跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 14:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊喆宇
研究生(外文):Jhe-Yu Yang
論文名稱:以CT26腫瘤細胞之動物模式來探討台灣紫芝多醣體抗腫瘤效果
論文名稱(外文):The anti-tumor effect of Ganoderma formosanum polysaccharides in CT26 tumor-bearing mice
指導教授:陳俊任陳俊任引用關係
指導教授(外文):Chun-Jen Chen
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:台灣紫芝免疫治療胞外多醣髓原抑制細胞T細胞腫瘤相關巨噬細胞
外文關鍵詞:Ganoderma formosanumimmunotherapyextracellular polysaccharideMDSCsT cellsTAMs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣紫芝(Ganoderma formosanum)為台灣特有靈芝品種,在先前研究發現在液態深層醱酵培養法所生產的台灣紫芝胞外多醣體主要劃分PS-F2,具有免疫刺激及抗腫瘤的活性。在本研究中,我們探討經由UV突變且有較高多醣產量的菌株之免疫調節及抗腫瘤的特性。在預防及治療之動物模式裡,持續性給予小鼠口服PS-F2可以有效地抑制CT26腫瘤的生長及脾臟腫大的現象,且不會造成小鼠的健康有不良的影響。結果顯示,口服給予PS-F2可以促進脾臟內胞殺型T細胞及自然殺手細胞活化,且可以降低多型核髓原抑制細胞和調節型T細胞的比例。在腫瘤微環境中,口服給予PS-F2可以活化胞殺型T細胞和Th1細胞及減少腫瘤相關巨噬細胞的比例。在體外試驗中,PS-F2的刺激會促使單核型髓原抑制細胞表現成熟及分化的表面標記,並分泌發炎相關細胞激素TNF-α和 IL-6 。綜合以上結果,我們發現口服給予小鼠台灣紫芝胞外多醣PS-F2,可藉由活化體內的抗腫瘤免疫反應及減少脾臟和腫瘤內免疫抑制型細胞的累積,而達到減緩腫瘤生長的效果, 顯示PS-F2具有發展免疫治療藥劑的潛力。
Ganoderma formosanum is a native species of Ganoderma isolated in Taiwan, and our previous studies showed that a polysaccharide fraction, PS-F2, purified from the submerged culture fluid of G. formosanum ATCC 76538 exhibited immunostimulatory and antitumor property. In the current study, we investigated the immunomodulatory and antitumor effects of PS-F2 from a UV-mutated G. formosanum variant, which produced higher yields of PS-F2 than the original strain. In both preventive and therapeutic regimens, continuous oral administration of PS-F2 effectively suppressed the growth of colon 26 (CT-26) carcinoma and splenomegaly in tumor-bearing mice without adverse effects on the animals’ health. We found that PS-F2 treatment resulted in augmented cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses, while significantly reduced the accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and regulatory T (Treg) cells in the spleen. In the tumor, PS-F2 treatment markedly enhanced CTL and Th1 responses whereas reduced the accumulation of tumor-associated macrophages (TAMs). In vitro, PS-F2 treatment in bone-marrow derived monocytic-MDSC resulted in elevated levels of maturation and differentiation markers as well as the production of TNF-α and IL-6. Overall, our data demonstrated that oral treatment of PS-F2 from a UV-mutated G. formosanum variant in CT26 tumor-bearing mice activated antitumor immune responses and reduced the accumulation of immunosuppressive cells in the spleen and the tumor, leading to delayed tumor progression. PS-F2 has the potential to be developed as a cancer immunotherapeutic agent.
