verdeguer, F., Wu, J., Kharitonenkov, A., Flier, J.S., Maratos-Flier, E., et al. (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26, 271-281.
Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry 226, 497-509.
Francque, S., Verrijken, A., Caron, S., Prawitt, J., Paumelle, R., Derudas, B., Lefebvre, P., Taskinen, M.R., Van Hul, W., Mertens, I., et al. (2015). PPARalpha gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. Journal of hepatology 63, 164-173.
Fu, J., Gaetani, S., Oveisi, F., Lo Verme, J., Serrano, A., Rodriguez De Fonseca, F., Rosengarth, A., Luecke, H., Di Giacomo, B., Tarzia, G., et al. (2003). Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425, 90-93.
Gariot, P., Barrat, E., Drouin, P., Genton, P., Pointel, J.P., Foliguet, B., Kolopp, M., and Debry, G. (1987). Morphometric study of human hepatic cell modifications induced by fenofibrate. Metabolism 36, 203-210.
Geethangili, M., and Tzeng, Y.M. (2011). Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evid Based Complement Alternat Med 2011, 212641.
Gehlawat, P., Gupta, R., Rajput, R., Gahlan, D., and Gehlawat, V.K. (2013). Diabetes with comorbid depression: role of SSRI in better glycemic control. Asian journal of psychiatry 6, 364-368.
Gesta, S., Tseng, Y.H., and Kahn, C.R. (2007). Developmental origin of fat: tracking obesity to its source. Cell 131, 242-256.
Giralt, M., and Villarroya, F. (2013). White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154, 2992-3000.
Gois, C., Dias, V.V., Carmo, I., Duarte, R., Ferro, A., Santos, A.L., Sousa, F., and Barbosa, A. (2014). Treatment response in type 2 diabetes patients with major depression. Clinical psychology & psychotherapy 21, 39-48.
Gokila Vani, M., Kumar, K.J., Liao, J.W., Chien, S.C., Mau, J.L., Chiang, S.S., Lin, C.C., Kuo, Y.H., and Wang, S.Y. (2013). Antcin C from Antrodia cinnamomea Protects Liver Cells Against Free Radical-Induced Oxidative Stress and Apoptosis In Vitro and In Vivo through Nrf2-Dependent Mechanism. Evid Based Complement Alternat Med 2013, 296082.
Goto, T., Lee, J.Y., Teraminami, A., Kim, Y.I., Hirai, S., Uemura, T., Inoue, H., Takahashi, N., and Kawada, T. (2011). Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J Lipid Res 52, 873-884.
Gray, D.S., and Fujioka, K. (1991). Use of relative weight and Body Mass Index for the determination of adiposity. J Clin Epidemiol 44, 545-550.
Gross, B., Pawlak, M., Lefebvre, P., and Staels, B. (2016). PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol.
Grundy, S.M. (2006). Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol 47, 1093-1100.
Guerre-Millo, M., Gervois, P., Raspe, E., Madsen, L., Poulain, P., Derudas, B., Herbert, J.M., Winegar, D.A., Willson, T.M., Fruchart, J.C., et al. (2000). Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem 275, 16638-16642.
Gupta, D., Radhakrishnan, M., and Kurhe, Y. (2014). Insulin reverses anxiety-like behavior evoked by streptozotocin-induced diabetes in mice. Metabolic brain disease 29, 737-746.
Haffner, S.M., Valdez, R.A., Hazuda, H.P., Mitchell, B.D., Morales, P.A., and Stern, M.P. (1992). Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 41, 715-722.
Hamon, M., and Blier, P. (2013). Monoamine neurocircuitry in depression and strategies for new treatments. Progress in neuro-psychopharmacology & biological psychiatry 45, 54-63.
Han, H.F., Nakamura, N., Zuo, F., Hirakawa, A., Yokozawa, T., and Hattori, M. (2006). Protective effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on Propionibacterium acnes and lipopolysaccharide induced hepatic injury in mice. Chem Pharm Bull (Tokyo) 54, 496-500.
Hariri, N., and Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutr Res Rev 23, 270-299.
Harms, M., and Seale, P. (2013). Brown and beige fat: development, function and therapeutic potential. Nat Med 19, 1252-1263.
