跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張慧潔
研究生(外文):Huey-Jie Teoh
論文名稱:紅麴萃取物 Ankascin 568-R 對腫瘤重量及化療副作用之改善效果
論文名稱(外文):The effect of Monascus extract Ankascin 568-R on tumor weight and the side effects of chemotherapy
指導教授:潘子明 名譽教授
口試委員:王志傑 教授邱秋霞 教授蔡宗佑 副教授林志輝 助理教授許力川 博士
口試日期:2017-05-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:83
中文關鍵詞:紅麴結直腸癌化學療法副作用腫瘤
外文關鍵詞:Monascuscolorectal cancerchemotherapyside effectstumor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:700
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
化學療法為有效的的癌症治療方法之一。然而,由於化學療法之抗腫瘤效果為非特 異性效果,所以除了抑制癌細胞的生長,也會給正常細胞帶來傷害。因此,化學療法會造 成一些嚴重的副作用如:食慾不好、體重減少、骨髓抑制、免疫抑制以及貧血等副作用。 這些由化學療法所造成的副作用會嚴重影響病人的生活品質甚至導致死亡。因此,如何降 低化學療法所造成的副作用成為近年來備受矚目的研究議題。紅麴 (Monascus) 在中國、 日本及東南亞國家為具有千年使用歷史的傳統食物添加劑。在過去的研究中,紅麴發酵產 物被證實具有改善高脂血症、抗發炎、抑制癌症及降低放射線治療副作用等功效。本篇研 究使用 5-fluorouracil (5 FU) 合併 oxaliplatin (為目前用於治療晚期結直腸癌之一線化療藥 物)作為皮下誘導 CT26 大腸癌小鼠產生化學療法副作用之誘導藥物。在給予化療藥物誘 導副作用的同時,給予 10 天治療組別小鼠紅麴發酵山藥萃取物 Ankascin 568-R 以探討其 對化療副作用之改善效果。結果顯示,腹腔注射總劑量 100 mg/kg BW 5 FU 合併 3 mg/kg BW oxaliplatin 可成功誘導小鼠產生食慾減退、體重減少、骨髓細胞減少、骨髓形成血球 前驅細胞能力 (colony-forming unit-granulocyte macrophage, CFU-GM 和 colony-forming unit- erythrocyte, CFU-E) 降低、骨髓白血球系列細胞減少及骨髓紅血球系列細胞成熟反應抑制。 此外,化療處理也會造成血液循環中的血球減少,證明化療藥物的施打的確會造成骨髓抑 制、免疫抑制及貧血。在給予小鼠管餵 Ankascin 568-R 後,上述之化療副作用都可得到改 善。除此之外, 本研究也發現給予管餵 500 mg/kg BW Ankascin 568-R 之實驗組與單純給 予化療之組別相比,其腫瘤重量具有顯著下降之情形,顯示 Ankascin 568-R 在腫瘤抑制具 有協同效果。為瞭解 Ankascin 568-R 改善效果的可能機制,我們進行了骨髓細胞週期及脾 臟生長因子 interleukin-1b (IL-1b)、interleukin-6 (IL-6)、interleukin-3 (IL-3) 及 granulocyte colony-stimulating factor (GM-CSF) 之分析。結果發現, Ankascin 568-R 可改善骨髓中因化 療所造成的細胞週期 S 期停滯並且具有提升脾臟中 IL-1b、IL-6、IL-3 及 GM-CSF 濃度之 功效。本研究顯示 Ankascin 568-R 具有進一步開發作為改善化療副作用之食品補充劑或藥物之潛力。
Chemotherapy is one of the effective treatments for cancer. However, it not only inhibits the growth of cancer cells but also brings damage to normal cells due to its non-specific effect. Therefore, severe adverse effects such as poor appetite, body weight reduction, myelosuppression, immunosuppression, anemia, etc. would be resulted. Those side effects of chemotherapy can seriously affect the life quality, and even the mortality of patients. Thence, studies in the reduction of chemotherapeutic side effect became an interesting topic in recent years. Monascus is a traditional food additive that is widely used in China, Japan, and other South East Asia countries for thousands of years. Its fermented products have been proved for their advantages in hypolipidemia, anti-inflammation, cancer suppression, radiotherapeutics’ side effects reduction and other benefits. In this study, 5-fluorouracil (5 FU) with the combination of oxaliplatin (the first-line treatment for advanced colorectal cancer) has been used as the inducer of chemotherapeutic side effects in CT26 colorectal cancer subcutaneously induced mice. Ankascin 568-R, the extract of Monascus fermented dioscorea was fed to the targeted groups of mice for 10 days concurrently in order to evaluate the effect on chemotherapeutic side effects. The results showed intraperitoneal (i.p.) injection of a total dosage 100 mg/kg BW 5 FU and 3 mg/kg BW oxaliplatin could induce chemotherapeutic side effects such as poor appetite and body weight reduction in chemotherapy only group. Moreover, the cellularity, colony-forming unit-granulocyte macrophage (CFU-GM), colony-forming unit-erythrocyte (CFU-E), and leukocytes lineage cells, erythroid lineage cells maturation in bone marrow was down regulated, and additionally the circulating blood cells reduction were found in chemotherapy only group indicated the causes of myelosuppression, immunosuppression, and anemia by chemotherapy. The oral administration of Ankascin 568-R limited those side effects of chemotherapy. In addition, the synergetic effect of Ankascin 568-R on cancer suppression was also shown in the results while 500 mg/kg BW oral administration of Ankascin 568-R can significantly reduce tumor weight comparing to chemotherapy only group. To understand the possible mechanism of the effects of Ankascin 568- R, we underwent the cell cycle assessment in bone marrow and colony stimulating factors (IL-1b, IL-6, IL-3, and GM-CSF) in spleen. Those results showed Ankascin 568-R could ameliorate the S phase cell cycle arrest by chemotherapy in bone marrow and upregulated the level of IL-1b, IL-6, IL-3 and GM-CSF in spleen. This study indicated Ankascin 568-R would possibly be a favorable candidate in food supplement or drug development for chemotherapeutic side effects moderation.