誌謝 I
中文摘要 II
Abstract III
Abbreviation IV
Contents VII
List of tables XVI
Chapter 1 Introduction 1
1.1 Ganoderma spp. (Lingzhi) 1
1.2 Immunostimulatory activity of Ganoderma polysaccharides 1
1.3 Cancer immunotherapy 2
1.4 Tumor microenvironment 2
1.4.1 Myeloid-derived suppressor cells (MDSCs) 3
1.4.2 Tumor-associated macrophages (TAMs) 4
1.4.3 Regulatory T cells (Tregs) 5
1.4.4 Regulatory B cells (Bregs) 6
1.4.5 Cancer-associated fibroblasts (CAFs) 7
1.4.6 Mesenchymal stem cells (MSCs) 7
1.5 Aims of this study 8
Chapter 2 Materials and Methods 9
2.1 Cell line and animal 9
2.2 Preparation of culture medium 9
2.2.1 PDB medium 9
2.2.2 ME-YE medium 9
2.3 Generate and purify PS-F2 from UV-mutated G. formosanum (NTU-1) 9
2.3.1 Generate the UV-mutated G. formosanum (NTU-1) from G. formosanum 9
2.3.2 Purification of PS-F2 from UV-mutated Ganoderma formosanum (NTU-1) 10
2.3.3 Measure total sugar content 11
2.4 To evaluate the immunstimulatory activities of PS-F2 from G. formosanum NTU-1 11
2.5 To determine antitumor effect of PS-F2 in CT26 tumor-bearing mice 11
2.5.1 To evaluate the dose-dependent antitumor effects of PS-F2 in CT26 tumor-bearing mice 11
2.5.2 To evaluate the antitumor activity of oral administration of PS-F2 in preventive and therapeutic models 11
2.5.3 Preparation of splenocytes from mouse spleens 12
2.5.4 Analyze cell population in spleens 13
2.5.5 Prepare single cell suspension from the tumor tissue 14
2.5.6 Analyze cell population in the tumor tissue 14
2.5.7 Intracellular staining 15
2.6 PS-F2 induced the differentiation of MDSC to APC in vitro 16
2.7 PS-F2 stimulated the production of TNF-α and IL-6 in BM-derived MDSCs 16
2.8 Statistical analysis 17
Chapter 3 Results 18
3.1 Production and characterization of the extracellular polysaccharides from G. formosanum NTU-1 18
3.2 PS-F2 produced by G. formosnum NTU-1 activated murine macrophages 19
3.3 Antitumor effect of different doses of PS-F2 produced by G. formosanum NTU-1 19
3.4 Antitumor effect of G. formosanum NTU-1 PS-F2 in CT26 tumor-bearing mice in the preventive model 20
3.4.1 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic effector Th1 cells in the preventive model 21
3.4.2 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic effector CTLs in the preventive model 22
3.4.3 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic MDSCs in the preventive model 22
3.4.4 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic regulatory T cells in the preventive model 23
3.4.5 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic NK cells in the preventive model 23
3.4.6 The effect of oral administration of G. formosanum NTU-1 PS-F2 on the MDSCs in the tumor tissue in the preventive model 24
3.4.7The effect of oral administration of G. formosanum NTU-1 PS-F2 on the tumor associated macrophage in the tumor tissue in the preventive model 24
3.4.8 The effect of oral administration of G. formosanum NTU-1 PS-F2 on effector Th1 cells in the tumor tissue in the preventive model 24
3.4.9 The effect of oral administration of G. formosanum NTU-1 PS-F2 on effector CTLs in the tumor tissue in the preventive model 25
3.5 Antitumor effect of G. formosanum NTU-1 PS-F2 in CT26 tumor-bearing mice in the therapeutic model 25
3.5.1 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic effector Th1 cells in the therapeutic model 26
3.5.2 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic effector CTLs in the therapeutic model 26
3.5.3 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic MDSCs in the therapeutic model 27
3.5.4 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic regulatory T cells in the therapeutic model 27
3.5.5 The effect of oral administration of G. formosanum NTU-1 PS-F2 on splenic NK cells in the therapeutic model 27
3.5.6 The effect of oral administration of G. formosanum NTU-1 PS-F2 on the MDSCs in tumor tissue in the therapeutic model 28
3.5.7 The effect of oral administration of G. formosanum NTU-1 PS-F2 on the tumor associated macrophages in the tumor tissue in the therapeutic model 28
3.5.8 The effect of oral administration of G. formosanum NTU-1 PS-F2 on effector Th1 cells in the tumor tissue in the therapeutic model 29
3.5.9 The effect of oral administration of G. formosanum NTU-1 PS-F2 on effector CTLs in the tumor tissue in the therapeutic model 29
3.5.10 The effect of oral administration of G. formosanum NTU-1 PS-F2 on regulatory T cells in the tumor tissue in the therapeutic model 30
3.6 G. formosanum NTU-1 PS-F2 induced differentiation and maturation of MDSC to APC in vitro 30
Chapter 4 Discussion 32
Tables and Figures 36
Reference 75
1.Boh, B., Berovic, M., Zhang, J., Zhi-Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 2007; 13:265-301.
2.Paterson, R.R. Ganoderma - a therapeutic fungal biofactory. Phytochemistry 2006; 67(18):1985-2001.
