|
1.Boh, B., Berovic, M., Zhang, J., Zhi-Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 2007; 13:265-301. 2.Paterson, R.R. Ganoderma - a therapeutic fungal biofactory. Phytochemistry 2006; 67(18):1985-2001. 3.Lee, J.M., Kwon, H., Jeong, H., Lee, J.W., Lee, S.Y., Baek, S.J., Surh, Y.J. Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum. Phytother Res 2001; 15(3):245-9. 4.Lin, Z.b., Zhang, H.n. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin 2004; 25(11):1387-95. 5.Yoon, S.Y., Eo, S.K., Kim, Y.S., Lee, C.K., Han, S.S. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res 1994; 17(6):438-42. 6.Shiao, M.S. Triterpenoid natural products in the fungus Ganoderma lucidum. J Chin Chem Soc 1992; 39:669–74. 7.Kim, S.W., Hwang, H.J., Xu, C.P., Sung, J.M., Choi, J.W., Yun, J.W. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738. J Appl Microbiol 2003; 94(1):120-6. 8.Zhao, H., Luo, Y., Lu, C., et al. Enteric Mucosal Immune Response might Trigger the Immunomodulation Activity of Ganoderma lucidum Polysaccharide in Mice. Planta Med 2010; 76(03):223-7. 9.Pi, C.C., Chu, C.L., Lu, C.Y., et al. Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo. Vaccine 2014; 32(3):401-8. 10.Wang, C.L., Lu, C.Y., Pi, C.C., Zhuang, Y.J., Chu, C.L., Liu, W.H., Chen, C.J. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complement Altern Med 2012; 12(1):119. 11.Wang, C.L., Pi, C.C., Kuo, C.W., Zhuang, Y.J., Khoo, K.H., Liu, W.H., Chen, C.J. Polysaccharides purified from the submerged culture of Ganoderma formosanum stimulate macrophage activation and protect mice against Listeria monocytogenes infection. Biotechnol Lett 2011; 33(11):2271. 12.Pi, C.C., Wang, H.Y., Lu, C.Y., Lu, F.L., Chen, C.J. Ganoderma formosanum polysaccharides attenuate Th2 inflammation and airway hyperresponsiveness in a murine model of allergic asthma. SpringerPlus 2014; 3(1):297. 13.Wang, C.L., Lu, C.Y., Hsueh, Y.C., Liu, W.H., Chen, C.J. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol 2014; 98(22):9389-98. 14.Vanneman, M., Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 2012; 12(4):237-51. 15.Weiner, G.J. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 2015; 15(6):361-70. 16.Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4):252-64. 17.Butterfield, L.H. Cancer vaccines. BMJ 2015; 350(h988). 18.Dougan, M., Dranoff, G. Immune Therapy for Cancer. Annu Rev Immunol 2009; 27:83-117. 19.Farkona, S., Diamandis, E.P., Blasutig, I.M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016; 14:73. 20.Balkwill, F.R., Capasso, M., Hagemann, T. The tumor microenvironment at a glance. J Cell Sci 2012; 125(23):5591-6. 21.Mbeunkui, F., Johann, D.J. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009; 63(4):571-82. 22.Olson, O.C., Joyce, J.A. Microenvironment-mediated resistance to anticancer therapies. Cell Res 2013; 23(2):179-81. 23.Beatty, G.L., Gladney, W.L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 2015; 21(4):687-92. 24.Garcia-Lora, A., Algarra, I., Garrido, F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003; 195(3):346-55. 25.Li, H., Fan, X., Houghton, J. Tumor microenvironment: The role of the tumor stroma in cancer. J Cell Biochem 2007; 101(4):805-15. 26.Sounni, N.E., Noel, A. Targeting the Tumor Microenvironment for Cancer Therapy. Clin Chem 2013; 59(1):85-93. 27.Gabrilovich, D.I., Nagaraj, S. Myeloid-derived-suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3):162-74. 28.Sinha, P., Clements, V.K., Bunt, S.K., Albelda, S.M., Ostrand-Rosenberg, S. Cross-Talk between Myeloid-Derived Suppressor Cells and Macrophages Subverts Tumor Immunity toward a Type 2 Response. The Journal of Immunology 2007; 179(2):977-83. 29.Ostrand-Rosenberg, S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 2010; 59(10):1593-600. 30.Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., De Baetselier, P., Van Ginderachter, J.A. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 2008; 111(8):4233-44. 