跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政良
研究生(外文):Jheng-Liang Chen
論文名稱:感覺型視紫質 SRM 和其傳導元 HtrM 對嗜鹽古生菌光趨性之影響
論文名稱(外文):The Functional Impact Of Photosensory Rhodopsin SRM-HtrM In The Phototaxis Response Of Haloarchaea
指導教授:楊啓伸
指導教授(外文):Chii-Shen Yang
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:光趨性感覺型視紫質Halobacterium salinarumSRMHtrM
外文關鍵詞:PhototaxisSensory RhodopsinHalobacterium salinarumSRMHtrM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
古生菌的感覺型視紫質 (Sensory Rhodopsin, SR) 可藉由感受不同可見光波長之光源,並藉由其對應之傳導元 (Transducer, Htr) 傳遞訊息,以調控嗜鹽古生菌之趨、避光反應。目前發現之SRs共有三種型態 : SRI, SRII及SRM;其感受之可見光波長分別分佈於紅藍綠光波段。基因體的序列中,嗜鹽古生菌Natronomonas pharaonis 僅具有調控吸收 ~498 nm 而驅動避光的NpSRII、 Halobacterium salinarum 擁有SRII及吸收~590 nm 來調控趨光的SRI 。本實驗室先前發表基因體的 Haloarcula marismortui,為一三色感光系統的嗜鹽古生菌,除了SRI, SRII以外,尚有一個功能未定的 SRM。SRI 及 SRII 之傳導元藉由類同細菌中化學趨性的 two-component system ,將光訊號轉化為化學訊息傳遞至鞭毛,進而調控菌體之泳動 ; 然而, SRM的傳導元 HtrM 結構上缺乏了許多構件,因此我們推測 SRM-HtrM應由其他機制調控嗜鹽古生菌之光趨性。本篇研究,先建立 SRM 及SRM-HtrM 在二色感光系統 H. salinarum菌株中的表現及確立其功能,再以兩種本篇研究發展之光趨性研究方法 (ELISA Reader 之量測及顯微鏡之觀察),量化 H. salinarum 及其轉形株的光趨反應。初步結果顯示, SRM-HtrM減少了 H. salinarum在綠光及藍光下的避光反應; 並且,在 HtrM 缺乏的轉形株中,該現象並沒有被觀察到。因此,我們認為 HtrM 的存在,對於 SRM-HtrM 複合蛋白質在 H. salinarum中調控的趨光反應是重要的。未來,可以嘗試將 SRM-HtrM 複合蛋白質嵌入磷脂中,分析其與化學趨性相關蛋白質之間的交互作用,以解出其分子機制。
A group of photoreceptors, sensory rhodopsin (SR), regulates phototaxis in haloarchaea through absorbing diverse range of visible light and relaying the signals to the cell by their cognate transducer (Htr). To date, there are three types of SRs identified: SRI, SRII and SRM, and they response to red, blue and green light, respectively. Among the annotated archaeal genomes, Natromonas pharaonis solely own the NpSRII, which response blue light and mediates photorepellent; Halobacterium salinarum holds HsSRII and HsSRI, and HsSRI is known to absorb ~590 nm of light to mediate photoattractant. However, in Haloarcula marismortui, there exists three SRs, namely SRI, SRII and functionally unknown SRM. Previous studies showed that SRI and SRII transduce photo signal to flagellum through transducer and chemotaxis proteins, similar to two-component system of chemotaxis in bacteria. However, it is speculated that the SRM-HtrM complex regulates the phototaxis responses through new pathway as SRM-HtrM lacks many structural components seen in other transducers. In this study, we transplanted SRM and SRM-HtrM into H. salinarum cells and compare the phototaxis responses of H. salinarum and its transformants under different wavelengths of light through two new measurements developed in this study. It is found that SRM-HtrM decreased the photorepellent response of H. salinarum in green and blue light; but not in SRM transformant. The importance of HtrM in SRM-HtrM signaling was concluded. In future, the molecular mechanism of SRM-HtrM can be examined through measurements of the interaction between lipid-reconstituted SRM-HtrM with related chemotaxis proteins.