3.Lee, J.M., Kwon, H., Jeong, H., Lee, J.W., Lee, S.Y., Baek, S.J., Surh, Y.J. Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum. Phytother Res 2001; 15(3):245-9.
4.Lin, Z.b., Zhang, H.n. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin 2004; 25(11):1387-95.
5.Yoon, S.Y., Eo, S.K., Kim, Y.S., Lee, C.K., Han, S.S. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res 1994; 17(6):438-42.
6.Shiao, M.S. Triterpenoid natural products in the fungus Ganoderma lucidum. J Chin Chem Soc 1992; 39:669–74.
7.Kim, S.W., Hwang, H.J., Xu, C.P., Sung, J.M., Choi, J.W., Yun, J.W. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738. J Appl Microbiol 2003; 94(1):120-6.
8.Zhao, H., Luo, Y., Lu, C., et al. Enteric Mucosal Immune Response might Trigger the Immunomodulation Activity of Ganoderma lucidum Polysaccharide in Mice. Planta Med 2010; 76(03):223-7.
9.Pi, C.C., Chu, C.L., Lu, C.Y., et al. Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo. Vaccine 2014; 32(3):401-8.
10.Wang, C.L., Lu, C.Y., Pi, C.C., Zhuang, Y.J., Chu, C.L., Liu, W.H., Chen, C.J. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complement Altern Med 2012; 12(1):119.
11.Wang, C.L., Pi, C.C., Kuo, C.W., Zhuang, Y.J., Khoo, K.H., Liu, W.H., Chen, C.J. Polysaccharides purified from the submerged culture of Ganoderma formosanum stimulate macrophage activation and protect mice against Listeria monocytogenes infection. Biotechnol Lett 2011; 33(11):2271.
12.Pi, C.C., Wang, H.Y., Lu, C.Y., Lu, F.L., Chen, C.J. Ganoderma formosanum polysaccharides attenuate Th2 inflammation and airway hyperresponsiveness in a murine model of allergic asthma. SpringerPlus 2014; 3(1):297.
13.Wang, C.L., Lu, C.Y., Hsueh, Y.C., Liu, W.H., Chen, C.J. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol 2014; 98(22):9389-98.
14.Vanneman, M., Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 2012; 12(4):237-51.
15.Weiner, G.J. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 2015; 15(6):361-70.
16.Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4):252-64.
17.Butterfield, L.H. Cancer vaccines. BMJ 2015; 350(h988).
18.Dougan, M., Dranoff, G. Immune Therapy for Cancer. Annu Rev Immunol 2009; 27:83-117.
19.Farkona, S., Diamandis, E.P., Blasutig, I.M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016; 14:73.
20.Balkwill, F.R., Capasso, M., Hagemann, T. The tumor microenvironment at a glance. J Cell Sci 2012; 125(23):5591-6.
21.Mbeunkui, F., Johann, D.J. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009; 63(4):571-82.
22.Olson, O.C., Joyce, J.A. Microenvironment-mediated resistance to anticancer therapies. Cell Res 2013; 23(2):179-81.
23.Beatty, G.L., Gladney, W.L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 2015; 21(4):687-92.
24.Garcia-Lora, A., Algarra, I., Garrido, F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003; 195(3):346-55.
25.Li, H., Fan, X., Houghton, J. Tumor microenvironment: The role of the tumor stroma in cancer. J Cell Biochem 2007; 101(4):805-15.
26.Sounni, N.E., Noel, A. Targeting the Tumor Microenvironment for Cancer Therapy. Clin Chem 2013; 59(1):85-93.
27.Gabrilovich, D.I., Nagaraj, S. Myeloid-derived-suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3):162-74.
28.Sinha, P., Clements, V.K., Bunt, S.K., Albelda, S.M., Ostrand-Rosenberg, S. Cross-Talk between Myeloid-Derived Suppressor Cells and Macrophages Subverts Tumor Immunity toward a Type 2 Response. The Journal of Immunology 2007; 179(2):977-83.
29.Ostrand-Rosenberg, S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 2010; 59(10):1593-600.
30.Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., De Baetselier, P., Van Ginderachter, J.A. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 2008; 111(8):4233-44.
31.Albeituni, S.H., Ding, C., Yan, J. Hampering immune suppressors: therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J 2013; 19(6):490-501.
32.Cheng, P., Corzo, C.A., Luetteke, N., et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. The Journal of Experimental Medicine 2008; 205(10):2235-49.