Haslam, D.W., and James, W.P. (2005). Obesity. Lancet 366, 1197-1209.
Heneka, M.T., and Landreth, G.E. (2007). PPARs in the brain. Biochimica et biophysica acta 1771, 1031-1045.
Hiuge, A., Tenenbaum, A., Maeda, N., Benderly, M., Kumada, M., Fisman, E.Z., Tanne, D., Matas, Z., Hibuse, T., Fujita, K., et al. (2007). Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level. Arteriosclerosis, thrombosis, and vascular biology 27, 635-641.
Holden, P.R., and Tugwood, J.D. (1999). Peroxisome proliferator-activated receptor alpha: role in rodent liver cancer and species differences. Journal of molecular endocrinology 22, 1-8.
Home, P.D., Pocock, S.J., Beck-Nielsen, H., Gomis, R., Hanefeld, M., Jones, N.P., Komajda, M., and McMurray, J.J. (2007). Rosiglitazone evaluated for cardiovascular outcomes--an interim analysis. The New England journal of medicine 357, 28-38.
Hondares, E., Rosell, M., Diaz-Delfin, J., Olmos, Y., Monsalve, M., Iglesias, R., Villarroya, F., and Giralt, M. (2011). Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem 286, 43112-43122.
Hong, X.Z., Li, L.D., and Wu, L.M. (2007). Effects of fenofibrate and xuezhikang on high-fat diet-induced non-alcoholic fatty liver disease. Clinical and experimental pharmacology & physiology 34, 27-35.
Hsieh, Y.C., Rao, Y.K., Whang-Peng, J., Huang, C.Y., Shyue, S.K., Hsu, S.L., and Tzeng, Y.M. (2011). Antcin B and its ester derivative from Antrodia camphorata induce apoptosis in hepatocellular carcinoma cells involves enhancing oxidative stress coincident with activation of intrinsic and extrinsic apoptotic pathway. J Agric Food Chem 59, 10943-10954.
Hsu, C.-S., and Kao, J.-H. (2012). Non-alcoholic fatty liver disease: An emerging liver disease in Taiwan. Journal of the Formosan Medical Association 111, 527-535.
Hsuchou, H., Pan, W., and Kastin, A.J. (2007). The fasting polypeptide FGF21 can enter brain from blood. Peptides 28, 2382-2386.
Huang, Y.L., Chu, Y.L., Ho, C.T., Chung, J.G., Lai, C.I., Su, Y.C., Kuo, Y.H., and Sheen, L.Y. (2015). Antcin K, an Active Triterpenoid from the Fruiting Bodies of Basswood-Cultivated Antrodia cinnamomea, Inhibits Metastasis via Suppression of Integrin-Mediated Adhesion, Migration, and Invasion in Human Hepatoma Cells. J Agric Food Chem 63, 4561-4569.
Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., Li, Y., Goetz, R., Mohammadi, M., Esser, V., et al. (2007). Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5, 415-425.
Ip, E., Farrell, G.C., Robertson, G., Hall, P., Kirsch, R., and Leclercq, I. (2003). Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology (Baltimore, Md) 38, 123-132.
Jeanneteau, F.D., Lambert, W.M., Ismaili, N., Bath, K.G., Lee, F.S., Garabedian, M.J., and Chao, M.V. (2012). BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. P Natl Acad Sci USA 109, 1305-1310.
Jeong, S., and Yoon, M. (2009a). Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARalpha in high fat diet-induced obese mice. Exp Mol Med 41, 397-405.
Jeong, S., and Yoon, M. (2009b). Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARα in high fat diet-induced obese mice. Experimental & Molecular Medicine 41, 397-405.
Jiang, B., Huang, C., Zhu, Q., Tong, L.J., and Zhang, W. (2015). WY14643 produces anti-depressant-like effects in mice via the BDNF signaling pathway. Psychopharmacology (Berl) 232, 1629-1642.
Jiang, B., Wang, Y.-J., Wang, H., Song, L., Huang, C., Zhu, Q., Wu, F., and Zhang, W. (2017a). Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway. Brit J Pharmacol 174, 177-194.
Jiang, B., Wang, Y.J., Wang, H., Song, L., Huang, C., Zhu, Q., Wu, F., and Zhang, W. (2017b). Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway. Brit J Pharmacol 174, 177-194.