Contents

謝誌………………………………………………………………………………………I
Abbreviations……………………………………………………………………………III
中文摘要…………………………………………………………………………………VI
Abstract………………………………………………………………………………….VIII
Contents………………………………………………………………………………….X
Figure contents…………………………………………………………………………..XIII
Table contents…………………………………………………………………………...XV
Chapter I. Introduction…………………………………………………………………1
1. The origin of Monascus……………………………………………………………..1
2. Solid substrate fermentation of red mold rice……………………………………….1
3. Secondary metabolites of Monascus and their uses…………………………………1
4. Studies on Monascus purpureus NTU 568 fermented products……………….2
4-1. Effects on hyperlipidemia …………………………………………………….2
4-2. Effects on diabetes ……………………………………………………………3
4-3. Effects on Alzheimer’s disease ……………………………………………….4
4-4. Effects on fatigue ……………………………………………………………..5
4-5. Effects on immunomodulation………………………………………………..5
4-6. Effects on depression………………………………………………………….6
4-7. Effects on cancer………………………………………………………………6
4-8. Effects on side effect of radiotherapy ………………………………………...7
5. Ankascin 568-R……………………………………………………………………...7
6. Chemotherapeutic drugs and their mechanism on tumor suppression…………........8
6-1. 5-Fluorouracil (5 FU)………………………………………………………….8
6-2. Oxaliplatin ……………………………………………………………………11
6-3. The combination of 5 FU and oxaliplatin ……………………………………11
7. The side effects of chemotherapy……………………………………………………14
7-1. Body weight loss ……………………………………………………………...14
7-2. Fatigue………………………………………….……………………………..14
7-3. Myelosuppression …………………………………………………………….14
7-3-1. Cell cycle effect………………………………………………………..15
7-3-2. Hematopoietic cells production effect ………………………………..17
7-3-3. Hematopoietic growth factors ………….……………………………..19
7-4. Liver and kidney pathologic effect……….…………………………………...19
Chapter II. Study aim and experimental architecture ……………………………….22
1. The aim of study……………………………………………………………………..22
2. The flow chart of experiment………………………………………………………..22
Chapter III. Materials and methods…………………………………………………...25
1. Reagents……………………………………………………………………………..25
2. Instruments…………………………………………………………………………..25
3. Solution preparation…………………………………………………………………26
3-1. Phosphate buffer saline (PBS)………………………………………………...26
3-2. Iscove’s Modified Dulbecco’s medium (IMDM)……………………………..26
3-3. Chemotherapeutic agents ……………………………………………………..27
4. Cell culture…………………………………………………………………………..27
5. Animal experiment……………………………...…………………………………...27
5-1. Animal feeding………………………………………………………………..27
5-2. Experiment design…………………………………………………………….28
5-3. Colon cancer subcutaneous induction………………………………………....28
5-4. Chemotherapy side effects induction…………………………………………31
5-5. Sample intervention…………………………………………………………..31
6. Blood sampling…………………………………………………………..………….31
7. Animal sacrifice…………………………………………………………..…………32
8. Bone marrow cell count…………………………………………………………..…32
9. Colony-forming unit-granulocyte, macrophage (CFU-GM) ……………………..…32
10. Colony-forming unit-erythroid (CFU-E) ………………………………………..….33
11. Flow cytometry analysis of CD45, CD71 and TER119…………………………..…33
12. Complete blood count (CBC) test………………………………………..………….33
13. Histopathological analysis………………………………………..………………….34
14. Tumor weight………………………………………..……………………………34
15. Cell cycle……………………………………….……………………………………34
16. Cytokines……………………………………….……………………………………36
17. Statistical analysis……………………………………….…………………………..36
Chapter IV. Results…………………………………………………...………...………37
1. The effect of Ankascin 568-R on body weight ……………………………………..37
2. The effect of Ankascin 568-R on food intake……………………………………….37
3. The effect of Ankascin 568-R on cell count in bone marrow……………………….37
4. The effect of Ankascin 568-R on colony forming units-granulocyte/macrophage and colony forming units-erythrocyte in bone marrow……………………….…….……41
5. The effect of Ankascin 568-R on leukocytes lineage cells in bone marrow ….…….41
6. The effect of Ankascin 568-R on erythroid lineages cells maturation in bone marrow ………………………………………………...………...…………………48
