|
1.Weisburg, W.G., et al., 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 1991. 173(2): p. 697-703. 2.Lu, T., P.G. Stroot, and D.B. Oerther, Reverse transcription of 16S rRNA to monitor ribosome-synthesizing bacterial populations in the environment. Appl Environ Microbiol, 2009. 75(13): p. 4589-98. 3.Robertson, C.E., Harris, J. K., Spear, J. R. & Pace, N. R., Phylogenetic diversity and ecology of environmental Archaea. . Current opinion in microbiology, 2005. 8. 4.Capes, M.D., DasSarma, P. & DasSarma, S., The core and unique proteins of haloarchaea. Bmc Genomics, 2012. 13. 5.Lanyi, J.K., Salt-dependent Properties of Proteins from Extremely Halophilic Bacteria. Bacteriological Review, 1974. 38: p. 272-290. 6.Larsen, H., S. Omang, and H. Steensland, On the gas vacuoles of the halobacteria. Arch Mikrobiol, 1967. 59(1): p. 197-203. 7.Ginzburg, M., L. Sachs, and B.Z. Ginzburg, Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J Gen Physiol, 1970. 55(2): p. 187-207. 8.Oren, A., et al., Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol, 1990. 40(2): p. 209-10. 9.Soliman G.S.H, T.H.G., Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. 1982. I. Abt. Orig. : p. 318-329. 10.Burns, D.G., et al., Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol, 2007. 57(Pt 2): p. 387-92. 11.Stoechenius, W., Walsby’s square bacterium: fine structure of an orthogonal procaryote. journal of bacteriology, 1981. 148: p. 352-360. 12.Ng, W.V.e.a., Genome sequence of Halobacterium species NRC-1. Acad Sci USA, 2000. 97: p. 12176-81. 13.Lefkowitz, R.J., Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci, 2004. 25(8): p. 413-22. 14.Grote, M. and M.A. O''Malley, Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol Rev, 2011. 35(6): p. 1082-99. 15.Spudich J.L., S.O.A., Govorunova E.G., Mechanism divergence in microbial rhodopsins. Biochim Biophys Acta, 2014: p. 1837(5):546-52. 16.Spudich, J.L.a.J., K.-H., Microbial Rhodopsins: Phylogenetic and Functional Diversity, in Handbook of Photosensory Receptors. 2005: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 17.G Kuan, M.H.S.J., Phylogenetic relationships among bacteriorhodopsins. Res. Microbiol., 1994: p. 273–285. 18.Matsuno-Yagi, A. and Y. Mukohata, Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun, 1977. 78(1): p. 237-43. 19.Inoue, K., et al., A light-driven sodium ion pump in marine bacteria. Nat Commun, 2013. 4: p. 1678. 20.Kim, S.Y., et al., A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Mol Microbiol, 2014. 93(3): p. 403-14. 21.Vogeley, L., et al., Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A. Science, 2004. 306(5700): p. 1390-3. 22.Lorenz-Fonfria, V.A., et al., Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc Natl Acad Sci U S A, 2013. 110(14): p. E1273-81. 23.Nagel, G., et al., Channelrhodopsin-1: a light-gated proton channel in green algae. Science, 2002. 296(5577): p. 2395-8. 24.Bieszke, J.A., et al., The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A, 1999. 96(14): p. 8034-9. 25.Fan, Y., L. Shi, and L.S. Brown, Structural basis of diversification of fungal retinal proteins probed by site-directed mutagenesis of Leptosphaeria rhodopsin. FEBS Lett, 2007. 581(13): p. 2557-61. 26.Zhai, Y., et al., Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim Biophys Acta, 2001. 1511(2): p. 206-23. 27.Saranak, J. and K.W. Foster, Rhodopsin guides fungal phototaxis. Nature, 1997. 387(6632): p. 465-6. 28.Lynch, E.e.a., Sequencing of seven haloarchaeal genomes reveals patterns of genomic flux. PLoS One, 2012. 7. 29.Sudo, Y., et al., A Microbial Rhodopsin with a Unique Retinal Composition Shows Both Sensory Rhodopsin II and Bacteriorhodopsin-like Properties. Journal of Biological Chemistry, 2011. 286(8): p. 5967-5976. 30.Nakao, Y., et al., Photochemistry of a putative new class of sensory rhodopsin (SRIII) coded by xop2 of Haloarcular marismortui. J Photochem Photobiol B, 2011. 102(1): p. 45-54. 31.Hsu-Yuan Fu, Y.-C.L., Yung-Ning Chang, Hsiaochu Tseng, Ching-Che Huang, Kang-Cheng Liu, Ching-Shin Huang, Che-Wei Su, Rueyhung Roc Weng, Yin-Yu Lee, Wailap Victor Ng, and Chii-Shen Yang., A Novel Six-Rhodopsin System in a Single Archaeon. journal of bacteriology, 2010. 192: p. 5866-5873. 32.Baliga, N.S.e.a., Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res, 2004. 14: p. 2221-34. 33.Oesterhelt, D., Bacteriorhodopsin as an Example of a Light-Driven Proton Pump. Angewandte Chemie-International Edition in English, 1976. 