Jun, H.J., Kim, J., Hoang, M.H., and Lee, S.J. (2012). Hepatic lipid accumulation alters global histone h3 lysine 9 and 4 trimethylation in the peroxisome proliferator-activated receptor alpha network. PLoS One 7, e44345.
Kaplan, N.M. (1989). The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 149, 1514-1520.
Keech, A., Simes, R.J., Barter, P., Best, J., Scott, R., Taskinen, M.R., Forder, P., Pillai, A., Davis, T., Glasziou, P., et al. (2005). Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849-1861.
Kershaw, E.E., and Flier, J.S. (2004). Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89, 2548-2556.
Kim, B., Hong, V.M., Yang, J., Hyun, H., Im, J.J., Hwang, J., Yoon, S., and Kim, J.E. (2016). A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function. Prev Nutr Food Sci 21, 297-309.
Kostapanos, M.S., Kei, A., and Elisaf, M.S. (2013). Current role of fenofibrate in the prevention and management of non-alcoholic fatty liver disease. World journal of hepatology 5, 470-478.
Krishnan, V., and Nestler, E.J. (2008). The molecular neurobiology of depression. Nature 455, 894-902.
Krishnan, V., and Nestler, E.J. (2011). Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7, 121-147.
Kunugi, H., Hori, H., Adachi, N., and Numakawa, T. (2010). Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression. Psychiatry and clinical neurosciences 64, 447-459.
Kuo, Y.H., Lin, C.H., and Shih, C.C. (2015). Ergostatrien-3beta-ol from Antrodia camphorata inhibits diabetes and hyperlipidemia in high-fat-diet treated mice via regulation of hepatic related genes, glucose transporter 4, and AMP-activated protein kinase phosphorylation. J Agric Food Chem 63, 2479-2489.
Kuo, Y.H., Lin, C.H., Shih, C.C., and Yang, C.S. (2016a). Antcin K, a Triterpenoid Compound from Antrodia camphorata, Displays Antidiabetic and Antihyperlipidemic Effects via Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in Muscles. Evid Based Complement Alternat Med 2016, 4867092.
Kuo, Y.H., Lin, T.Y., You, Y.J., Wen, K.C., Sung, P.J., and Chiang, H.M. (2016b). Antiinflammatory and Antiphotodamaging Effects of Ergostatrien-3beta-ol, Isolated from Antrodia camphorata, on Hairless Mouse Skin. Molecules 21.
Kylin, E. (1923). Studien ueber das Hypertonie-Hyperglyka" mie-Hyperurika" miesyndrom. Zentralblatt für innere Medizin 44, 105-127.
Lade, A., Noon, L.A., and Friedman, S.L. (2014). Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer. Current opinion in oncology 26, 100-107.
Lagace, D.C., Donovan, M.H., DeCarolis, N.A., Farnbauch, L.A., Malhotra, S., Berton, O., Nestler, E.J., Krishnan, V., and Eisch, A.J. (2010). Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc Natl Acad Sci U S A 107, 4436-4441.
Lai, C.I., Chu, Y.L., Ho, C.T., Su, Y.C., Kuo, Y.H., and Sheen, L.Y. (2016). Antcin K, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces mitochondria and endoplasmic reticulum stress-mediated apoptosis in human hepatoma cells. J Tradit Complement Med 6, 48-56.
Lakshmi, S.P., Reddy, A.T., Banno, A., and Reddy, R.C. (2017). PPAR Agonists for the Prevention and Treatment of Lung Cancer. Ppar Research.
Lee, S.S., Pineau, T., Drago, J., Lee, E.J., Owens, J.W., Kroetz, D.L., Fernandez-Salguero, P.M., Westphal, H., and Gonzalez, F.J. (1995). Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Molecular and cellular biology 15, 3012-3022.
Lee, W.S., and Kim, J. (2015). Peroxisome Proliferator-Activated Receptors and the Heart: Lessons from the Past and Future Directions. Ppar Research.
Li, Z.W., Kuang, Y., Tang, S.N., Li, K., Huang, Y., Qiao, X., Yu, S.W., Tzeng, Y.M., Lo, J.Y., and Ye, M. (2017). Hepatoprotective activities of Antrodia camphorata and its triterpenoid compounds against CCl4-induced liver injury in mice. J Ethnopharmacol.