33.Wang, S.-H., Lu, Q.-Y., Guo, Y.-H., Song, Y.-Y., Liu, P.-J., Wang, Y.-C. The blockage of Notch signalling promoted the generation of polymorphonuclear myeloid-derived suppressor cells with lower immunosuppression. Eur J Cancer 2016; 68:90-105.
34.Noy, R., Pollard, J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014; 41(1):49-61.
35.Solinas, G., Germano, G., Mantovani, A., Allavena, P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86(5):1065-73.
36.Ruffell, B., Affara, N.I., Coussens, L.M. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33(3):119-26.
37.Mantovani, A., Sozzani, S., Locati, M., Allavena, P., Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23(11):549-55.
38.Pollard, J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4(1):71-8.
39.Talmadge, J.E., Donkor, M., Scholar, E. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 2007; 26(3-4):373-400.
40.Qian, B.-Z., Pollard, J.W. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2013; 141(1):39-51.
41.Gordon, S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3(1):23-35.
42.Adeegbe, D.O., Nishikawa, H. Natural and induced T regulatory cells in cancer. Front Immunol 2013; 4:190.
43.Wynn, T.A., Chawla, A., Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446):445-55.
44.Klug, F., Prakash, H., Huber, Peter E., et al. Low-Dose Irradiation Programs Macrophage Differentiation to an iNOS(+)/M1 Phenotype that Orchestrates Effective T Cell Immunotherapy. Cancer Cell 2013; 24(5):589-602.
45.Liston, A., Gray, D.H. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol 2014; 14(3):154-65.
46.Liu, C., Workman, C.J., Vignali, D.A.A. Targeting regulatory T cells in tumors. The FEBS Journal 2016; 283(14):2731-48.
47.Curiel, T.J., Coukos, G., Zou, L., et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10(9):942-9.
48.Plitas, G., Konopacki, C., Wu, K., Bos, P.D., Morrow, M., Putintseva, Ekaterina V., Chudakov, Dmitriy M., Rudensky, Alexander Y. Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer. Immunity 2016; 45(5):1122-34.
49.Jensen, H.K., Donskov, F., Nordsmark, M., Marcussen, N., von der Maase, H. Increased intratumoral FOXP3-positive regulatory immune cells during interleukin-2 treatment in metastatic renal cell carcinoma. Clin Cancer Res 2009; 15(3):1052-8.
50.Petersen, R.P., Campa, M.J., Sperlazza, J., Conlon, D., Joshi, M.-B., Harpole, D.H., Patz, E.F. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 2006; 107(12):2866-72.
51.Gao, Q., Qiu, S.-J., Fan, J., et al. Intratumoral Balance of Regulatory and Cytotoxic T Cells Is Associated With Prognosis of Hepatocellular Carcinoma After Resection. J Clin Oncol 2007; 25(18):2586-93.
52.Curiel, T.J. Regulatory T cells and treatment of cancer. Curr Opin Immunol 2008; 20(2):241-6.
53.Oleinika, K., Nibbs, R.J., Graham, G.J., Fraser, A.R. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 2013; 171(1):36-45.
54.Somasundaram, R., Herlyn, D. Chemokines and the microenvironment in neuroectodermal tumor-host interaction. Semin Cancer Biol 2009; 19(2):92-6.
55.Cao, X., Cai, S.F., Fehniger, T.A., Song, J., Collins, L.I., Piwnica-Worms, D.R., Ley, T.J. Granzyme B and Perforin Are Important for Regulatory T Cell-Mediated Suppression of Tumor Clearance. Immunity 2007; 27(4):635-46.
56.Sojka, D.K., Hughson, A., Fowell, D.J. CTLA-4 is Required by CD4(+)CD25(+) Treg to Control CD4(+) T Cell Lymphopenia-Induced Proliferation. Eur J Immunol 2009; 39(6):1544-51.
57.LeBien, T.W., Tedder, T.F. B lymphocytes: how they develop and function. Blood 2008; 112(5):1570-80.
58.Mizoguchi, A., Bhan, A.K. A case for regulatory B cells. J Immunol 2006; 176(2):705-10.
59.Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R.S., Bhan, A.K. Chronic Intestinal Inflammatory Condition Generates IL-10-Producing Regulatory B Cell Subset Characterized by CD1d Upregulation. Immunity 2002; 16(2):219-30.
60.DiLillo, D.J., Matsushita, T., Tedder, T.F. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci 2010; 1183:38-57.