目錄
目錄………………………………………………..…….…..………..……..………. i
圖目錄…………………………………………………..…….……..….…………… vi
表目錄…………………………………………………………………...…………... viii
摘要…………………………………………………………..………...……………. ix
Abstract…………………………………………………………….…..…………… x
第一章 緒論……………………………………………………..……………... 1
第一節 嗜鹽古生菌之介紹…………………………………..…..………...... 1
第二節 微生物視紫質…………………………………….….….….....…….. 2
第三節 古生菌感覺型視紫質………………….....……………..…….……. 7
I-3.1 紫外光/可見光譜……………………….…….....……………...….. 7
I-3.2 光週期……………………………………….....…….………….….. 8
I-3.3 質子傳輸………………………………….....…….…………...…… 9
I-3.4 重要胺基酸……………………………….....…….…...…………… 11
I-3.5 演化探討………………………………………......…..….………… 13
第四節 傳導元 (Transducer) 的結構與特性………….....….….……..…… 14
第五節 嗜鹽古生菌的光趨性…………………………...……….….….…… 16
I-5.1 SRs於嗜鹽古生菌中的光趨性…………….....…...…....….……… 16
I-5.2 嗜鹽古生菌的光趨性…………………………......….…….….…… 16
I-5.3 SRs調控光趨性之機制……………….....……….…..….….……... 18
第六節 研究動機及策略……………….....…….……….……..…………... 20


第二章 材料與方法……………………………………….....……...………...……. 22
第一節 生物試劑……………………………..…….....…………...........…… 22
II-1.1 菌種………………………………….....…….….………………… 22
II-1.2 質體…………………………………....…….…………………….. 23
II-1.3 蛋白質藥品……………………….....…..…...…...…………..…… 23
第二節 化學藥品……………………………….....…..…….……….………. 23
第三節 儀器設備………………………………….....…..….…..….………... 25
II-3.1 核酸電泳…………………………………….…….......…..…….… 25
II-3.2 蛋白質電泳及轉印………………………….....………….…….… 25
II-3.3 離心機…………………………………….…………..….....…...… 25
II-3.4 光學設備………….....…..………………………….…..…….…… 26
II-3.5 恆溫培養箱………………….....…..……………………...….…… 27
II-3.6 酸鹼度計……………………………….....…..……….…..….…… 27
II-3.7 其他………………………………………….…….....…..…...…… 27
第四節 實驗方法…………….....…..……………………………….…..…… 28
II-4.1 生物資訊學分析…………….....…..……………………………… 28
II-4.1.1 基因資料庫……………………….....…..………….…..…… 28
II-4.1.2 序列親緣比對………………………….…….....…..…..…… 28
II-4.1.3 蛋白質結構分析……………………….……….....………… 28
II-4.2 DNA建構及轉形…….....…..………………………………..….….. 29
II-4.2.1 小量核酸萃取………….....…..………………….…….…… 29
II-4.2.2 聚合酶鏈鎖反應 (PCR) ………….....…..…….…..……….. 29
II-4.2.3 DNA膠體純化………………………….....…..…….……… 30
II-4.2.4 限制酶截切……………………………….....…..……...…… 30
II-4.2.5 DNA黏合………………………………….....….…....….…. 30
II-4.2.6 大腸桿菌轉形…………………………….....…..…….…..… 30
II-4.2.7 嗜鹽古生菌H. salinarum轉形………….....…..….…..….… 31
II-4.2.8 轉形株鑑定.....…..……………………………………….….. 32
II-4.3重組蛋白質之表現及純化….…..………………………….……… 32
II-4.3.1 重組視紫質表現………….....…..………………….……..… 32
II-4.3.2 重組可溶蛋白質表現………………….....…..……….…..… 33
II-4.3.3 重組視紫質純化……………………………….........…....…. 33
II-4.3.4 重組可溶蛋白質純化 (Hexa-His-tagged) .....…..…….….… 34
II-4.3.5 重組可溶蛋白質純化 (GST-tagged)…….....…..…….…….. 34
II-4.3.6 H. salinarum細胞膜之純化……...….……………………… 35
II-4.4 蛋白質定量及定性….......…………..…………………….…….… 35
II-4.4.1 蛋白質定量…………….....…………………………….…… 35
II-4.4.2 蛋白質變性電泳………………..….....…..………….……… 36
II-4.4.3 蛋白質原態電泳…………………..………….....…....……… 37
II-4.4.4 蛋白質轉印……….....…..…………..……………….……… 38
II-4.4.5 免疫呈色…………………….....…..…..…………….……… 38
II-4.5 感光蛋白質光學分析…………………………....…..…….……… 38