7. The effect of Ankascin 568-R on white blood cell in circulation .…………………48
8. The effect of Ankascin 568-R on red blood cells and anemia index in blood ……...52
9. The effect of Ankascin 568-R on histopathological analysis of liver and kidney…...52
10. The effect of Ankascin 568-R on tumor weight………...………...…………………53
11. The effect of Ankascin 568-R on cell cycle of bone marrow…...………………….53
12. The effect of Ankascin 568-R on cytokines in spleen…...…………………...…...…57
Chapter VI. Discussion and conclusion………………………………………………..64
Chapter VII. Appendix…………………………………………………………………73
Chapter VII. References………………………………………………………………..75


Figure contents

Figure 1. Classification of chemotherapeutic drugs……………………………………...9
Figure 2. The mechanism of 5-fluorouracil on cancer suppression……………………...10
Figure 3. Mechanism of thymidylate synthase inhibited by 5-fluorouracil……………12
Figure 4. DNA adducts formed by oxaliplatin….……………………………………......13
Figure 5. Phases of cell cycle and antineoplastic agents active phase.………………16
Figure 6. Hematopoiesis of bone marrow.………………………………………………..18
Figure 7. Influence of hematopoietic growth factors on blood cell production …20
Figure 8. The framework of this study……………………………………………………23
Figure 9. The experiment design ………………….………….………….………….…...29
Figure 10. The effect of Ankascin 568-R on body weight of colon cancer mice treated with 5 FU and oxaliplatin …………….………….………….………….….....38
Figure 11. The effect of Ankascin 568-R on food intake of colon cancer mice treated with 5 FU and oxaliplatin …………………………………………………………..39
Figure 12. The effect of Ankascin 568-R on bone marrow cells in bone marrow of colon cancer mice treated with 5 FU and oxaliplatin…….…………………...............40
Figure 13. Granulocyte and macrophage colonies by bone marrow cells culture………..42
Figure 14. The effect of Ankascin 568-R on CFU-GM in bone marrow of colon cancer mice treated with 5 FU and oxaliplatin…….…………………….……………43
Figure 15. Erythrocyte colonies by bone marrow cells culture ….………………….…..44
Figure 16. The effect of Ankascin 568-R on CFU-E in bone marrow of colon cancer mice treated with 5 FU and oxaliplatin………………………………………………45
Figure 17. Leukocytes lineage cells (CD45+ cells) in bone marrow....…….......………46
Figure 18. The effect of Ankascin 568-R on leukocytes lineage cells (CD45+ cells) in bone marrow of colon cancer mice treated with 5 FU and oxaliplatin………..47
Figure 19. Erythroid lineages cells (CD71+ and TER119+ cells) in bone marrow……49
Figure 20. The effect of Ankascin 568-R on liver histology of colon cancer mice treated with 5 FU and oxaliplatin.…………………………………………………….54
Figure 21. The effect of Ankascin 568-R on kidney histology of colon cancer mice treated with 5 FU and oxaliplatin.….…………………………………………55
Figure 22. The effect of Ankascin 568-R on tumor weight of colon cancer mice treated with 5 FU and oxaliplatin….…………………………………………………..56
Figure 23. The effect of Ankascin 568-R on cell cycle of bone marrow in colon cancer mice treated with 5 FU and oxaliplatin………………………………………..58
Figure 24. The effect of Ankascin 568-R on interleukin-1 in spleen of colon cancer mice treated with 5 FU and oxaliplatin ……………………………………………...60
Figure 25. The effect of Ankascin 568-R on interleukin-6 in spleen of colon cancer mice treated with 5 FU and oxaliplatin ……………………………………………...61
Figure 26. The effect of Ankascin 568-R on interleukin-3 in spleen of colon cancer mice treated with 5 FU and oxaliplatin ……………………………………………...62
Figure 27. The effect of Ankascin 568-R on granulocyte-macrophage colony-stimulating factor in spleen of colon cancer mice treated with 5 FU and oxaliplatin …………………………………………….………………………63
Figure 28. The effect of Ankascin 568-R on tumor weight and the side effects of chemotherapy………………………………………………………..………..70


Table contents

Table 1. Contents of phosphate buffer saline…………………………………….............26
Table 2. Contents of Iscove’s Modified Dulbecco’s medium……………………............26
Table 3. Animal grouping, treatment, and sample dosages………………………………30