61.Fillatreau, S., Sweenie, C.H., McGeachy, M.J., Gray, D., Anderton, S.M. B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3(10):944-50.
62.Mauri, C., Gray, D., Mushtaq, N., Londei, M. Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 2003; 197(4):489-501.
63.Rosser, E.C., Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 2015; 42(4):607-12.
64.Evans, J.G., Chavez-Rueda, K.A., Eddaoudi, A., Meyer-Bahlburg, A., Rawlings, D.J., Ehrenstein, M.R., Mauri, C. Novel Suppressive Function of Transitional 2 B Cells in Experimental Arthritis. The Journal of Immunology 2007; 178(12):7868-78.
65.Yanaba, K., Bouaziz, J.D., Haas, K.M., Poe, J.C., Fujimoto, M., Tedder, T.F. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008; 28(5):639-50.
66.Yoshizaki, A., Miyagaki, T., DiLillo, D.J., et al. Regulatory B Cells Control T Cell Autoimmunity Through IL-21-Dependent Cognate Interactions. Nature 2012; 491(7423):264-8.
67.Gray, M., Miles, K., Salter, D., Gray, D., Savill, J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proceedings of the National Academy of Sciences 2007; 104(35):14080-5.
68.Ding, Q., Yeung, M., Camirand, G., et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J Clin Invest 2011; 121(9):3645-56.
69.Shen, P., Roch, T., Lampropoulou, V., et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014; 507(7492):366-70.
70.Matsumoto, M., Baba, A., Yokota, T., et al. Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 2014; 41(6):1040-51.
71.Blair, P.A., Noreña, L.Y., Flores-Borja, F., Rawlings, D.J., Isenberg, D.A., Ehrenstein, M.R., Mauri, C. CD19+CD24hiCD38hiB Cells Exhibit Regulatory Capacity in Healthy Individuals but Are Functionally Impaired in Systemic Lupus Erythematosus Patients. Immunity 2010; 32(1):129-40.
72.Iwata, Y., Matsushita, T., Horikawa, M., et al. Characterization of a rare IL-10–competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011; 117(2):530-41.
73.Mauri, C., Bosma, A. Immune regulatory function of B cells. Annu Rev Immunol 2012; 30:221-41.
74.Zhang, Y., Morgan, R., Chen, C., et al. Mammary-tumor-educated B cells acquire LAP/TGF-beta and PD-L1 expression and suppress anti-tumor immune responses. Int Immunol 2016; 28(9):423-33.
75.Schwartz, M., Zhang, Y., Rosenblatt, J.D. B cell regulation of the anti-tumor response and role in carcinogenesis. Journal for ImmunoTherapy of Cancer 2016; 4(1):40.
76.Zhang, Y., Eliav, Y., Shin, S.-u., Schreiber, T.H., Podack, E.R., Tadmor, T., Rosenblatt, J.D. B lymphocyte inhibition of anti-tumor response depends on expansion of Treg but is independent of B-cell IL-10 secretion. Cancer Immunol Immunother 2013; 62(1):87-99.
77.Oizumi, S., Deyev, V., Yamazaki, K., Schreiber, T., Strbo, N., Rosenblatt, J., Podack, E.R. Surmounting tumor-induced immune suppression by frequent vaccination or immunization in the absence of B cells. J Immunother 2008; 31(4):394-401.
78.Olkhanud, P.B., Damdinsuren, B., Bodogai, M., et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res 2011; 71(10):3505-15.
79.Olkhanud, P.B., Baatar, D., Bodogai, M., et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res 2009; 69(14):5996-6004.
80.Margadant, C., Sonnenberg, A. Integrin–TGF-β crosstalk in fibrosis, cancer and wound healing. EMBO Reports 2010; 11(2):97-105.
81.Orimo, A., Weinberg, R.A. Heterogeneity of stromal fibroblasts in tumors. Cancer Biol Ther 2007; 6(4):618-9.
82.Sugimoto, H., Mundel, T.M., Kieran, M.W., Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 2006; 5(12):1640-6.
83.Mrazek, A.A., Carmical, J.R., Wood, T.G., Hellmich, M.R., Eltorky, M., Bohanon, F.J., Chao, C. Colorectal Cancer-Associated Fibroblasts are Genotypically. Curr Cancer Ther Rev 2014; 10(2):97-218.
84.Franco, O.E., Shaw, A.K., Strand, D.W., Hayward, S.W. Cancer Associated Fibroblasts in Cancer Pathogenesis. Semin Cell Dev Biol 2010; 21(1):33-9.