II-4.5.1 吸收光譜測定……………………………..……….....…..…. 38
II-4.5.2 視紫質光週期量測…………….....…..…..………….……… 39
II-4.5.3 光驅動離子幫浦活性測定………………….......…..….…… 39
II-4.6 嗜鹽古生菌生理分析……..………………........…..……….…….. 39
II-4.6.1 泳動菌株挑選……………………….......….....…………....…… 39
II-4.6.2 顯微鏡觀察…………………….....…..……...…..……………… 40
II-4.6.3 光趨性分析……….…..………………………….……………… 41
II-4.6.4 光照生長曲線…….......………………….……………………… 41

第三章 實驗結果………………….....…..…………………………………….….... 43
第一節 蛋白質性質….....…..…………………………………...…….….…… 43
III-1.1 序列比對………….....…..…………………………….….….…… 43
III-1.2 結構模擬…………………….....…..……...……….…..….……… 44
III-1.3 pI 及 pKa…………………………….....…..…….….....….…… 46
III-1.4 光誘發質子傳輸………………………….……….....…........…… 49
III-1.5 光週期……......……………………………………………...……. 50
第二節 微生物光趨性研究方法….....…..…………………………….…....… 51
III-2.1 顯微鏡觀察…………………….....…..….…………….…...…..… 51
III-2.2 ELISA Reader測定……………..………….....……….....………. 56
第三節 SRM 及 SRM-HtrM 之移植……………………....……...……...…. 60
III-3.1 DNA 確認…………..……………………………….……..…….. 60
III-3.2 蛋白質表現確認………....…..……………………..……….……. 60
III-3.3 SRM功能性測試……………….....…..………..…………...…… 62
第四節 嗜鹽古生菌之生理探討……………………….....…..……...…..…… 64
III-4.1 細胞型態……………………………………….….....….....….….. 64
III-4.2 生長曲線………………….....…..…………………………...…… 65
III-4.3 光趨性研究………………………….....…..…………...………… 67
第四章 結論與探討………………………………….....…..……….…….….…….. 70
第一節 微生物之光趨性研究………….....…..……………………....……… 70
第二節 光趨性在生理上之意義………….....…..………………..….….…… 71
第三節 H. salinarum的SRM-HtrM功能獲得型轉殖株………...........…..... 72
第四節 嗜鹽古生菌的光趨性機制…………………….......………........…… 73

第五章 未來展望……………………………….....…..………………..….……….. 74
第一節 感覺型視紫質的轉介…………....…..……………...…….………… 74
第二節 光趨性機制之研究方向……………………………....…...………… 74

第六章 參考文獻………………………………………………………….....…...… 76
附圖………………………………………………………………..…….....….......….83











圖目錄

圖1 : 微生物視紫質之共通特性……………………….....…..…….……..........… 2
圖2 : 嗜鹽古生菌中視紫質的分佈……….....…..………………...……….……... 4
圖3 : 嗜鹽古生菌中感覺型視紫質與其傳導元………………......………...….… 6
圖4 : H. salinarum感覺型視紫質的質子傳輸現象………......…..……...….…… 10
圖5 : 感覺型視紫質重要胺基酸比對……………….….....…..………………..… 12
圖6 : 傳導元之結構及比較…………….....…..…………….………………..…… 14
圖7 : 菌體泳動分析……………………….....…..……………….…….….……… 17
圖8 : NpSRII傳遞避光反應的訊息路徑…………………………...……..……… 19
圖9 : 實驗流程表…………………………………..……….....…….…………..… 21
圖10 : 感覺型視紫質之間的蛋白質多序列比對…………….……....………….… 45
圖11 : HmCheR及HmHtrM之模擬結構 ……………….………………...……… 46
圖12 : SRM及其複合蛋白質之pKa測定………………….……………..…….… 47
圖13 : 原態等電聚焦電泳……………………….……………………….....….….. 48
圖14 : SRM及SRM-HtrM的氫離子傳輸能力……………….………….…..…… 49
圖15 : 顯微鏡之架設…………………………….……………………….….……... 52
圖16 : LED燈源之波譜………………………….…………….………………...… 53
圖17 : 樣品薄片…………………………….……………………….…...….……… 53
圖18 : 顯微鏡刺激光源的照射範圍……………….……………………….……… 54
圖19 : 光源刺激時間………………………….…………………………………… 55
圖20 : 光趨性影像分析………………………………………………………..…… 55
圖21 : 光趨性分析裝置架設………………….………………………….………… 56
圖22 : 照射光源的波譜……………….…………………………….……………… 57
圖23 : 偵測光源範圍……………….…………………………..……..….………… 58
