|
1.de Wit, E., et al., SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol, 2016. 14(8): p. 523-34. 2.Hijawi, B., et al., Novel coronavirus infections in Jordan. EMHJ, 2013. 19(Suppl. 1): p. S12-S18. 3.de Groot, R.J., et al., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol, 2013. 87(14): p. 7790-2. 4.WHO. Coronavirus infections: disease outbreak news. 2017; Available from: http://www.who.int/emergencies/mers-cov/en/. 5.Graham, R.L., E.F. Donaldson, and R.S. Baric, A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol, 2013. 11(12): p. 836-48. 6.Haagmans, B.L., et al., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. The Lancet Infectious Diseases, 2014. 14(2): p. 140-145. 7.Azhar, E.I., et al., Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med, 2014. 370(26): p. 2499-505. 8.Hemida, M.G., et al., MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerg Infect Dis, 2014. 20(7): p. 1231-4. 9.Reusken, C.B.E.M., et al., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. The Lancet Infectious Diseases, 2013. 13(10): p. 859-866. 10.Alagaili, A.N., et al., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio, 2014. 5(2): p. e00884-14. 11.van den Brand, J.M., S.L. Smits, and B.L. Haagmans, Pathogenesis of Middle East respiratory syndrome coronavirus. J Pathol, 2015. 235(2): p. 175-84. 12.Zumla, A., et al., Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov, 2016. 15(5): p. 327-47. 13.Neuman, B.W., et al., Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol, 2006. 80(16): p. 7918-28. 14.Fehr, A.R. and S. Perlman, Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol, 2015. 1282: p. 1-23. 15.Mackay, I.M. and K.E. Arden, Middle East respiratory syndrome: An emerging coronavirus infection tracked by the crowd. Virus Res, 2015. 202: p. 60-88. 16.Wang, Q., et al., MERS-CoV spike protein: Targets for vaccines and therapeutics. Antiviral Res, 2016. 133: p. 165-77. 17.Nieto-Torres, J.L., et al., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog, 2014. 10(5): p. e1004077. 18.GODET, M., et al., TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. VIROLOGY, 1992. 188: p. 666-675. 19.Neuman, B.W., et al., A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol, 2011. 174(1): p. 11-22. 20.KUBO, H., Y.K. YAMADA, and F. TAGUCHI, Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. VIROLOGY, 1994. 68(9): p. 5403-5410. 21.Cheng, P.K.C., et al., Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. The Lancet, 2004. 363(9422): p. 1699-1700. 22.Bosch, B.J., et al., The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. Journal of Virology, 2003. 77(16): p. 8801-8811. 23.Pasternak, A.O., W.J. Spaan, and E.J. Snijder, Nidovirus transcription: how to make sense...? J Gen Virol, 2006. 87(Pt 6): p. 1403-21. 24.Perlman, S. and J. Netland, Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol, 2009. 7(6): p. 439-50. 25.Fung, T.S. and D.X. Liu, Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol, 2014. 5: p. 296. 26.Krijnse-Locker, J., et al., Characterization of the budding compartment of mouse hepatitis virus, Evidence that transport from the RER to the golgi complex requires only one vesicular transport step. J Cell Biol., 1994. 124(1-2): p. 55-70. 27.de Haan, C.A.M. and P.J.M. Rottier, Molecular Interactions in the Assembly of Coronaviruses. 2005. 64: p. 165-230. 28.Barlan, A., et al., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. J Virol, 2014. 88(9): p. 4953-61. 29.Millet, J.K. and G.R. Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. PNAS, 2014. 111(42): p. 15214-15219. 30.Du, L., et al., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J Virol, 2013. 87(17): p. 9939-42. 31.Lu, G., et al., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature, 2013. 500(7461): p. 227-31. 32.Mou, H., et al., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J Virol, 2013. 87(16): p. 9379-83. 33.Wang, N., et al., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res, 2013. 23(8): p. 986-93. 34.Li, F., et al., Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor. Science, 2005. 309(5742): p. 1864-1868. 35.Lu, L., et al., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun, 2014. 5: p. 3067. 36.Lu, G., Q. Wang, and G.F. Gao, Bat-to-human: spike features determining ''host jump'' of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol, 2015. 23(8): p. 468-78. 37.Belouzard, S., et al., Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012. 4(6): p. 1011-33. 38.Gao, J., et al., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J Virol, 2013. 87(24): p. 13134-40. 39.Deng, Y., et al., Structures and polymorphic interactions of two heptad-repeat regions of the SARS virus S2 protein. Structure, 2006. 14(5): p. 889-99. 40.Xu, Y., et al., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem, 2004. 279(47): p. 49414-9. 41.Supekar, V., et al., Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein. PNAS, 2004. 101(52): p. 17958–17963. 42.Xu, Y., et al., Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core. J Biol Chem, 2004. 279(29): p. 30514-22. 43.Liu, S., et al., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. The Lancet, 2004. 363(9413): p. 938-947. 44.Liu, S., et al., Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J Biol Chem, 2005. 280(12): p. 11259-73.
|