31.Albeituni, S.H., Ding, C., Yan, J. Hampering immune suppressors: therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J 2013; 19(6):490-501. 32.Cheng, P., Corzo, C.A., Luetteke, N., et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. The Journal of Experimental Medicine 2008; 205(10):2235-49. 33.Wang, S.-H., Lu, Q.-Y., Guo, Y.-H., Song, Y.-Y., Liu, P.-J., Wang, Y.-C. The blockage of Notch signalling promoted the generation of polymorphonuclear myeloid-derived suppressor cells with lower immunosuppression. Eur J Cancer 2016; 68:90-105. 34.Noy, R., Pollard, J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014; 41(1):49-61. 35.Solinas, G., Germano, G., Mantovani, A., Allavena, P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86(5):1065-73. 36.Ruffell, B., Affara, N.I., Coussens, L.M. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33(3):119-26. 37.Mantovani, A., Sozzani, S., Locati, M., Allavena, P., Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23(11):549-55. 38.Pollard, J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4(1):71-8. 39.Talmadge, J.E., Donkor, M., Scholar, E. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 2007; 26(3-4):373-400. 40.Qian, B.-Z., Pollard, J.W. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2013; 141(1):39-51. 41.Gordon, S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3(1):23-35. 42.Adeegbe, D.O., Nishikawa, H. Natural and induced T regulatory cells in cancer. Front Immunol 2013; 4:190. 43.Wynn, T.A., Chawla, A., Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446):445-55. 44.Klug, F., Prakash, H., Huber, Peter E., et al. Low-Dose Irradiation Programs Macrophage Differentiation to an iNOS(+)/M1 Phenotype that Orchestrates Effective T Cell Immunotherapy. Cancer Cell 2013; 24(5):589-602. 45.Liston, A., Gray, D.H. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol 2014; 14(3):154-65. 46.Liu, C., Workman, C.J., Vignali, D.A.A. Targeting regulatory T cells in tumors. The FEBS Journal 2016; 283(14):2731-48. 47.Curiel, T.J., Coukos, G., Zou, L., et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10(9):942-9. 48.Plitas, G., Konopacki, C., Wu, K., Bos, P.D., Morrow, M., Putintseva, Ekaterina V., Chudakov, Dmitriy M., Rudensky, Alexander Y. Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer. Immunity 2016; 45(5):1122-34. 49.Jensen, H.K., Donskov, F., Nordsmark, M., Marcussen, N., von der Maase, H. Increased intratumoral FOXP3-positive regulatory immune cells during interleukin-2 treatment in metastatic renal cell carcinoma. Clin Cancer Res 2009; 15(3):1052-8. 50.Petersen, R.P., Campa, M.J., Sperlazza, J., Conlon, D., Joshi, M.-B., Harpole, D.H., Patz, E.F. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 2006; 107(12):2866-72. 51.Gao, Q., Qiu, S.-J., Fan, J., et al. Intratumoral Balance of Regulatory and Cytotoxic T Cells Is Associated With Prognosis of Hepatocellular Carcinoma After Resection. J Clin Oncol 2007; 25(18):2586-93. 52.Curiel, T.J. Regulatory T cells and treatment of cancer. Curr Opin Immunol 2008; 20(2):241-6. 53.Oleinika, K., Nibbs, R.J., Graham, G.J., Fraser, A.R. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 2013; 171(1):36-45. 54.Somasundaram, R., Herlyn, D. Chemokines and the microenvironment in neuroectodermal tumor-host interaction. Semin Cancer Biol 2009; 19(2):92-6. 55.Cao, X., Cai, S.F., Fehniger, T.A., Song, J., Collins, L.I., Piwnica-Worms, D.R., Ley, T.J. Granzyme B and Perforin Are Important for Regulatory T Cell-Mediated Suppression of Tumor Clearance. Immunity 2007; 27(4):635-46. 56.Sojka, D.K., Hughson, A., Fowell, D.J. CTLA-4 is Required by CD4(+)CD25(+) Treg to Control CD4(+) T Cell Lymphopenia-Induced Proliferation. Eur J Immunol 2009; 39(6):1544-51. 57.LeBien, T.W., Tedder, T.F. B lymphocytes: how they develop and function. Blood 2008; 112(5):1570-80. 58.Mizoguchi, A., Bhan, A.K. A case for regulatory B cells. J Immunol 2006; 176(2):705-10. 59.Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R.S., Bhan, A.K. Chronic Intestinal Inflammatory Condition Generates IL-10-Producing Regulatory B Cell Subset Characterized by CD1d Upregulation. Immunity 2002; 16(2):219-30. 