85.Li, L., Bhatia, R. Molecular Pathways: Stem Cell Quiescence. Clin Cancer Res 2011; 17(15):4936-41.
86.Horwitz, E.M., Le Blanc, K., Dominici, M., et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7(5):393-5.
87.Lama, V.N., Smith, L., Badri, L., et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 2007; 117(4):989-96.
88.Chamberlain, G., Fox, J., Ashton, B., Middleton, J. Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells 2007; 25(11):2739-49.
89.Prantl, L., Muehlberg, F., Navone, N.M., Song, Y.H., Vykoukal, J., Logothetis, C.J., Alt, E.U. Adipose Tissue Derived Stem Cells Promote Prostate Tumor Growth. Prostate 2010; 70(15):1709-15.
90.Karnoub, A.E., Dash, A.B., Vo, A.P., et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162):557-63.
91.Duda, D.G., Duyverman, A., Kohno, M., Snuderl, M., Steller, E.J.A., Fukumura, D., Jain, R.K. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A 2010; 107(50):21677-82.
92.Ramamoorthy, V., Govindaraj, L., Dhanasekaran, M., Vetrivel, S., Kumar, K.K., Ebenezar, E. Combination of driselase and lysing enzyme in one molar potassium chloride is effective for the production of protoplasts from germinated conidia of Fusarium verticillioides. J Microbiol Methods 2015; 111:127-34.
93.Tian, J., Ma, J., Ma, K., et al. β-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol 2013; 43(5):1220-30.
94.Gabrilovich, D.I., Ostrand-Rosenberg, S., Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12(4):253-68.
95.Ostrand-Rosenberg, S., Sinha, P. Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer. The Journal of Immunology 2009; 182(8):4499-506.
96.Pan, P.-Y., Ma, G., Weber, K.J., Ozao-Choy, J., Wang, G., Yin, B., Divino, C.M., Chen, S.-H. Immune Stimulatory Receptor CD40 Is Required for T-Cell Suppression and T Regulatory Cell Activation Mediated by Myeloid-Derived Suppressor Cells in Cancer. Cancer Res 2010; 70(1):99-108.
97.Kline, J., Brown, I.E., Zha, Y.-Y., Blank, C., Strickler, J., Wouters, H., Zhang, L., Gajewski, T.F. Homeostatic Proliferation Plus Regulatory T-Cell Depletion Promotes Potent Rejection of B16 Melanoma. Clin Cancer Res 2008; 14(10):3156-67.
98.Zheng, S., Jia, Y., Zhao, J.U.N., Wei, Q.U.N., Liu, Y. Ganoderma lucidum polysaccharides eradicates the blocking effect of fibrinogen on NK cytotoxicity against melanoma cells. Oncol Lett 2012; 3(3):613-6.
99.Chien, C.M., Cheng, J.-L., Chang, W.-T., et al. Polysaccharides of Ganoderma lucidum alter cell immunophenotypic expression and enhance CD56+ NK-cell cytotoxicity in cord blood. Bioorg Med Chem 2004; 12(21):5603-9.
100.Santoni, M., Massari, F., Amantini, C., et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2013; 62(12):1757-68.
101.Chaudhary, B., Elkord, E. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines 2016; 4(3):28.
102.Li, B., Cai, Y., Qi, C., Hansen, R., Ding, C., Mitchell, T.C., Yan, J. Orally administered particulate beta-glucan modulates tumor-capturing dendritic cells and improves antitumor T-cell responses in cancer. Clin Cancer Res 2010; 16(21):5153-64.
103.Jarek Baran, A.U.D.J.A.A.U.F.H.A.U.G.D.R. Oral beta-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice. Oral beta-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice 2007; 45(2):107-14--14.
104.Chang, C.J., Chen, Y.Y., Lu, C.C., et al. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin. Innate Immun 2014; 20(3):301-11.
105.Wang, S.Y., Hsu, M.L., Hsu, H.C., Lee, S.S., Shiao, M.S., Ho, C.K. The anti-tumor effect of Ganoderma Lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer 1997; 70(6):699-705.
106.Lu, H., Yang, Y., Gad, E., et al. Polysaccharide Krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells. Clin Cancer Res 2010.
107.Qi, C., Cai, Y., Gunn, L., et al. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Blood 2011; 117(25):6825-36.
108.Corzo, C.A., Condamine, T., Lu, L., et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine 2010; 207(11):2439-53.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top