|
1.Sørum, H. and Sunde, M., Resistance to antibiotics in the normal flora of animals. Veterinary Research, 2001. 32(3-4): p. 227 - 241. 2.Barnett, J. A., A history of research on yeasts 12: medical yeasts part 1, Candida albicans. Yeast, 2008. 25(6): p. 385-417. 3.Stecksen-Blicks, C., Granström, E., Silfverdal, S. A. and West, C. E., Prevalence of oral Candida in the first year of life. Mycoses, 2015. 58(9): p. 550-6. 4.藍志堅, 院內感染管制:原理與實用. 2000: 合記. 5.台灣衛生福利部疾病管制屬院內感染監視資訊系統(TNIS)2016年第3季監視報告. 2016. 6.Bustamante, C. I., Treatment of Candida infection: a view from the trenches! Current Opinion in Infectious Diseases, 2005. 18(6): p. 490-5. 7.Calderone, R. and Clancy, C. J., Candida and Candidiasis, ed. n.e. DC. 2012, USA: ASM Press, Inc. 8.Ortega, M., Marco, F., Soriano, A., Almela, M., Martínez, J. A., López, J., Pitart, C. and Mensa, J., Candida species bloodstream infection: epidemiology and outcome in a single institution from 1991 to 2008. J Hosp Infect, 2011. 77(2): p. 157-61. 9.Rizzetto, L., Weil, T. and Cavalieri, D., Systems Level Dissection of Candida Recognition by Dectins: A Matter of Fungal Morphology and Site of Infection. Pathogens, 2015. 4(3): p. 639-61. 10.Eggimann, P., Garbino J., and Pittet D., Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. The Lancet Infectious Diseases, 2003. 3(11): p. 685-702. 11.Chen, Y. C., Chang, S. C., Luh, K. T. and Hsieh, W. C., Stable susceptibility of Candida blood isolates to fluconazole despite increasing use during the past 10 years. J Antimicrob Chemother, 2003. 52(1): p. 71-7. 12.Sung, J. M., Ko, W. C., and Huang, J. J., Candidaemia in patients with dialysis-dependent acute renal failure: aetiology, predisposing and prognostic factors. Nephrology Dialysis Transplantation, 2001. 16: p. 2348-56. 13.念珠菌菌血症臨床處置的新進展. 內科學誌, 2003. 14(5): p. 224-231. 14.Soll, D. R., Candida biofilms: is adhesion sexy? Curr Biol, 2008. 18(16): p. R717-20. 15.Sardi, J. C., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M. and Mendes Giannini, M. J., Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol, 2013. 62(Pt 1): p. 10-24. 16.Ramage, G., Saville, S. P., Thomas, D. P. and López-Ribot, J. L., Candida biofilms: an update. Eukaryot Cell, 2005. 4(4): p. 633-8. 17.Baillie, G. S. and Douglas, L. J., Role of dimorphism in the development of Candida albicans biofilms. Journal of Medical Microbiology, 1999. 48(7): p. 671-9. 18.Gristina, A. G., Shibata, Y., Giridhar, G., Kreger, A. and Myrvik, Q. N., The glycocalyx, biofilm, microbes, and resistant infection. Semin Arthroplasty, 1994. 5(4): p. 160-70. 19.Mah, T. F. and O''Toole, G. A., Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 2001. 9(1): p. 34-9. 20.Allison, D. G. and Gilbert, P., Modification by surface association of antimicrobial susceptibility of bacterial populations. Journal of Industrial Microbiology, 1995. 15(4): p. 311-7. 21.Ramage, G., Bachmann, S., Patterson, T. F., Wickes, B. L. and López-Ribot, J. L., Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. Journal of Antimicrobial Chemotherapy, 2002. 49(6): p. 973-80. 22.Cohen, B. E., Amphotericin B toxicity and lethality a tale of two channels. International Journal of Pharmaceutics, 1998. 162(1-2): p. 95-106. 23.Anaissie, E., Paetznick, V., Proffitt, R., Adler-Moore, J. and Bodey, G. P., Comparison of the in vitro antifungal activity of free and liposome-encapsulated amphotericin B. European Journal of Clinical Microbiology and Infectious Diseases, 1991. 10(8): p. 665-668. 24.Stiller, R. L., Bennett, J. E., Scholer, H. J., Wall, M., Polak, A. and Stevens, D. A., Susceptibility to 5-fluorocytosine and prevalence of serotype in 402 Candida albicans isolates from the United States. Antimicrobial Agents and Chemotherapy, 1982. 22(3): p. 482-487. 