15(1): p. 17-24. 34.Oesterhelt, D. and W. Stoeckenius, Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol, 1971. 233(39): p. 149-52. 35.Hartmann, R., H.D. Sickinger, and D. Oesterhelt, Quantitative aspects of energy conversion in halobacteria. FEBS Lett, 1977. 82(1): p. 1-6. 36.Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P. & Landau, E.M., X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipid cubic phases. Science, 1997. 277: p. 1676-81. 37.Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P. & Lanyi, J.K., Strucutre of bacteriorhodopsin at 1.55 A resolution. journal of molecular biology, 1999. 291: p. 899-911. 38.Sharma, A.K., J.L. Spudich, and W.F. Doolittle, Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol, 2006. 14(11): p. 463-9. 39.Xiao-Ru Chen, Y.-C.H., Hsiu-Ping Yi, Chii-Shen Yang, Chii-Shen Yang, A Unique Light-Driven Proton Transportation Signal in Halorhodopsin from Natronomonas pharaonis Biophysical journal, 2016. 111: p. 2600-2607. 40.Pfisterer, C., Gruia, A. & Fishcer, S. , The mechanism of photo-energy storage in the halorhodopsin chloride pump. journal of Biological Chemistry, 2009. 284: p. 13562-13569. 41.Ishchenko, A., et al., New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Sci Rep, 2017. 7: p. 41811. 42.Mccain, D.A., et al., Phototactic Responses Mediated by Sr-I in H-Halobium Reconstituted with All-Trans Retinal and a Series of Ring Desmethyl and Acyclic Analogs. Biophysical Journal, 1987. 51(2): p. A138-A138. 43.Chizhov, I., et al., The photophobic receptor from Natronobacterium pharaonis: Temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophysical Journal, 1998. 75(2): p. 999-1009. 44.Radu, I., et al., Signal relay from sensory rhodopsin I to the cognate transducer HtrI: Assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. Biophysical Chemistry, 2010. 150(1-3): p. 23-28. 45.Gordeliy, V., Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M., Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex. Nature, 2002. 3: p. 484-7. 46.Orekhov, P., et al., Sensory Rhodopsin I and Sensory Rhodopsin II Form Trimers of Dimers in Complex with their Cognate Transducers. Photochem Photobiol, 2017. 93(3): p. 796-804. 47.Stenrup, M., et al., pH-Dependent absorption spectrum of a protein: a minimal electrostatic model of Anabaena sensory rhodopsin. Physical Chemistry Chemical Physics, 2017. 21: p. 14073-14084. 48.Jun Tamogami, K.I., Atsushi Matsuyamaa, Takashi Kikukawab, Makoto Demurab, Toshifumi Naraa, Naoki Kamoa, The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis. Journal of Photochemistry and Photobiology, 2014. 141(192-201). 49.Hoffmann, M., et al., Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc, 2006. 128(33): p. 10808-18. 50.Hayashi, S., E. Tajkhorshid, and K. Schulten, Structural determinants of spectral tuning in the rhodopsin family of proteins. Biophysical Journal, 2002. 82(1): p. 226a-226a. 51.Luecke, H., et al., Crystal structure of sensory rhodopsin II at 2.4 angstroms: Insights into color tuning and transducer interaction. Science, 2001. 293(5534): p. 1499-1503. 52.Kuschmitz, D. and B. Hess, Coupling of Proton and Cycle and Photocycle in Bacterio-Rhodopsin. Hoppe-Seylers Zeitschrift Fur Physiologische Chemie, 1977. 358(11): p. 1383-1384. 53.Essen, L.-O., Halorhodopsin: light-driven ion pumping made simple? Current opinion in structural biology, 2002. 12: p. 516-522. 54.Szundi, I., T.E. Swartz, and R.A. Bogomolni, Multicolored protein conformation states in the photocycle of transducer-free sensory rhodopsin-I. Biophysical Journal, 2001. 80(1): p. 469-479. 55.Ohtani, H., T. Kobayashi, and M. Tsuda, Branching Photocycle of Sensory Rhodopsin in Halobacterium-Halobium. Biophysical Journal, 1988. 53(4): p. 493-496. 56.Sasaki, J. and J.L. Spudich, The transducer protein HtrII modulates the lifetimes of sensory rhodopsin II photointermediates. Biophysical Journal, 1998. 75(5): p. 2435-2440. 57.Sasaki, J.e.a., Different dark conformations function in color-sensitive photosignaling by the snesory rhodopsin I-HtrI complex. Biophysical journal, 2007. 92: p. 4045-53. 58.Zhang XN, Z.J., Spudich JL., The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices. Proc Natl Acad Sci U S A, 1999. 96: p. 857-62. 59.Sasaki, J. and J.L. Spudich, Proton transport by sensory rhodopsins and its modulation by transducer-binding. Biochimica Et Biophysica Acta-Bioenergetics, 2000. 