圖24 : 光源限制片…………………………….…………..…………………...…… 58
圖25 : C. reinhardtii於光趨性分析裝置之分析……….…………….…..…...….… 58
圖26 : C. reinhardtii在白光下的巨觀避光現象………………….………....…..… 59
圖27 : H. salinarum 轉形株的菌落PCR…………………………………..….…… 61
圖28 : H. salinarum 轉形株之Western Blot……………….……….…..…...…..… 61
圖29 : H. salinarum 野生株及轉形株細胞膜的可見光吸收波譜…………...…… 62
圖30 : SRM 及 SRM-HtrM 於不同條件之光週期分析……………….....……… 63
圖31 : H. salinarum 野生株及轉形株型態…………………………….…..……… 64
圖32 : 嗜鹽古生菌於不同光照下之生長曲線………….…………….….…...…… 66
圖33 : 嗜鹽古生菌在顯微鏡之光趨性分析……….…………………….……....… 68
圖34 : 嗜鹽古生菌在 ELISA Reader 之光趨性測定………….……….…….…… 69
圖35 : E. coli BL21表現HmCheR …………………….………...…………..…..… 75
圖36 : E. coli BL21小量表現GST嵌合蛋白質…………….…...………….…..… 75









附圖目錄

附圖1 : 光照培養箱之設計……………………………………….….…..….….… 83
附圖2 : H. salinarum 的趨氧現象……………………………….………..……… 83
附圖3 : 嗜鹽古生菌於不同光照下之菌體狀況…………….………….………… 84



表目錄

表1 : 各類視紫質在四種嗜鹽古生菌中的分佈及吸收峰…………....…..…… 8
表2 : 各蛋白質長度及帶電胺基酸的占比…………………….…......……...… 44
表3 : HmSRs在不同pH值下的光週期速率………………..………………… 50
表4 : 嗜鹽古生菌於不同光照環境下之世代時間………….…….....………… 65
表5 : 單隻嗜鹽古生菌對RGB光源刺激之反應…………….……...………… 67
1.Weisburg, W.G., et al., 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 1991. 173(2): p. 697-703.
2.Lu, T., P.G. Stroot, and D.B. Oerther, Reverse transcription of 16S rRNA to monitor ribosome-synthesizing bacterial populations in the environment. Appl Environ Microbiol, 2009. 75(13): p. 4589-98.
3.Robertson, C.E., Harris, J. K., Spear, J. R. & Pace, N. R., Phylogenetic diversity and ecology of environmental Archaea. . Current opinion in microbiology, 2005. 8.
4.Capes, M.D., DasSarma, P. & DasSarma, S., The core and unique proteins of haloarchaea. Bmc Genomics, 2012. 13.
5.Lanyi, J.K., Salt-dependent Properties of Proteins from Extremely Halophilic Bacteria. Bacteriological Review, 1974. 38: p. 272-290.
6.Larsen, H., S. Omang, and H. Steensland, On the gas vacuoles of the halobacteria. Arch Mikrobiol, 1967. 59(1): p. 197-203.
7.Ginzburg, M., L. Sachs, and B.Z. Ginzburg, Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J Gen Physiol, 1970. 55(2): p. 187-207.
8.Oren, A., et al., Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol, 1990. 40(2): p. 209-10.
9.Soliman G.S.H, T.H.G., Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. 1982. I. Abt. Orig. : p. 318-329.
10.Burns, D.G., et al., Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol, 2007. 57(Pt 2): p. 387-92.
11.Stoechenius, W., Walsby’s square bacterium: fine structure of an orthogonal procaryote. journal of bacteriology, 1981. 148: p. 352-360.
12.Ng, W.V.e.a., Genome sequence of Halobacterium species NRC-1. Acad Sci USA, 2000. 97: p. 12176-81.
13.Lefkowitz, R.J., Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci, 2004. 25(8): p. 413-22.
14.Grote, M. and M.A. O''Malley, Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol Rev, 2011. 35(6): p. 1082-99.