60.DiLillo, D.J., Matsushita, T., Tedder, T.F. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci 2010; 1183:38-57. 61.Fillatreau, S., Sweenie, C.H., McGeachy, M.J., Gray, D., Anderton, S.M. B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3(10):944-50. 62.Mauri, C., Gray, D., Mushtaq, N., Londei, M. Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 2003; 197(4):489-501. 63.Rosser, E.C., Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 2015; 42(4):607-12. 64.Evans, J.G., Chavez-Rueda, K.A., Eddaoudi, A., Meyer-Bahlburg, A., Rawlings, D.J., Ehrenstein, M.R., Mauri, C. Novel Suppressive Function of Transitional 2 B Cells in Experimental Arthritis. The Journal of Immunology 2007; 178(12):7868-78. 65.Yanaba, K., Bouaziz, J.D., Haas, K.M., Poe, J.C., Fujimoto, M., Tedder, T.F. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008; 28(5):639-50. 66.Yoshizaki, A., Miyagaki, T., DiLillo, D.J., et al. Regulatory B Cells Control T Cell Autoimmunity Through IL-21-Dependent Cognate Interactions. Nature 2012; 491(7423):264-8. 67.Gray, M., Miles, K., Salter, D., Gray, D., Savill, J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proceedings of the National Academy of Sciences 2007; 104(35):14080-5. 68.Ding, Q., Yeung, M., Camirand, G., et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J Clin Invest 2011; 121(9):3645-56. 69.Shen, P., Roch, T., Lampropoulou, V., et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014; 507(7492):366-70. 70.Matsumoto, M., Baba, A., Yokota, T., et al. Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 2014; 41(6):1040-51. 71.Blair, P.A., Noreña, L.Y., Flores-Borja, F., Rawlings, D.J., Isenberg, D.A., Ehrenstein, M.R., Mauri, C. CD19+CD24hiCD38hiB Cells Exhibit Regulatory Capacity in Healthy Individuals but Are Functionally Impaired in Systemic Lupus Erythematosus Patients. Immunity 2010; 32(1):129-40. 72.Iwata, Y., Matsushita, T., Horikawa, M., et al. Characterization of a rare IL-10–competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011; 117(2):530-41. 73.Mauri, C., Bosma, A. Immune regulatory function of B cells. Annu Rev Immunol 2012; 30:221-41. 74.Zhang, Y., Morgan, R., Chen, C., et al. Mammary-tumor-educated B cells acquire LAP/TGF-beta and PD-L1 expression and suppress anti-tumor immune responses. Int Immunol 2016; 28(9):423-33. 75.Schwartz, M., Zhang, Y., Rosenblatt, J.D. B cell regulation of the anti-tumor response and role in carcinogenesis. Journal for ImmunoTherapy of Cancer 2016; 4(1):40. 76.Zhang, Y., Eliav, Y., Shin, S.-u., Schreiber, T.H., Podack, E.R., Tadmor, T., Rosenblatt, J.D. B lymphocyte inhibition of anti-tumor response depends on expansion of Treg but is independent of B-cell IL-10 secretion. Cancer Immunol Immunother 2013; 62(1):87-99. 77.Oizumi, S., Deyev, V., Yamazaki, K., Schreiber, T., Strbo, N., Rosenblatt, J., Podack, E.R. Surmounting tumor-induced immune suppression by frequent vaccination or immunization in the absence of B cells. J Immunother 2008; 31(4):394-401. 78.Olkhanud, P.B., Damdinsuren, B., Bodogai, M., et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res 2011; 71(10):3505-15. 79.Olkhanud, P.B., Baatar, D., Bodogai, M., et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res 2009; 69(14):5996-6004. 80.Margadant, C., Sonnenberg, A. Integrin–TGF-β crosstalk in fibrosis, cancer and wound healing. EMBO Reports 2010; 11(2):97-105. 81.Orimo, A., Weinberg, R.A. Heterogeneity of stromal fibroblasts in tumors. Cancer Biol Ther 2007; 6(4):618-9. 82.Sugimoto, H., Mundel, T.M., Kieran, M.W., Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 2006; 5(12):1640-6. 83.Mrazek, A.A., Carmical, J.R., Wood, T.G., Hellmich, M.R., Eltorky, M., Bohanon, F.J., Chao, C. Colorectal Cancer-Associated Fibroblasts are Genotypically. Curr Cancer Ther Rev 2014; 10(2):97-218. 84.Franco, O.E., Shaw, A.K., Strand, D.W., Hayward, S.W. Cancer Associated Fibroblasts in Cancer Pathogenesis. Semin Cell Dev Biol 2010; 21(1):33-9. 