Table 4. Pathological nomenclature and criteria….……………………………………...35
Table 5. The effect of Ankascin 568-R on erythroid lineages cells (CD71+ and TER119+ cells) maturation in bone marrow of colon cancer mice treated with 5 FU and oxaliplatin ……………………………………………………………................50
Table 6. The effect of Ankascin 568-R on complete blood count of colon cancer mice treated with 5 FU and oxaliplatin.………………………………………………51
Table 7. The effect of Ankascin 568-R on cell cycle in bone marrow of colon cancer mice treated with 5 FU and oxaliplatin ……………………………………………….59
Table 8. Comparison of Ankascin 568-R dose on tumor weight and chemotherapeutic side effects ……………………………………………………………………...71
Table 9. Comparison of Ankascin 568-R dose on the possible mechanism ……………..72
Table 10. Pathology – individual micro findings of mice in C, TC, and CHE group…73
Table 11. Pathology – individual micro findings of mice in RA, RB, and RC group…74
林讚峰。1983。紅麴菌的鑑定及實用分類方法。製酒科技專論彙論。5: 104-112。
林讚峰。2009。紅麴在現代生物科技上的應用。健康世界。7: 21-26。
孫基訓。2015。紅麴聚酮二次代謝產物 monascin 與 ankaflavin 之藥物動力學研究。國立臺灣大學生命科學院生化科技學系碩士論文。
黃之丞。2010。紅麴山藥酒精萃取物緩解放射線治療衍生之副作用。國立臺灣大學生命科學院生化科技學系碩士論文。
Food and Drug Administration. 2013 and 2015. consumer.fda.gov.tw/Food/InfoHealthFood.
Ministry of Health and Welfare. 2016. www.mohw.gov.tw.
National Cancer Institute. 2011. www.cancer.gov/about-cancer/treatment/types/chemotherapy.
National Cancer Institute. 2016. www.cancer.gov/about-cancer/treatment/types.
Abboud, C. N., and Lichtman, M. A. 2001. Structure of the marrow and the hematopoietic microenvironment. In Williams’ Hematology, 6th edition. 29–58.
Glezerman, I. G. and Jaimes, E. A. 2016. Chemotherapy and kidney injury. Chapter 11, Onco-Nephrology Curriculum, American Society of Nephrology. pp 1-10.
Hsu, W. H. and Pan, T. M. 2011. A Novel Adjuvant Therapeutic Material: Chemoprevention of Monascus-Fermented Product on Oral Cancer, In: Oral Cancer: Causes, Diagnosis and Treatment, Chapter IX, ISBN 978-1-61209-305-5, Editor: Michael K. Harris (Ed.), pp. 233-252, Nova Science Publishers, Inc.
Abubakar, M. B., Abdullah, W. Z., Sulaiman, S. A. and Suen, A. B. 2012. A review of molecular mechanisms of the anti-leukemic effects of phenolic compounds in honey. Int. J. Mol. Sci. 13: 15054-15073.
Arango, D., Wilson, A. J., Shi, Q., Corner, G. A., Aranes, M. J., Nicholas, C., Lesser, M., Mariadason, J. M. and Augenlicht, L. H. 2004. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br. J. Cancer. 91: 1931–1946.
Barreto, J. N., McCullough, K. B., Ice, L. L. and Smith, J. A. 2014. Antineoplastic agents and the associated myelosuppressive effects: a review. J Pharm Pract. 27: 440-446.
Belardelli, F. and Ferrantini, M. 2002. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol. 23: 201-208.
Bianco, P., Riminucci, M., Gronthos, S. and Robey, P. G. 2001. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 19:180-192.
Boulikas, T., Pantos, A., Bellis, E. and Christofis, P. 2007. Designing platinum compounds in cancer: structures and mechanisms. Cancer Ther. 5: 537-583.
Broeckel, J. A., Jacobsen, P. B., Horton, J., Balducci, L., Lyman, G. H. 1998. Characteristics and correlates of fatigue after adjuvant chripotent emotherapy for breast cancer. J Clin Oncol. 16:1689-1696.
Broxmeyer, H. E., Lu, L., E Platzer, E., Feit, C., Juliano, L. and Rubin, B. Y. 1983. Comparative analysis of the influences of human gamma, alpha and beta interferons on human multipotential (CFU-GEMM), erythroid (BFU-E) and granulocyte-macrophage (CFU-GM) progenitor cells. J Immunol. 131: 1300-1305.
Buchner T. 1994. Hematopoietic growth factors in cancer treatment. Stem Cells. 12: 241-252.
Cai, Z., Yang, J., Shu, X. and Xiong, X. 2014. Chemotherapy-associated hepatotoxicity in colorectal cancer. J BUON. 19: 350-356.
Carey, M. P. and Burish, T. G. 1988. Etiology and treatment of the psychological side effects associated with cancer chemotherapy: a critical review and discussion. Psychol. Bull. 104: 307-325.