15.Spudich J.L., S.O.A., Govorunova E.G., Mechanism divergence in microbial rhodopsins. Biochim Biophys Acta, 2014: p. 1837(5):546-52.
16.Spudich, J.L.a.J., K.-H., Microbial Rhodopsins: Phylogenetic and Functional Diversity, in Handbook of Photosensory Receptors. 2005: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
17.G Kuan, M.H.S.J., Phylogenetic relationships among bacteriorhodopsins. Res. Microbiol., 1994: p. 273–285.
18.Matsuno-Yagi, A. and Y. Mukohata, Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun, 1977. 78(1): p. 237-43.
19.Inoue, K., et al., A light-driven sodium ion pump in marine bacteria. Nat Commun, 2013. 4: p. 1678.
20.Kim, S.Y., et al., A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Mol Microbiol, 2014. 93(3): p. 403-14.
21.Vogeley, L., et al., Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A. Science, 2004. 306(5700): p. 1390-3.
22.Lorenz-Fonfria, V.A., et al., Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc Natl Acad Sci U S A, 2013. 110(14): p. E1273-81.
23.Nagel, G., et al., Channelrhodopsin-1: a light-gated proton channel in green algae. Science, 2002. 296(5577): p. 2395-8.
24.Bieszke, J.A., et al., The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A, 1999. 96(14): p. 8034-9.
25.Fan, Y., L. Shi, and L.S. Brown, Structural basis of diversification of fungal retinal proteins probed by site-directed mutagenesis of Leptosphaeria rhodopsin. FEBS Lett, 2007. 581(13): p. 2557-61.
26.Zhai, Y., et al., Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim Biophys Acta, 2001. 1511(2): p. 206-23.
27.Saranak, J. and K.W. Foster, Rhodopsin guides fungal phototaxis. Nature, 1997. 387(6632): p. 465-6.
28.Lynch, E.e.a., Sequencing of seven haloarchaeal genomes reveals patterns of genomic flux. PLoS One, 2012. 7.
29.Sudo, Y., et al., A Microbial Rhodopsin with a Unique Retinal Composition Shows Both Sensory Rhodopsin II and Bacteriorhodopsin-like Properties. Journal of Biological Chemistry, 2011. 286(8): p. 5967-5976.
30.Nakao, Y., et al., Photochemistry of a putative new class of sensory rhodopsin (SRIII) coded by xop2 of Haloarcular marismortui. J Photochem Photobiol B, 2011. 102(1): p. 45-54.
31.Hsu-Yuan Fu, Y.-C.L., Yung-Ning Chang, Hsiaochu Tseng, Ching-Che Huang, Kang-Cheng Liu, Ching-Shin Huang, Che-Wei Su, Rueyhung Roc Weng, Yin-Yu Lee, Wailap Victor Ng, and Chii-Shen Yang., A Novel Six-Rhodopsin System in a Single Archaeon. journal of bacteriology, 2010. 192: p. 5866-5873.
32.Baliga, N.S.e.a., Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res, 2004. 14: p. 2221-34.
33.Oesterhelt, D., Bacteriorhodopsin as an Example of a Light-Driven Proton Pump. Angewandte Chemie-International Edition in English, 1976. 15(1): p. 17-24.
34.Oesterhelt, D. and W. Stoeckenius, Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol, 1971. 233(39): p. 149-52.
35.Hartmann, R., H.D. Sickinger, and D. Oesterhelt, Quantitative aspects of energy conversion in halobacteria. FEBS Lett, 1977. 82(1): p. 1-6.
36.Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P. & Landau, E.M., X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipid cubic phases. Science, 1997. 277: p. 1676-81.
37.Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P. & Lanyi, J.K., Strucutre of bacteriorhodopsin at 1.55 A resolution. journal of molecular biology, 1999. 291: p. 899-911.
38.Sharma, A.K., J.L. Spudich, and W.F. Doolittle, Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol, 2006. 14(11): p. 463-9.
39.Xiao-Ru Chen, Y.-C.H., Hsiu-Ping Yi, Chii-Shen Yang, Chii-Shen Yang, A Unique Light-Driven Proton Transportation Signal in Halorhodopsin from Natronomonas pharaonis Biophysical journal, 2016. 111: p. 2600-2607.
40.Pfisterer, C., Gruia, A. & Fishcer, S. , The mechanism of photo-energy storage in the halorhodopsin chloride pump. journal of Biological Chemistry, 2009. 284: p. 13562-13569.