25.Vermes, A., Guchelaar, H. J. and Dankert, J., Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. Journal of Antimicrobial Chemotherapy, 2000. 46(2): p. 171-9. 26.Orozco, A. S., et al., Mechanism of Fluconazole Resistance in Candida krusei. Antimicrobial Agents and Chemotherapy, 1998. 42(10): p. 2645–2649. 27.Novel antifungal drugs. Current Opinion in Microbiology, 1999. 2(5): p. 509-15. 28.Moudgal, V. and Sobel, J., Antifungals to treat Candida albicans. . Expert Opinion on Pharmacotherapy, 2010. 11(12): p. 2037-48. 29.Perlin, D. S., Mechanisms of echinocandin antifungal drug resistance. Annals of the New York Academy of Sciences, 2015. 1354: p. 1-11. 30.White, T. C., Marr, K. A. and Bowden, R. A., Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clinical Microbiology Reviews, 1998. 11(2): p. 382-402. 31.Subden, R. E., Safe, L., Morris, D. C., Brown, R. G. and Safe, S., Eburicol, lichesterol, ergosterol, and obtusifoliol from polyene antibiotic-resistant mutants of Candida albicans. Canadian Journal of Microbiology, 1997. 23(6): p. 751-4. 32.Casalinuovo, I. A., Di Francesco, P. and Garaci, E., Fluconazole resistance in Candida albicans: a review of mechanisms. European Review for Medical and Pharmacological Sciences, 2004. 8(2): p. 69-77. 33.Lamb, D. C., et al., The mutation T315A in Candida albicans sterol 14alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. The Journal of Biological Chemistry, 1997. 272(9): p. 5682-8. 34.Wirsching, S., Michel, S. and Morschhäuser, J., Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Molecular Microbiology, 2000. 36(4): p. 856-65. 35.Sanglard, D., Ischer, F., Monod, M. and Bille, J., Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrobial Agents and Chemotherapy, 1996. 40(10): p. 2300-5. 36.Perlin, D. S., Resistance to echinocandin-class antifungal drugs. Drug Resist Updat, 2007. 10(3): p. 121-30. 37.Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel ,D., Korbelik, M., Moan, J. and Peng, Q., Photodynamic therapy. Journal of the National Cancer Institute, 1998. 90(12): p. 889-950. 38.Spikes, J. D., The Historical Development of Ideas on Applications of Photosensitized Reactions in the Health Sciences. Primary Photo-Processes in Biology and Medicine. 1985. 209-227. 39.Roelandts, R., A new light on Niels Finsen, a century after his Nobel Prize. Photodermatology, Photoimmunology & Photomedicine, 2005. 21(3): p. 115-7. 40.Tappeiner, H. V., Jesionek, A., Therapeutische Versuche mit fluoreszierenden Stoffen. Muench med wochenschr, 1903. 47: p. 2042-44. 41.Kelly, J. F. and Snell, M.E., Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. Journal of Urology, 1976. 115(2): p. 150-1. 42.Ochsner, M., Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B: Biology, 1997. 39(1): p. 1-18. 43.Hamblin, M. R. and Hasan, T., Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochemical & Photobiological Sciences, 2004. 3(5): p. 436-50. 44.Donnelly, R. F., McCarron, P. A. and Tunney, M. M., Antifungal photodynamic therapy. Microbiological Research, 2008. 163(1): p. 1-12. 45.Sharma, S. K., Dai, T., Kharkwal, G. B., Huang, Y. Y., Huang, L., De Arce, V. J., Tegos, G. P. and Hamblin, M. R., Drug discovery of antimicrobial photosensitizers using animal models. Current Pharmaceutical Design, 2011. 17(13): p. 1303-19. 46.Kato, I.T., et al., Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity. Antimicrob Agents Chemother, 2013. 57(1): p. 445-51. 47.Uppuluri, P., et al., Effects of fluconazole, amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion. Antimicrob Agents Chemother, 2011. 55(7): p. 3591-3. 48.Moor, A. C., Signaling pathways in cell death and survival after photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2000. 57(1): p. 1-13. 49.Alby, K. and Bennett, R. J., Stress-induced phenotypic switching in Candida albicans. Molecular Biology of the Cell, 2009. 20(14): p. 3178-91. 