Chabner, B. A. and Roberts, T. G. 2005. Chemotherapy and the war on cancer. Nat. Rev. Cancer. 5: 65-72.
Chang, W. T., Chuang, C. H., Lee, W. J. and Huang, C. S. 2016. Extract of Monascus purpureus CWT715 fermented from sorghum liquor biowaste inhibits migration and invasion of SK-Hep-1 human hepatocarcinoma cells. Molecules. 21, 1691; doi:10.3390/molecules21121691.
Chau, I. and Cunningham, D. 2006. Adjuvant therapy in colon cancer--what, when and how? Ann Oncol. 17:1347-1359.
Chen, C. L., Chang, K. Y. and Pan, T. M. 2016. Monascus purpureus NTU 568 fermented product improves memory and learning ability in rats with aluminum-induced Alzheimer''s disease. J Fun Food. 21: 167-177.
Chen, Y. F., Zhu, B. Z., Zhang, L., Yan, S. and Li, J. 2009. Experimental study of the bone marrow protective effect of a traditional Chinese compound preparation. Phytother. Res. 23: 823–826.
Cheng, M. J., Wu, M. D., Yang, P. S., Chen, J. J., Chen, I. S., Chen, Y. L. and Yuan, G. F. 2010. Secondary metabolites isolated from the fungus Monascus kaoliang-fermented rice. J. Chil. Chem. Soc. 55: 107-110.
Chiu, H. W., Chen, M. H., Fang, W. H., Hung, C. M., Chen, Y. L., Wu, M. D., Yuan, G. F., Wu, M. J. and Wang, Y. J. 2013. Preventive effects of Monascus on androgen-related diseases: androgenetic alopecia, benign prostatic hyperplasia, and prostate cancer. J. Agric. Food Chem. 61: 4379–4386.
Chuang, C. Y., Shi, Y. C., You, H. P., Lo Y. H. and Pan, T. M. 2011. Antidepressant effect of GABA-rich Monascus-fermented product on forced swimming rat model. J Agri Food Chem. 59: 3027-3034.
Conklin, K. A. 2000. Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr. Cancer. 37: 1-18.
Crawford, J., Dale, D. C. and Lyman, G. H. 2004. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer. 100: 228-237.
de Jong, N., Courtens, A. M., Abu-Saad, H. H. and Schouten, H. C. 2002. Fatigue in patients with breast cancer receiving adjuvant chemotherapy: a review of the literature. Cancer Nurs. 25: 283-297.
de Vries, E. G. E., de Graaj, H., Boonstra, A., van der Graaj, W. T. A. and Mulder, N. H. 1995. High-dose chemotherapy with stem cell reinfusion and growth factor support for solid tumors. Stem Cells. 13:597-606.
Decker-Baumann, C., Buhl, K., Frohmüller, S., Herbay, A. V., Dueck, M. and P.M Schlag, P. M. 1999. Reduction of chemotherapy-induced side-effects by parenteral glutamine supplementation in patients with metastatic colorectal cancer. Eur. J. Cancer. 35: 202-207.
Dikken, C. and Sitzia J. 1998. Patients'' experiences of chemotherapy: side-effects associated with 5-fluorouracil + folinic acid in the treatment of colorectal cancer. J Clin Nurs. 7: 371-379.
Feng, Y. L., Shao, Y. C. and Chen, F. S. 2012. Monascus pigments. Appl Microbiol Biotechnol. 96: 1421-1440.
Fisher, D. T., Appenheimer, M. M. and Evans, S. S. 2014. The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 26: 38-47.
Gale, R. P. 1985. Antineoplastic chemotherapy myelosuppression: mechanisms and new approaches. Exp. Hematol. 16: 3-7.
Giacchetti, S., Perpoint, B., Zidani, R., Le Bail, N., Faggiuolo, R., Focan, C., Chollet, P., Llory, J. F., Letourneau, Y., Coudert, B., Bertheaut-Cvitkovic, F., Larregain-Fournier, D., Le Rol, A., Walter, S., Adam, R., Misset, J. L. and Lévi, F. 2000. Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol. 18: 136-147.
Gustavsson, B., Carlsson, G., Machover, D., Petrelli, N., Roth, A., Schmoll, H. J., Tveit, K. M. and Gibson, F. 2015. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer. 14: 1-10.
El Hak, H. N. G., Moawad, T. I. S. and Hafez, G. A. 2015. Histological study of the effect of chemotherapy with 5-fluorouracil on normal liver and kidney of mice. IJNRLS. 2: 8-13.