Lim, J.Y., Park, S.I., Oh, J.H., Kim, S.M., Jeong, C.H., Jun, J.A., Lee, K.S., Oh, W., Lee, J.K., and Jeun, S.S. (2008). Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. Journal of neuroscience research 86, 2168-2178.
Liu, K.J., Leu, S.J., Su, C.H., Chiang, B.L., Chen, Y.L., and Lee, Y.L. (2010). Administration of polysaccharides from Antrodia camphorata modulates dendritic cell function and alleviates allergen-induced T helper type 2 responses in a mouse model of asthma. Immunology 129, 351-362.
Liu, W., Zhai, X., Li, H., and Ji, L. (2014). Depression-like behaviors in mice subjected to co-treatment of high-fat diet and corticosterone are ameliorated by AICAR and exercise. Journal of affective disorders 156, 171-177.
Lo Verme, J., Gaetani, S., Fu, J., Oveisi, F., Burton, K., and Piomelli, D. (2005). Regulation of food intake by oleoylethanolamide. Cellular and molecular life sciences : CMLS 62, 708-716.
Loviscach, M., Rehman, N., Carter, L., Mudaliar, S., Mohadeen, P., Ciaraldi, T.P., Veerkamp, J.H., and Henry, R.R. (2000). Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 43, 304-311.
Lowell, B.B., V, S.S., Hamann, A., Lawitts, J.A., Himms-Hagen, J., Boyer, B.B., Kozak, L.P., and Flier, J.S. (1993). Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740-742.
Lu, M.C., El-Shazly, M., Wu, T.Y., Du, Y.C., Chang, T.T., Chen, C.F., Hsu, Y.M., Lai, K.H., Chiu, C.P., Chang, F.R., et al. (2013). Recent research and development of Antrodia cinnamomea. Pharmacol Ther 139, 124-156.
Lu, P., Zhang, F.C., Qian, S.W., Li, X., Cui, Z.M., Dang, Y.J., and Tang, Q.Q. (2016). Artemisinin derivatives prevent obesity by inducing browning of WAT and enhancing BAT function. Cell Res.
Lu, Z.M., and Xu, Z.H. (2011). Antcin A contributs to anti-inflammatory effect of Niuchangchih (Antrodia camphorata). Acta Pharmacol Sin 32, 981-982.
Luppino, F.S., de Wit, L.M., Bouvy, P.F., Stijnen, T., Cuijpers, P., Penninx, B.W., and Zitman, F.G. (2010). Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Archives of general psychiatry 67, 220-229.
Luquet, S., Lopez-Soriano, J., Holst, D., Fredenrich, A., Melki, J., Rassoulzadegan, M., and Grimaldi, P.A. (2003). Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17, 2299-2301.
Mann, J.P., and Anstee, Q.M. (2017). NAFLD: PNPLA3 and obesity: a synergistic relationship in NAFLD. Nat Rev Gastroenterol Hepatol advance online publication.
Mathivat, A., and Cottet, J. (1953). [Clinical trials on the hypocholesteremia-producing effect of 2-phenylbutyric acid]. Bulletins et memoires de la Societe medicale des hopitaux de Paris 69, 1030-1048.
Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., and Turner, R.C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412-419.
Matzkies, F., Schulzky, D., and Berg, G. (1978). [Procetofen, a new lipid- and urine-acid-reducing substance]. Fortschritte der Medizin 96, 1939-1941.
Monteiro, R., and Azevedo, I. (2010). Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm 2010.
NA, J.C.F., Pirson, L., Edelberg, H., L, M.M., Loira-Pastoriza, C., Preat, V., Larondelle, Y., and Andre, C.M. (2017). Pentacyclic Triterpene Bioavailability: An Overview of In Vitro and In Vivo Studies. Molecules 22.
Naert, G., Ixart, G., Maurice, T., Tapia-Arancibia, L., and Givalois, L. (2011). Brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress. Molecular and cellular neurosciences 46, 55-66.
Nedergaard, J., Bengtsson, T., and Cannon, B. (2007). Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293, E444-452.