1460(1): p. 230-239. 60.Sasaki, J. and J.L. Spudich, Proton circulation during the photocycle of sensory rhodopsin II. Biophysical Journal, 1999. 77(4): p. 2145-2152. 61.Rath, P., et al., Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. Biochemistry, 1996. 35(21): p. 6690-6696. 62.Bogomolni, R.A., et al., Removal of Transducer Htri Allows Electrogenic Proton Translocation by Sensory Rhodopsin-I. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(21): p. 10188-10192. 63.Zhang, X.N. and J.L. Spudich, HtrI is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I. Journal of Biological Chemistry, 1998. 273(31): p. 19722-19728. 64.Engelhard, M., B. Scharf, and F. Siebert, Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. Febs Letters, 1996. 395(2-3): p. 195-198. 65.Spudich, J.L., Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins. Molecular Microbiology, 1998. 28(6): p. 1051-1058. 66.Elena N. Spudich, G.O., Eric V. Schow, , Douglas J. Tobias, , John L. Spudich, Hartmut Luecke, A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å. journal of molecular biology, 2012. 415: p. 455-463. 67.Johann P Klarea, V.I.G., Jörg Labahnb, Georg Büldtb, Heinz-Jürgen Steinhoffc, Martin Engelharda, The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. SFEBS Letters, 2004. 564: p. 219-224. 68.Mizuno M, S.Y., Homma M, Mizutani Y, Direct Observation of the Structural Change of Tyr174 in the Primary Reaction of Sensory Rhodopsin. Biochemistry, 2011. 50: p. 3170-80. 69.Johann P Klarea, V.I.G., Jörg Labahnb, Georg Büldtb, Heinz-Jürgen Steinhoffc, Martin Engelharda, The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. SFEBS Letters, 2004. 564: p. 219-224. 70.Inoue, K., T. Tsukamoto, and Y. Sudo, Molecular and evolutionary aspects of microbial sensory rhodopsins. Biochimica Et Biophysica Acta-Bioenergetics, 2014. 1837(5): p. 562-577. 71.Ernst, O.e.a., Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chemical reviews, 2014. 114: p. 126-163. 72.Sasaki, J.e.a., Conversion of bacteriorhodopsin into a chloride pump Science, 1995. 269: p. 73-75. 73.Havelka, W., Henderson, R. & Oesterhelt, D., Three-dimensional structure of halorhodopsin at 7 A resolution. journal of molecular biology, 1995. 247: p. 726-738. 74.Váró G, B.L., Needleman R, Lanyi JK., Proton transport by halorhodopsin. Biochemistry., 1996. 35: p. 6604-11. 75.Jun Tamogami, K.I., Atsushi Matsuyamaa, Takashi Kikukawab, Makoto Demurab, Toshifumi Naraa, Naoki Kamoa, The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis. Journal of Photochemistry and Photobiology 2014. 141(192-201). 76.Spudich, Y.S.a.J.L., Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Proc Natl Acad Sci U S A, 2006. 103: p. 16129–16134. 77.Krah M, M.W., Oesterhelt D., A cytoplasmic domain is required for the functional interaction of SRI and HtrI in archaeal signal transduction. FEBS Letters, 1994. 353: p. 301-4. 78.Trivedi VD, S.J., Photostimulation of a Sensory Rhodopsin II/HtrII/Tsr Fusion Chimera Activates CheA-Autophosphorylation and CheY-Phosphotransfer in Vitro. Biochemistry, 2003. 42: p. 13887-92. 79.Royant A, N.P., Edman K, Neutze R, Landau EM, Pebay-Peyroula E, Navarro J., X-ray structure of sensory rhodopsin II at 2.1-Å resolution. Proc Natl Acad Sci U S A, 2001. 98: p. 10131-6. 80.Klare JP, B.E., Engelhard M, Steinhoff HJ., Sensory rhodopsin II and bacteriorhodopsin: Light activated helix F movement. Photochem Photobiol Sci, 2004. 3: p. 543-7. 81.Orekhov PS, K.D., Mulkidjanian AY, Shaitan KV, Engelhard M, Klare JP, Steinhoff HJ., Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Comput Biol, 2015. 11. 82.Spudich, J.L. and R.A. Bogomolni, Mechanism of Color Discrimination by a Bacterial Sensory Rhodopsin. Nature, 1984. 312(5994): p. 509-513. 83.Cappuccino JG, S.N., Microbiolog A Laboraory Manual; Experiment 20 : The Bacterial Growth Curve. 9th ed. p.139-142. 2011, San Francisco, USA: PEARSON. 84.Stoeckenius, W., E.K. Wolff, and B. Hess, A rapid population method for action spectra applied to Halobacterium halobium. J Bacteriol, 1988. 170(6): p. 2790-2795. 85.Lin, Y.C., H.Y. Fu, and C.S. Yang, Phototaxis of Haloarcula marismortui revealed through a novel microbial motion analysis algorithm. Photochem Photobiol, 2010. 86(5): p. 1084-1090. 86.Shahmohammadi, H.R., et al., Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res, 1998. 39(4): p. 251-262.
|