Helgadottir, A., Gretarsdottir, S., Thorleifsson, G., Hjartarson, E., Sigurdsson, A., Magnusdottir, A., Jonasdottir, A., Kristjansson, H., Sulem, P., Oddsson, A., Sveinbjornsson, G., Steinthorsdottir, V., Rafnar, T., Masson, G., Jonsdottir, I., Olafsson, I., Eyjolfsson, G. I., Sigurdardottir, O., Daneshpour, M. S., Khalili, D., Azizi, F., Swinkels, D. W., Kiemeney, L., Quyyumi, A. A., Levey, A. I., Patel, R. S., Hayek, S. S., Gudmundsdottir, I. J., Thorgeirsson, G., Thorsteinsdottir, U., Gudbjartsson, D. F., Holm, H. and Stefansson K. 2016. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet. 48: 634–639.
Ho, B. Y. and Pan, T. M. 2009. The Monascus metabolite, monacolin K, reduces tumor progression and metastasis of Lewis lung carcinoma cells. J Agri Food Chem. 57: 8258-8265.
Hsu, L. C., Hsu, Y. W., Hong, C. C., and Pan, T. M. 2014. Safety and mutagenicity evaluation of red mold dioscorea fermented from Monascus purpureus NTU 568. Food and Chem Toxic 64: 161-168.
Hong, M. Y., Seeram, N. P., Zhang, Y. J., and Heber, D. 2008. Anti-cancer effects of Chinese red yeast rice beyond monacolin K alone in colon cancer cells. J Nutr Biochem. 19: 448–458.
Hsu, L. C., Hsu, Y. W., Liang, Y. H., Kuo, Y. H. and Pan, T. M. 2011a. Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone A from Monascus purpureus NTU 568. J Agri Food Chem. 59: 1124-1130.
Hsu, W. H., Lee, B. H. and Pan, T. M. 2010. Red mold dioscorea-induced G2/M arrest and apoptosis in human oral cancer cells. J Sci Food & Agri. 90: 2709-2715.
Hsu, W. H., Lee, B. H. and Pan, T. M. 2011b. Effects of red mold dioscorea on oral carcinogenesis in DMBA-induced hamster animal model. Food and Chem. Toxicol. 49: 1292-1297.
Hsu, W. H., Liao, T. H., Lee, B. H., Hsu, Y. W. and Pan, T. M. 2013b. Ankaflavin regulates adipocyte function and attenuates hyperglycemia caused by high-fat diet via PPAR- activation. J Fun Food. 5: 124-132.
Hsu, W. H., Lu, S. S., Lee, B. H., Hsu, Y. W. and Pan, T. M. 2013a. Monacolin K and monascin attenuated pancreas impairment and hyperglycemia in BALB/c mice induced by advanced glycation endproducts. Food Funct. 4: 1742–1750.
Jackson, S. P. 2011. Arterial thrombosis—insidious, unpredictable and deadly. Nat Med. 17: 1423–1436.
Johnston, P. G. and Kaye, S. 2001. Capecitabine: a novel agent for the treatment of solid tumors. Anticancer Drugs. 12: 639-646.
Klinken, S. P. 2002. Red blood cells. Int. J. Biochem. Cell Biol. 34: 1513–1518.
Lee, B. H., Hsu, W. H., Liao, T. H. and Pan, T. M. 2012. Inhibition of leukemia proliferation by a novel polysaccharide identified from Monascus-fermented dioscorea via inducing differentiation. Food Fun. 3: 758-764.
Lee, C. H., Lee, C. L. and Pan, T. M. 2010a. A 90-D toxicity study of Monascus–fermented products including high citrinin level. J. Food Sci. 75: T91-T97.
Lee, C. I., Hsieh, S. L., Wu, C. C., Lee, C. L., Chang, Y. P. and Wang, J. J. 2015. Proteomic analysis of human breast cancer cells treated with Monascus-fermented red mold rice extracts. J Food Nutr Res. 3: 325-329.
Lee, C. L. and Pan, T. M. 2011. Red mold fermented products and Alzheimer''s disease: a review. Appl Microbiol Biotechnol. 91: 461.
Lee, C. L., Hung, H. K., Wang J. J. and Pan, T. M. 2007a. Red mold dioscorea has greater hypolipidemic and antiatherosclerotic effect than traditional red mold rice and unfermented dioscorea in hamsters. J Agri Food Chem. 55: 7162-7169.
Lee, C. L., Hung, Y. P., Hsu, Y. W., Pan, T. M. 2013. Monascin and ankaflavin have more anti-atherosclerosis effect and less side effect involving increasing creatinine phosphokinase activity than monacolin K under the same dosages. J. Agric. Food Chem. 61: 143-150.
Lee, C. L., Kung, Y. H., Wu, C. L., Hsu, Y. W. and Pan, T. M. 2010b. Monascin and ankaflavin act novel hypolipidemic and high density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agri Food Chem. 58: 9013-9019.
Lee, C. L., Kuo, T. F., Wang, J. J. and Pan, T. M. 2007b. Red mold rice ameliorates impairment of memory and learning ability in intracere- broventricular amyloid beta-infused rat via repressing amyloid beta accumulation. J Neurosci. Rese. 85: 3171-3182.