50.Temple, M. D., Perrone, G. G. and Dawes, I.W., Complex cellular responses to reactive oxygen species. Trends in Cell Biology, 2005. 15(6): p. 319-26. 51.黃儀真, 結合光動力殺菌與Fluconazole在白色念珠菌的治療效果探討. 國立台灣大學, 2016. 52.Prates, R. A., Kato, I. T., Ribeiro, M. S., Tegos, G. P. and Hamblin, M. R., Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. Journal of Antimicrobial Chemotherapy, 2011. 66(7): p. 1525-32. 53.Jayatilake, J. A., Samaranayake, Y. H., Cheung, L. K. and Samaranayake, L. P., Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. Journal of Oral Pathology & Medicine, 2006. 35(8): p. 484-91. 54.Sudbery, P. E., Growth of Candida albicans hyphae. Nature Reviews Microbiology, 2011. 16(9): p. 10. 55.Lo, H. J., Köhler, J. R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. and Fink, G. R., Nonfilamentous C. albicans mutants are avirulent. Cell, 1997. 90(5): p. 939-49. 56.Yeater, K. M., et al., Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology, 2007. 153(8): p. 2373-85. 57.Sardi Jde, C., Pitangui Nde, S., Rodríguez-Arellanes, G., Taylor, M. L., Fusco-Almeida, A. M. and Mendes-Giannini, M. J., Highlights in pathogenic fungal biofilms. Revista Iberoamericana de Micología, 2014. 31(1): p. 22-9. 58.Blankenship, J. R. and Mitchell, A. P., How to build a biofilm: a fungal perspective. Current Opinion in Microbiology, 2006. 9(6): p. 588-94. 59.Dovigo, L. N., Pavarina, A. C., Carmello, J. C., Machado, A. L,. Brunetti, I. L. and Bagnato, V. S., Susceptibility of Clinical Isolates of Candida to Photodynamic Effects of Curcumin. Biofouling, 2013. 29(9): p. 1057-67. 60.Mukherjee, P. K., Chandra, J., Kuhn, D. M. and Ghannoum, M. A., Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infection and Immunity, 2003. 71(8): p. 4333-40. 61.Chandra, J., Kuhn, D. M., Mukherjee, P. K., Hoyer, L. L., McCormick, T. and Ghannoum, M. A., Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. Journal of Bacteriology, 2001. 183(18): p. 5385-94. 62.Tobudic, S., et al., Antifungal activity of amphotericin B, caspofungin and posaconazole on Candida albicans biofilms in intermediate and mature development phases. Mycoses, 2010. 53(3): p. 208-14. 63.Taff, H. T., Mitchell, K. F., Edward, J. A. and Andes, D. R., Mechanisms of Candida biofilm drug resistance. Future Microbiology, 2013. 8(10): p. 1325-37. 64.Soysal, A., Prevention of invasive fungal infections in immunocompromised patients: the role of delayed-release posaconazole. Infection and Drug Resistance, 2015. 8: p. 321-31. 65.Tseng, S. P., et al., Toluidine blue O photodynamic inactivation on multidrug-resistant Pseudomonas aeruginosa. Lasers in Surgery and Medicine, 2009. 41(5): p. 391-7. 66.Oriel, S. and Nitzan, Y., Photoinactivation of Candida albicans by its own endogenous porphyrins. Current Microbiology, 2010. 60(2): p. 117-23. 67.Shingu-Vazquez, M. and Traven, A., Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryotic Cell, 2011. 10(11): p. 1376-83. 68.Kojic, E. M. and Darouiche, R. O., Candida Infections of Medical Devices. Clinical Microbiology Reviews, 2004. 17(2): p. 255-67. 69.Krom, B. P. and Willems, H. M.., In Vitro Models for Candida Biofilm Development. Methods in Molecular Biology 2016. 156: p. 95-105. 70.Nett, J. and Andes, D., Candida albicans biofilm development, modeling a host-pathogen interaction. Current Opinion in Microbiology, 2006. 9(4): p. 340-5. 71.Andes, D., et al., Development and Characterization of an In Vivo Central Venous Catheter Candida albicans Biofilm Model. Infection and Immunity, 2004. 72(10): p. 6023-31. 72.Uppuluri, P., et al., Characteristics of Candida albicans biofilms grown in a synthetic urine medium. Journal of Clinical Microbiology, 2009. 47(12): p. 4078-83. 73.Serrano-Fujarte, I., et al., Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress. BioMed Research International, 2015: p. 783639.
|