Neels, J.G., and Grimaldi, P.A. (2014). Physiological functions of peroxisome proliferator-activated receptor beta. Physiol Rev 94, 795-858.
Olsson, A.G., and Lang, P.D. (1978). Dose-response study of bezafibrate on serum lipoprotein concentrations in hyperlipoproteinanemia. Atherosclerosis 31, 421-428.
Olsson, A.G., and Oro, L. (1982). Dose-response study of the effect of ciprofibrate on serum lipoprotein concentrations in hyperlipoproteinaemia. Atherosclerosis 42, 229-243.
Olsson, A.G., Rossner, S., Walldius, G., and Carlson, L.A. (1976). Effect of gemfibrozil on lipoprotein concentrations in different types of hyperlipoproteinaemia. Proceedings of the Royal Society of Medicine 69 Suppl 2, 28-31.
Oosterveer, M.H., Grefhorst, A., van Dijk, T.H., Havinga, R., Staels, B., Kuipers, F., Groen, A.K., and Reijngoud, D.J. (2009). Fenofibrate simultaneously induces hepatic fatty acid oxidation, synthesis, and elongation in mice. J Biol Chem 284, 34036-34044.
Palmer, C.N., Hsu, M.H., Griffin, K.J., Raucy, J.L., and Johnson, E.F. (1998). Peroxisome proliferator activated receptor-alpha expression in human liver. Molecular pharmacology 53, 14-22.
Palmer, R.H. (1987). Effects of fibric acid derivatives on biliary lipid composition. The American journal of medicine 83, 37-43.
Park, H.S., Hur, H.J., Kim, S.H., Park, S.J., Hong, M.J., Sung, M.J., Kwon, D.Y., and Kim, M.S. (2016). Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice. Mol Nutr Food Res 60, 1944-1955.
Park, M.-K., Han, Y., Kim, M.S., Seo, E., Kang, S., Park, S.-Y., Koh, H., Kim, D.K., and Lee, H.-J. (2012). Reduction of Food Intake by Fenofibrate is Associated with Cholecystokinin Release in Long-Evans Tokushima Rats. The Korean Journal of Physiology & Pharmacology : Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology 16, 181-186.
Patwardhan, B., Warude, D., Pushpangadan, P., and Bhatt, N. (2005). Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med 2, 465-473.
Pawlak, M., Bauge, E., Bourguet, W., De Bosscher, K., Lalloyer, F., Tailleux, A., Lebherz, C., Lefebvre, P., and Staels, B. (2014). The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology (Baltimore, Md) 60, 1593-1606.
Pellow, S., Chopin, P., File, S.E., and Briley, M. (1985). Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14, 149-167.
Peters, J.M., Cattley, R.C., and Gonzalez, F.J. (1997a). Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 18, 2029-2033.
Peters, J.M., Hennuyer, N., Staels, B., Fruchart, J.C., Fievet, C., Gonzalez, F.J., and Auwerx, J. (1997b). Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. J Biol Chem 272, 27307-27312.
Petrovic, N., Shabalina, I.G., Timmons, J.A., Cannon, B., and Nedergaard, J. (2008). Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPAR gamma agonist. Am J Physiol-Endoc M 295, E287-E296.
Post, S.M., Duez, H., Gervois, P.P., Staels, B., Kuipers, F., and Princen, H.M. (2001). Fibrates suppress bile acid synthesis via peroxisome proliferator-activated receptor-alpha-mediated downregulation of cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase expression. Arteriosclerosis, thrombosis, and vascular biology 21, 1840-1845.
Potthoff, M.J., Inagaki, T., Satapati, S., Ding, X., He, T., Goetz, R., Mohammadi, M., Finck, B.N., Mangelsdorf, D.J., Kliewer, S.A., et al. (2009). FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106, 10853-10858.
Rachid, T.L., Penna-de-Carvalho, A., Bringhenti, I., Aguila, M.B., Mandarim-de-Lacerda, C.A., and Souza-Mello, V. (2015a). Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Mol Cell Endocrinol 402, 86-94.
Rachid, T.L., Penna-de-Carvalho, A., Bringhenti, I., Aguila, M.B., Mandarim-de-Lacerda, C.A., and Souza-Mello, V. (2015b). PPAR-alpha agonist elicits metabolically active brown adipocytes and weight loss in diet-induced obese mice. Cell biochemistry and function 33, 249-256.