85.Li, L., Bhatia, R. Molecular Pathways: Stem Cell Quiescence. Clin Cancer Res 2011; 17(15):4936-41. 86.Horwitz, E.M., Le Blanc, K., Dominici, M., et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7(5):393-5. 87.Lama, V.N., Smith, L., Badri, L., et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 2007; 117(4):989-96. 88.Chamberlain, G., Fox, J., Ashton, B., Middleton, J. Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells 2007; 25(11):2739-49. 89.Prantl, L., Muehlberg, F., Navone, N.M., Song, Y.H., Vykoukal, J., Logothetis, C.J., Alt, E.U. Adipose Tissue Derived Stem Cells Promote Prostate Tumor Growth. Prostate 2010; 70(15):1709-15. 90.Karnoub, A.E., Dash, A.B., Vo, A.P., et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162):557-63. 91.Duda, D.G., Duyverman, A., Kohno, M., Snuderl, M., Steller, E.J.A., Fukumura, D., Jain, R.K. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A 2010; 107(50):21677-82. 92.Ramamoorthy, V., Govindaraj, L., Dhanasekaran, M., Vetrivel, S., Kumar, K.K., Ebenezar, E. Combination of driselase and lysing enzyme in one molar potassium chloride is effective for the production of protoplasts from germinated conidia of Fusarium verticillioides. J Microbiol Methods 2015; 111:127-34. 93.Tian, J., Ma, J., Ma, K., et al. β-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol 2013; 43(5):1220-30. 94.Gabrilovich, D.I., Ostrand-Rosenberg, S., Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12(4):253-68. 95.Ostrand-Rosenberg, S., Sinha, P. Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer. The Journal of Immunology 2009; 182(8):4499-506. 96.Pan, P.-Y., Ma, G., Weber, K.J., Ozao-Choy, J., Wang, G., Yin, B., Divino, C.M., Chen, S.-H. Immune Stimulatory Receptor CD40 Is Required for T-Cell Suppression and T Regulatory Cell Activation Mediated by Myeloid-Derived Suppressor Cells in Cancer. Cancer Res 2010; 70(1):99-108. 97.Kline, J., Brown, I.E., Zha, Y.-Y., Blank, C., Strickler, J., Wouters, H., Zhang, L., Gajewski, T.F. Homeostatic Proliferation Plus Regulatory T-Cell Depletion Promotes Potent Rejection of B16 Melanoma. Clin Cancer Res 2008; 14(10):3156-67. 98.Zheng, S., Jia, Y., Zhao, J.U.N., Wei, Q.U.N., Liu, Y. Ganoderma lucidum polysaccharides eradicates the blocking effect of fibrinogen on NK cytotoxicity against melanoma cells. Oncol Lett 2012; 3(3):613-6. 99.Chien, C.M., Cheng, J.-L., Chang, W.-T., et al. Polysaccharides of Ganoderma lucidum alter cell immunophenotypic expression and enhance CD56+ NK-cell cytotoxicity in cord blood. Bioorg Med Chem 2004; 12(21):5603-9. 100.Santoni, M., Massari, F., Amantini, C., et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2013; 62(12):1757-68. 101.Chaudhary, B., Elkord, E. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines 2016; 4(3):28. 102.Li, B., Cai, Y., Qi, C., Hansen, R., Ding, C., Mitchell, T.C., Yan, J. Orally administered particulate beta-glucan modulates tumor-capturing dendritic cells and improves antitumor T-cell responses in cancer. Clin Cancer Res 2010; 16(21):5153-64. 103.Jarek Baran, A.U.D.J.A.A.U.F.H.A.U.G.D.R. Oral beta-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice. Oral beta-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice 2007; 45(2):107-14--14. 104.Chang, C.J., Chen, Y.Y., Lu, C.C., et al. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin. Innate Immun 2014; 20(3):301-11. 105.Wang, S.Y., Hsu, M.L., Hsu, H.C., Lee, S.S., Shiao, M.S., Ho, C.K. The anti-tumor effect of Ganoderma Lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer 1997; 70(6):699-705. 106.Lu, H., Yang, Y., Gad, E., et al. Polysaccharide Krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells. Clin Cancer Res 2010. 107.Qi, C., Cai, Y., Gunn, L., et al. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Blood 2011; 117(25):6825-36. 108.Corzo, C.A., Condamine, T., Lu, L., et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine 2010; 207(11):2439-53.
|