41.Ishchenko, A., et al., New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Sci Rep, 2017. 7: p. 41811.
42.Mccain, D.A., et al., Phototactic Responses Mediated by Sr-I in H-Halobium Reconstituted with All-Trans Retinal and a Series of Ring Desmethyl and Acyclic Analogs. Biophysical Journal, 1987. 51(2): p. A138-A138.
43.Chizhov, I., et al., The photophobic receptor from Natronobacterium pharaonis: Temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophysical Journal, 1998. 75(2): p. 999-1009.
44.Radu, I., et al., Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. Biophysical Chemistry, 2010. 150(1-3): p. 23-28.
45.Gordeliy, V., Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M., Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex. Nature, 2002. 3: p. 484-7.
46.Orekhov, P., et al., Sensory Rhodopsin I and Sensory Rhodopsin II Form Trimers of Dimers in Complex with their Cognate Transducers. Photochem Photobiol, 2017. 93(3): p. 796-804.
47.Stenrup, M., et al., pH-Dependent absorption spectrum of a protein: a minimal electrostatic model of Anabaena sensory rhodopsin. Physical Chemistry Chemical Physics, 2017. 21: p. 14073-14084.
48.Jun Tamogami, K.I., Atsushi Matsuyamaa, Takashi Kikukawab, Makoto Demurab, Toshifumi Naraa, Naoki Kamoa, The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis. Journal of Photochemistry and Photobiology, 2014. 141(192-201).
49.Hoffmann, M., et al., Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc, 2006. 128(33): p. 10808-18.
50.Hayashi, S., E. Tajkhorshid, and K. Schulten, Structural determinants of spectral tuning in the rhodopsin family of proteins. Biophysical Journal, 2002. 82(1): p. 226a-226a.
51.Luecke, H., et al., Crystal structure of sensory rhodopsin II at 2.4 angstroms: Insights into color tuning and transducer interaction. Science, 2001. 293(5534): p. 1499-1503.
52.Kuschmitz, D. and B. Hess, Coupling of Proton and Cycle and Photocycle in Bacterio-Rhodopsin. Hoppe-Seylers Zeitschrift Fur Physiologische Chemie, 1977. 358(11): p. 1383-1384.
53.Essen, L.-O., Halorhodopsin: light-driven ion pumping made simple? Current opinion in structural biology, 2002. 12: p. 516-522.
54.Szundi, I., T.E. Swartz, and R.A. Bogomolni, Multicolored protein conformation states in the photocycle of transducer-free sensory rhodopsin-I. Biophysical Journal, 2001. 80(1): p. 469-479.
55.Ohtani, H., T. Kobayashi, and M. Tsuda, Branching Photocycle of Sensory Rhodopsin in Halobacterium-Halobium. Biophysical Journal, 1988. 53(4): p. 493-496.
56.Sasaki, J. and J.L. Spudich, The transducer protein HtrII modulates the lifetimes of sensory rhodopsin II photointermediates. Biophysical Journal, 1998. 75(5): p. 2435-2440.
57.Sasaki, J.e.a., Different dark conformations function in color-sensitive photosignaling by the snesory rhodopsin I-HtrI complex. Biophysical journal, 2007. 92: p. 4045-53.
58.Zhang XN, Z.J., Spudich JL., The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices. Proc Natl Acad Sci U S A, 1999. 96: p. 857-62.
59.Sasaki, J. and J.L. Spudich, Proton transport by sensory rhodopsins and its modulation by transducer-binding. Biochimica Et Biophysica Acta-Bioenergetics, 2000. 1460(1): p. 230-239.
60.Sasaki, J. and J.L. Spudich, Proton circulation during the photocycle of sensory rhodopsin II. Biophysical Journal, 1999. 77(4): p. 2145-2152.
61.Rath, P., et al., Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. Biochemistry, 1996. 35(21): p. 6690-6696.
62.Bogomolni, R.A., et al., Removal of Transducer Htri Allows Electrogenic Proton Translocation by Sensory Rhodopsin-I. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(21): p. 10188-10192.
63.Zhang, X.N. and J.L. Spudich, HtrI is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I. Journal of Biological Chemistry, 1998. 273(31): p. 19722-19728.
64.Engelhard, M., B. Scharf, and F. Siebert, Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. Febs Letters, 1996. 395(2-3): p. 195-198.