Lee, C. L., Lin, P. Y., Hsu, Y. W. and Pan, T. M. 2015. Monascus-fermented monascin and ankaflavin improve the memory and learning ability in amyloid β-protein intracerebroventricular-infused rat via the suppression of Alzheimer’s disease risk factors. J Fun Food. 18: 387-399.
Lee, C. L., Tsai, T. Y., Wang, J. J. and Pan, T. M. 2006. In vivo hypolipidemic effects and safety of low dosage Monascus powder in a hamster model of hyperlipidemia. Appl. Microb. & Biotech. 70: 533-540.
Lin, Y. L., Wang, T. H., Lee, M. H. and Su, N. W. 2008. Biologically active components and nutraceuticalsin the Monascus-fermented rice: a review. Appl Microbiol Biotechnol. 77: 965–973.
Liu, M., Tan, H, Zhang, X, Liu, Z, Cheng, Y., Wang, D. and Wang, F. 2014. Hematopoietic effects and mechanisms of Fufang E''jiao Jiang on radiotherapy and chemotherapy-induced myelosuppressed mice. J Ethnopharmacol. 152: 575–584.
Longley, D. B., Harkin, D. P. and Johnston, P. G. 2003. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 3: 330-338.
Lotfi-Jam, K., Carey, M., Jefford, M., Schofield, P., Charleson, C. and Aranda, S. 2008. Nonpharmacologic strategies for managing common chemotherapy adverse effects: a systematic review. Journal of Clinical Oncology. 26: 5618-5629.
Macdonald, J. S. 1999. Toxicity of 5-fluorouracil. Oncology. 7: 33-35.
Marsh, J. C. 1976. The effects of cancer chemotherapeutic agents on normal hematopoietic precursor cells: a review. Cancer Res. 36: 1853-1882.
Maxwell, M. B. and Maher, K. E. 1992. Chemotherapy induced myelosuppression. Semin Oncol Nurs. 8: 113-123.
Miller, R. P., Tadagavadi, R. K., Ramesh, G. and Reeves, W. B. 2010. Mechanisms of Cisplatin Nephrotoxicity. Toxins (Basel). 2: 2490–2518.
Neary, N. M., Small, C. J., Wren, A. M., Lee, J. L., Druce, M. R., Palmieri, C., Frost, G. S., Ghatei, M. A., Coombes, R. C. and Bloom, S. R. 2004. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 89: 2832-2836.
Nylén, U., Cekan, E., Jonasson, G. B., Lewin, F. and Skog, S. 2001. Effects of 5-fluorouracil on cell cycle arrest and toxicity induced by X-irradiation in normal mammalian cells. Cell Prolif. 34: 85–98.
Ovesen, L., Allingstrup, L., Hannibal, J., Mortensen, E. L. and Hansen, O. P. 1993. Effect of dietary counseling on food intake, body weight, response rate, survival, and quality of life in cancer patients undergoing chemotherapy: a prospective, randomized study. J Clin Oncol. 11: 2043-2049.
Patakova P. 2013. Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol. 40: 169–181.
Qi, L., Liu, C., Wu, W., Gu, Z. and Guo, C. 2011. Protective effect of flavonoids from Astragalus complanatus on radiation induced damages in mice. Fitoterapia 82: 383–392.
Quirt, I., Robeson, C., Lau, C. Y., Kovacs, M., Burdette-Radoux, S., Dolan, S., Tang, S. C., McKenzie, M., Couture, F. and the Canadian Eprex Oncology Study Group. 2001. Epoetin alfa therapy increases hemoglobin levels and improves quality of life in patients with cancer-related anemia who are not receiving chemotherapy and patients with anemia who are receiving chemotherapy. J Clin Oncol. 19: 4126-4134.
Raymond, E., Chaney, S. G., Taamma, A. and Cvitkovic, E. 1998. Oxaliplatin: A review of preclinical and clinical studies. Ann Oncol 9: 1053-1071.
Robinson, S. M., Wilson, C. H., Burt, A. D., Manas, D. M. and White, S. A. 2012. Chemotherapy-associated liver injury in patients with colorectal liver metastases: a systematic review and meta-analysis. Ann Surg Oncol. 19: 4287–4299.
Shackelford, C., Long, G., Wolf, J., Okerberg, C., and Herbert, R. 2002. Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol Pathol. 30: 93-96.
Shah, M. A. and Schwartz, G. K. 2001. Cell cycle-mediated drug resistance. Clin. Cancer Res. 7: 2168-2181.
Sheng, Y., Pero, R. W. and Wagner, H. 2000. Treatment of chemotherapy-induced leukopenia in a rat model with aqueous extract from Uncaria tomentosa. Phytomedicine. 7: 137-143.
Shi, Y. C. and Pan, T. M. 2010a. Anti-diabetic effects of Monascus purpureus NTU 568 fermented products on streptozotocin-induced diabetic rats. J Agri Food Chem. 58: 7634-7640.