Ramanan, S., Kooshki, M., Zhao, W., Hsu, F.-C., Riddle, D.R., and Robbins, M.E. (2009). The PPARα agonist, fenofibrate, preserves hippocampal neurogenesis and inhibits microglial activation following whole-brain irradiation. International journal of radiation oncology, biology, physics 75, 870-877.
Razzoli, M., Domenici, E., Carboni, L., Rantamaki, T., Lindholm, J., Castren, E., and Arban, R. (2011). A role for BDNF/TrkB signaling in behavioral and physiological consequences of social defeat stress. Genes, brain, and behavior 10, 424-433.
Reaven, G.M. (1988). Role of insulin resistance in human disease. Diabetes 37, 1595-1607.
Reddy, J.K. (2004). Peroxisome proliferators and peroxisome proliferator-activated receptor alpha: biotic and xenobiotic sensing. The American journal of pathology 164, 2305-2321.
Reeves, P.G., Nielsen, F.H., and Fahey, G.C., Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. The Journal of nutrition 123, 1939-1951.
Roberts, L.D., Bostrom, P., O''Sullivan, J.F., Schinzel, R.T., Lewis, G.D., Dejam, A., Lee, Y.K., Palma, M.J., Calhoun, S., Georgiadi, A., et al. (2014). beta-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19, 96-108.
Rowland, M. (1972). Influence of route of administration on drug availability. Journal of pharmaceutical sciences 61, 70-74.
Roy, A., Jana, M., Corbett, G.T., Ramaswamy, S., Kordower, J.H., Gonzalez, F.J., and Pahan, K. (2013). Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor alpha. Cell reports 4, 724-737.
Roy, V., Chapillon, P., Jeljeli, M., Caston, J., and Belzung, C. (2009). Free versus forced exposure to an elevated plus-maze: evidence for new behavioral interpretations during test and retest. Psychopharmacology (Berl) 203, 131-141.
Rusyn, I., Asakura, S., Pachkowski, B., Bradford, B.U., Denissenko, M.F., Peters, J.M., Holland, S.M., Reddy, J.K., Cunningham, M.L., and Swenberg, J.A. (2004). Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer research 64, 1050-1057.
Saito, M., Okamatsu-Ogura, Y., Matsushita, M., Watanabe, K., Yoneshiro, T., Nio-Kobayashi, J., Iwanaga, T., Miyagawa, M., Kameya, T., Nakada, K., et al. (2009). High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526-1531.
Samuel, V.T., and Shulman, G.I. (2012). Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852-871.
Sandhu, K.V., Sherwin, E., Schellekens, H., Stanton, C., Dinan, T.G., and Cryan, J.F. (2017). Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational research : the journal of laboratory and clinical medicine 179, 223-244.
Schrader, M., and Fahimi, H.D. (2006). Peroxisomes and oxidative stress. Biochimica et biophysica acta 1763, 1755-1766.
Schuler, M., Ali, F., Chambon, C., Duteil, D., Bornert, J.M., Tardivel, A., Desvergne, B., Wahli, W., Chambon, P., and Metzger, D. (2006). PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 4, 407-414.
Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Scime, A., Devarakonda, S., Conroe, H.M., Erdjument-Bromage, H., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961-967.
Senthil Kumar, K.J., Gokila Vani, M., Mau, J.L., Lin, C.C., Chu, F.H., Wei, C.C., Liao, V.H., and Wang, S.Y. (2016). A steroid like phytochemical Antcin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1. Oncotarget.
Sher, T., Yi, H.F., McBride, O.W., and Gonzalez, F.J. (1993). cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 32, 5598-5604.
Shipman, K.E., Strange, R.C., and Ramachandran, S. (2016). Use of fibrates in the metabolic syndrome: A review. World J Diabetes 7, 74-88.
Smith, S.M., and Vale, W.W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience 8, 383-395.
Soccio, R.E., Chen, E.R., and Lazar, M.A. (2014). Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20, 573-591.
Staels, B., Maes, M., and Zambon, A. (2008). Fibrates and future PPARalpha agonists in the treatment of cardiovascular disease. Nature clinical practice Cardiovascular medicine 5, 542-553.