65.Spudich, J.L., Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins. Molecular Microbiology, 1998. 28(6): p. 1051-1058.
66.Elena N. Spudich, G.O., Eric V. Schow, , Douglas J. Tobias, , John L. Spudich, Hartmut Luecke, A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å. journal of molecular biology, 2012. 415: p. 455-463.
67.Johann P Klarea, V.I.G., Jörg Labahnb, Georg Büldtb, Heinz-Jürgen Steinhoffc, Martin Engelharda, The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. SFEBS Letters, 2004. 564: p. 219-224.
68.Mizuno M, S.Y., Homma M, Mizutani Y, Direct Observation of the Structural Change of Tyr174 in the Primary Reaction of Sensory Rhodopsin. Biochemistry, 2011. 50: p. 3170-80.
69.Johann P Klarea, V.I.G., Jörg Labahnb, Georg Büldtb, Heinz-Jürgen Steinhoffc, Martin Engelharda, The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. SFEBS Letters, 2004. 564: p. 219-224.
70.Inoue, K., T. Tsukamoto, and Y. Sudo, Molecular and evolutionary aspects of microbial sensory rhodopsins. Biochimica Et Biophysica Acta-Bioenergetics, 2014. 1837(5): p. 562-577.
71.Ernst, O.e.a., Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chemical reviews, 2014. 114: p. 126-163.
72.Sasaki, J.e.a., Conversion of bacteriorhodopsin into a chloride pump Science, 1995. 269: p. 73-75.
73.Havelka, W., Henderson, R. & Oesterhelt, D., Three-dimensional structure of halorhodopsin at 7 A resolution. journal of molecular biology, 1995. 247: p. 726-738.
74.Váró G, B.L., Needleman R, Lanyi JK., Proton transport by halorhodopsin. Biochemistry., 1996. 35: p. 6604-11.
75.Jun Tamogami, K.I., Atsushi Matsuyamaa, Takashi Kikukawab, Makoto Demurab, Toshifumi Naraa, Naoki Kamoa, The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis. Journal of Photochemistry and Photobiology 2014. 141(192-201).
76.Spudich, Y.S.a.J.L., Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Proc Natl Acad Sci U S A, 2006. 103: p. 16129–16134.
77.Krah M, M.W., Oesterhelt D., A cytoplasmic domain is required for the functional interaction of SRI and HtrI in archaeal signal transduction. FEBS Letters, 1994. 353: p. 301-4.
78.Trivedi VD, S.J., Photostimulation of a Sensory Rhodopsin II/HtrII/Tsr Fusion Chimera Activates CheA-Autophosphorylation and CheY-Phosphotransfer in Vitro. Biochemistry, 2003. 42: p. 13887-92.
79.Royant A, N.P., Edman K, Neutze R, Landau EM, Pebay-Peyroula E, Navarro J., X-ray structure of sensory rhodopsin II at 2.1-Å resolution. Proc Natl Acad Sci U S A, 2001. 98: p. 10131-6.
80.Klare JP, B.E., Engelhard M, Steinhoff HJ., Sensory rhodopsin II and bacteriorhodopsin: Light activated helix F movement. Photochem Photobiol Sci, 2004. 3: p. 543-7.
81.Orekhov PS, K.D., Mulkidjanian AY, Shaitan KV, Engelhard M, Klare JP, Steinhoff HJ., Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Comput Biol, 2015. 11.
82.Spudich, J.L. and R.A. Bogomolni, Mechanism of Color Discrimination by a Bacterial Sensory Rhodopsin. Nature, 1984. 312(5994): p. 509-513.
83.Cappuccino JG, S.N., Microbiolog A Laboraory Manual; Experiment 20 : The Bacterial Growth Curve. 9th ed. p.139-142. 2011, San Francisco, USA: PEARSON.
84.Stoeckenius, W., E.K. Wolff, and B. Hess, A rapid population method for action spectra applied to Halobacterium halobium. J Bacteriol, 1988. 170(6): p. 2790-2795.
85.Lin, Y.C., H.Y. Fu, and C.S. Yang, Phototaxis of Haloarcula marismortui revealed through a novel microbial motion analysis algorithm. Photochem Photobiol, 2010. 86(5): p. 1084-1090.
86.Shahmohammadi, H.R., et al., Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res, 1998. 39(4): p. 251-262.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top