Shi, Y. C. and Pan, T. M. 2010b. Antioxidant and pancreas-protective effect of red mold fermented products on streptozotocin-induced diabetic rats. J Sci Food & Agri. 90: 2519-2525.
Shi, Y. C., Liao, V. H. C. and Pan, T. M. 2012. Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radic Biol. Med. 52: 109-117.
Siegel, R. L., Miller, K. D. and Jemal, A. 2016. Cancer statistics, 2016. CA Cancer J Clin. 66: 7-30.
Smith, B. R. 1990. Regulation of hematopoiesis. Yale J Biol Med. 63: 371–380.
Song, M. K., Park, M. Y. and Sung, M. K. 2013. 5-Fluorouracil-induced changes of intestinal integrity biomarkers in BALB/C mice. J Cancer Prev. 18: 322–329.
Stchigel, A. M., Cano, J. F., Abdullah, S. K. and Guarro, J. 2004. New and interesting species of Monascus from soil, with a key to the known species. Stud Mycol. 50: 299–306.
Stone, P., Richards, M., Hardy, J. 1998. Fatigue in patients with cancer. Eur J Cancer. 34:1670-1676.
Tiesinga, L. J., Dassen, T. W. and Halfens, R. J. 1996. Fatigue: a summary of the definitions, dimensions, and indicators. Nurs Diagn. 7:51-62.
Travlos, G. S. 2006. Normal structure, function, and histology of the bone marrow. Toxicol. Pathol. 34:548–565.
Tsai, R. L., Ho, B. Y. and Pan, T. M. 2011. Red mold rice mitigates oral carcinogenesis in 7,12-dimethyl-1,2-benz[a]anthracene-induced oral carcinogenesis in hamster. Evid Based Complement Alternat Med Retrieved from doi:10.1093/ecam/nep215
Tseng, K. C., Fang, T. J., Chiang, S. S., Liu, C. F., Wu, C. L. and Pan, T. M. 2012. Immunomodulatory activities and antioxidant properties of polysaccharides from Monascus-fermented products in vitro. J. Sci. Food Agri. 92: 1483–1489.
Veronese, M. L. and O''Dwyer, P. J. 2004. Monoclonal antibodies in the treatment of colorectal cancer. Eur. J. Cancer. 40: 1292–1301.
Vincent Caggiano, M. D., Richard, V. W., Timothy, S., Rickert, B. A., Walter, T. L. 2005. Incidence, cost, and mortality of neutropenia hospitalization associated with chemotherapy. Cancer. 103: 1916-1924.
Wang, J. J., Shieh, M. J., Kuo, S. L., Lee, C. L. and Pan, T. M. 2006. Effect of red mold rice on antifatigue and exercise-related changes in lipid peroxidation in endurance exercise, Appl. Microb. & Biotech. 70: 247-253.
Weaver, A., Young, A. M., Rowntree, J., Townsend, N., Pearson, S., Smith, J., Gibson, O., Cobern, W., Larsen, M. and Tarassenko, L. 2007. Application of mobile phone technology for managing chemotherapy-associated side-effects. Ann Oncol. 18: 1887-1892.
Weiss, L. and Geduldig, U. 1991. Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow. Blood. 78: 975–990.
William-Faltaos, S., Rouillard, D., Lechat, P. and Bastian, G. 2006. Cell cycle arrest and apop- tosis induced by oxaliplatin (L-OHP) on four human cancer cell lines. Anticancer Res. 26: 2093–2099.
Wilson, A. and Trumpp, A. 2006. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6: 93-106.
Woynarowski, J. M., Faivre, S., Herzig, M. C., Arnett, B., Chapman, W. G., Trevino, A. V., Raymond, E., Chaney, S. G., Vaisman, A., Varchenko, M. and Juniewicz, P. E. 2000. Oxaliplatin-induced damage of cellular DNA. Mol. Pharmacol. 58: 920–927.
Yang, T., Liu, J., Luo, F. Lin, Q., Rosol, T. J. and Deng, X. 2014. Anticancer properties of Monascus metabolites. Biotechnol. Lett. 36: 1605–1613.
Yasukawa, K., Takahashi, M., Yamanouchi, S., and Takido, M. 1996. Inhibitory effect of oral administration of Monascus pigment on tumor promotion in two-stage carcinogenesis in mouse skin. Oncology. 53: 247–249.
Young, D., Lowe, L. D. and Clark, S. C. 1990. Comparison of the effects of IL-3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor in supporting monocyte differentiation in culture. Analysis of macrophage antibody-dependent cellular cytotoxicity. J Immunol. 145: 607-615.
Zorzi, D., Laurent, A., Pawlik, T. M., Lauwers, G. Y., Vauthey, J. N. and Abdalla, E. K. 2007. Chemotherapy-associated hepatotoxicity and surgery for colorectal liver metastases. Br J Surg. 94: 274 – 286.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top