Steru, L., Chermat, R., Thierry, B., and Simon, P. (1985). The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85, 367-370.
Stine, R.R., Shapira, S.N., Lim, H.W., Ishibashi, J., Harms, M., Won, K.J., and Seale, P. (2016). EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol Metab 5, 57-65.
Sweeting, H.N. (2007). Measurement and definitions of obesity in childhood and adolescence: a field guide for the uninitiated. Nutr J 6, 32.
Thorp, J.M., and Waring, W.S. (1962). Modification of Metabolism and Distribution of Lipids by Ethyl Chlorophenoxyisobutyrate. Nature 194, 948-949.
Tien, A.J., Chien, C.Y., Chen, Y.H., Lin, L.C., and Chien, C.T. (2017). Fruiting Bodies of Antrodia cinnamomea and Its Active Triterpenoid, Antcin K, Ameliorates N-Nitrosodiethylamine-Induced Hepatic Inflammation, Fibrosis and Carcinogenesis in Rats. Am J Chin Med 45, 173-198.
Tilg, H., Moschen, A.R., and Roden, M. (2017). NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 14, 32-42.
Tong, Y., Hara, A., Komatsu, M., Tanaka, N., Kamijo, Y., Gonzalez, F.J., and Aoyama, T. (2005). Suppression of expression of muscle-associated proteins by PPARalpha in brown adipose tissue. Biochem Biophys Res Commun 336, 76-83.
Tsai, T.C., Tung, Y.T., Kuo, Y.H., Liao, J.W., Tsai, H.C., Chong, K.Y., Chen, H.L., and Chen, C.M. (2015). Anti-inflammatory effects of Antrodia camphorata, a herbal medicine, in a mouse skin ischemia model. J Ethnopharmacol 159, 113-121.
Tseng, C.H. (2012). Pioglitazone and bladder cancer: a population-based study of Taiwanese. Diabetes care 35, 278-280.
Tsuchida, A., Yamauchi, T., Takekawa, S., Hada, Y., Ito, Y., Maki, T., and Kadowaki, T. (2005). Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 54, 3358-3370.
Tziomalos, K., and Athyros, V.G. (2006). Fenofibrate: a novel formulation (Triglide™) in the treatment of lipid disorders: a review. International Journal of Nanomedicine 1, 129-147.
Vague, J. (1947). Sexual differentiation, a factor affecting the forms of obesity. Presse Med 30, 339-340.
Valenti, L., Bugianesi, E., Pajvani, U., and Targher, G. (2016). Nonalcoholic fatty liver disease: cause or consequence of type 2 diabetes? Liver Int 36, 1563-1579.
Vazquez-Vela, M.E., Torres, N., and Tovar, A.R. (2008). White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 39, 715-728.
Venteclef, N., Jakobsson, T., Steffensen, K.R., and Treuter, E. (2011). Metabolic nuclear receptor signaling and the inflammatory acute phase response. Trends Endocrinol Metab 22, 333-343.
Vicente, B., Kohn, R., Rioseco, P., Saldivia, S., Levav, I., and Torres, S. (2006). Lifetime and 12-month prevalence of DSM-III-R disorders in the Chile psychiatric prevalence study. The American journal of psychiatry 163, 1362-1370.
Walf, A.A., and Frye, C.A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2, 322-328.
Wang, L., Teng, R., Di, L., Rogers, H., Wu, H., Kopp, J.B., and Noguchi, C.T. (2013a). PPARalpha and Sirt1 mediate erythropoietin action in increasing metabolic activity and browning of white adipocytes to protect against obesity and metabolic disorders. Diabetes 62, 4122-4131.
Wang, Q., Yuan, J., Yu, Z., Lin, L., Jiang, Y., Cao, Z., Zhuang, P., Whalen, M.J., Song, B., Wang, X.J., et al. (2017). FGF21 Attenuates High-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and Anti-inflammation of Obese Mice. Molecular neurobiology.
Wang, W., Lin, Q., Lin, R., Zhang, J., Ren, F., Zhang, J., Ji, M., and Li, Y. (2013b). PPARalpha agonist fenofibrate attenuates TNF-alpha-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway. Experimental cell research 319, 1523-1533.
Wang, W., and Seale, P. (2016). Control of brown and beige fat development. Nat Rev Mol Cell Biol.
Wang, W.S., Kissig, M., Rajakumari, S., Huang, L., Lim, H.W., Won, K.J., and Seale, P. (2014). Ebf2 is a selective marker of brown and beige adipogenic precursor cells. P Natl Acad Sci USA 111, 14466-14471.
Wang, Y.X., Zhang, C.L., Yu, R.T., Cho, H.K., Nelson, M.C., Bayuga-Ocampo, C.R., Ham, J., Kang, H., and Evans, R.M. (2004). Regulation of muscle fiber type and running endurance by PPARdelta. PLoS biology 2, e294.
Warden, A., Truitt, J., Merriman, M., Ponomareva, O., Jameson, K., Ferguson, L.B., Mayfield, R.D., and Harris, R.A. (2016). Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep-Uk 6.
Wilcox, G. (2005). Insulin and insulin resistance. Clin Biochem Rev 26, 19-39.
Wree, A., Broderick, L., Canbay, A., Hoffman, H.M., and Feldstein, A.E. (2013). From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol 10, 627-636.
Wysocki, J., Belowski, D., Kalina, M., Kochanski, L., Okopien, B., and Kalina, Z. (2004). Effects of micronized fenofibrate on insulin resistance in patients with metabolic syndrome. International journal of clinical pharmacology and therapeutics 42, 212-217.
Xu, J., Lloyd, D.J., Hale, C., Stanislaus, S., Chen, M., Sivits, G., Vonderfecht, S., Hecht, R., Li, Y.S., Lindberg, R.A., et al. (2009). Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250-259.
Yoneshiro, T., Aita, S., Matsushita, M., Kameya, T., Nakada, K., Kawai, Y., and Saito, M. (2011). Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring) 19, 13-16.
Young, E.A., Altemus, M., Lopez, J.F., Kocsis, J.H., Schatzberg, A.F., DeBattista, C., and Zubieta, J.K. (2004). HPA axis activation in major depression and response to fluoxetine: a pilot study. Psychoneuroendocrinology 29, 1198-1204.
Zechner, R., Zimmermann, R., Eichmann, T.O., Kohlwein, S.D., Haemmerle, G., Lass, A., and Madeo, F. (2012). FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15, 279-291.
Zemdegs, J., Quesseveur, G., Jarriault, D., Penicaud, L., Fioramonti, X., and Guiard, B.P. (2016). High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice. Br J Pharmacol 173, 2095-2110.
Zhang, Z., Zhang, H., Li, B., Meng, X., Wang, J., Zhang, Y., Yao, S., Ma, Q., Jin, L., Yang, J., et al. (2014). Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 5, 5493.
Zolezzi, J.M., and Inestrosa, N.C. (2013). Peroxisome proliferator-activated receptors and Alzheimer''s disease: hitting the blood-brain barrier. Molecular neurobiology 48, 438-451.
汪芝翎 (2014). 初探牛樟芝萃取物的抗肥胖效用. In 人類發展與家庭學系 (台北市: 國立臺灣師範大學), pp. 128.
許珊菁 (2006). 鼠模式中高脂飲食、肥胖與脂質調控基因之表現. In 微生物與生化學研究所 (台北市: 國立臺灣大學), pp. 207.
董又慈 (2016). 山苦瓜改善高脂飲食誘發小鼠代謝異常、脂肪肝與肝相關基因 mRNA 表現. In 生化科技學系 (台北市: 國立臺灣大學), pp. 101.
鄒尚瑀 (2016). 長期餵食山苦瓜對高脂飲食誘導肥胖小鼠代謝異常及白色脂肪組織褐化相關基因表現之效應. In 生化科學研究所 (台北市: 國立臺灣大學), pp. 103.
鍾誠珠 (2009). 代謝症候群動物模式之評估探討. In 微生物與生化學研究所 (台北市: 國立臺灣大學), pp. 159.
穆偉捷 (2014). 山苦瓜上調 C57BL/6J 公鼠肝 Fgf21 mRNA 並誘發副睪脂褐化. In 生化科技學系 (台北市: 國立臺灣大學), pp. 202.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