|
Al-Whaibi, M.H. (2011). Plant heat-shock proteins: A mini review. Journal of King Saud University - Science 23, 139-150. Bäurle, I. (2016). Plant Heat Adaptation: priming in response to heat stress. F1000Research 5, F1000 Faculty Rev-1694. Baek, D., Pathange, P., Chung, J.-S., Jiang, J., Gao, L., Oikawa, A., Hirai, M.Y., Saito, K., Pare, P.W., and Shi, H. (2010). A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant, Cell Environ. 33, 1383-1392. Bonsen, P.P., Spudich, J.A., Nelson, D.L., and Kornberg, A. (1969). Biochemical studies of bacterial sporulation and germination XII. A sulfonic acid as a major sulfur compound of Bacillus subtilis spores. J. Bacteriol. 98, 62-68. Burggraf, S., Fricke, H., Neuner, A., Kristjansson, J., Rouvier, P., Mandelco, L., Woese, C.R., and Stetter, K.O. (1990). Methanococcus igneus sp. nov., a Novel Hyperthermophilic Methanogen from a Shallow Submarine Hydrothermal System. Syst. Appl. Microbiol. 13, 263-269. Chang, C.-Y., Lin, W.-D., and Tu, S.-L. (2014). Genome-Wide Analysis of Heat-Sensitive Alternative Splicing in Physcomitrella patens. Plant Physiol. 165, 826-840. Charng, Y.-y., Liu, H.-c., Liu, N.-y., Hsu, F.-c., and Ko, S.-s. (2006). Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation. Plant Physiol. 140, 1297-1305. Charng, Y.-y., Liu, H.-c., Liu, N.-y., Chi, W.-t., Wang, C.-n., Chang, S.-h., and Wang, T.-t. (2007). A Heat-Inducible Transcription Factor, HsfA2, Is Required for Extension of Acquired Thermotolerance in Arabidopsis. Plant Physiol. 143, 251-262. Chi, W.-T., Fung, R.W.M., Liu, H.-C., Hsu, C.-C., and Charng, Y.-Y. (2009). Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant, Cell Environ. 32, 917-927. Chow, I.T., Barnett, M.E., Zolkiewski, M., and Baneyx, F. (2005). The N-terminal domain of Escherichia coli ClpB enhances chaperone function. FEBS Lett. 579, 4242-4248. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743. DasSarma, P., and DasSarma, S. (2008). On the origin of prokaryotic "species": the taxonomy of halophilic Archaea. Saline Systems 4, 5. de Vries, J., Stanton, A., Archibald, J.M., and Gould, S.B. (2016). Streptophyte Terrestrialization in Light of Plastid Evolution. Trends Plant Sci. 21, 467-476. Fournier, G. (2009). Horizontal Gene Transfer and the Evolution of Methanogenic Pathways. In Horizontal Gene Transfer: Genomes in Flux, M.B. Gogarten, J.P. Gogarten, and L.C. Olendzenski, eds (Totowa, NJ: Humana Press), pp. 163-179. Gidda, S.K., and Varin, L. (2006). Biochemical and molecular characterization of flavonoid 7-sulfotransferase from Arabidopsis thaliana. Plant Physiol. Biochem. 44, 628-636. Gidda, S.K., Miersch, O., Levitin, A., Schmidt, J., Wasternack, C., and Varin, L. (2003). Biochemical and Molecular Characterization of a Hydroxyjasmonate Sulfotransferase from Arabidopsis thaliana. J. Biol. Chem. 278, 17895-17900. Godat, E., Madalinski, G., Muller, L., Heilier, J.-F., Labarre, J., and Junot, C. (2010). Chapter 2 - Mass Spectrometry-Based Methods for the Determination of Sulfur and Related Metabolite Concentrations in Cell Extracts. In Methods in Enzymology, C. Enrique and P. Lester, eds (Academic Press), pp. 41-76. Graham, D.E., Graupner, M., Xu, H., and White, R.H. (2002). Identification of coenzyme M biosynthetic phosphosulfolactate phosphatase. Eur. J. Biochem. 268, 5176-5188. Guček, M., Makuc, S., Mlakar, A., Beričnik-Vrbovšek, J., and Marsel, J. (2002). Determination of glutathione in spruce needles by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry 16, 1186-1191. Gurley, W.B. (2000). HSP101: A Key Component for the Acquisition of Thermotolerance in Plants. The Plant Cell 12, 457-460. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series ([London]: Information Retrieval Ltd., c1979-c2000.), pp. 95-98. Hammermeister, D.E., Serrano, J., Schmieder, P., and Kuehl, D.W. (2000). Characterization of dansylated glutathione, glutathione disulfide, cysteine and cystine by narrow bore liquid chromatography/electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry 14, 503-508. Hanson, A., and Gage, D. (1991). Identification and Determination by Fast Atom Bombardment Mass Spectrometry of the Compatible Solute Choline-O-sulfate in Limonium Species and Other Halophytes. Funct. Plant Biol. 18, 317-327. Hanson, A.D., Rathinasabapathi, B., Rivoal, J., Burnet, M., Dillon, M.O., and Gage, D.A. (1994). Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proceedings of the National Academy of Sciences 91, 306-310. Harrison, S.J., Mott, E.K., Parsley, K., Aspinall, S., Gray, J.C., and Cottage, A. (2006). A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2, 19. Hashiguchi, T., Sakakibara, Y., Hara, Y., Shimohira, T., Kurogi, K., Akashi, R., Liu, M.-C., and Suiko, M. (2013). Identification and characterization of a novel kaempferol sulfotransferase from Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 434, 829-835. Hashiguchi, T., Sakakibara, Y., Shimohira, T., Kurogi, K., Yamasaki, M., Nishiyama, K., Akashi, R., Liu, M.-C., and Suiko, M. (2014). Identification of a novel flavonoid glycoside sulfotransferase in Arabidopsis thaliana. The Journal of Biochemistry 155, 91-97. Horton, R.M., Ho, S.N., Pullen, J.K., Hunt, H.D., Cai, Z., and Pease, L.R. (1993). Gene splicing by overlap extension. In Methods in Enzymology (Academic Press), pp. 270-279. Huber, H., Thomm, M., König, H., Thies, G., and Stetter, K.O. (1982). Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132, 47-50. Huijser, P., and Schmid, M. (2011). The control of developmental phase transitions in plants. Development 138, 4117-4129. Hung, M.-J. (2015). Functional Analysis of the Arabidopsis Mitochondrial Chaperones mtHSC70 and MGE. In Department of Biochemical Science and Technology (National Taiwan University), pp. 1-44. Jeanthon, C., apos, Haridon, S., Reysenbach, A.L., Vernet, M., Messner, P., Sleytr, U.B., and Prieur, D. (1998). Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 48, 913-919. Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275-282. Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R., and Wolfe, R.S. (1983). Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136, 254-261. Katiyar-Agarwal, S., Agarwal, M., and Grover, A. (2003). Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol. Biol. 51, 677-686. Kenrick, P., and Crane, P.R. (1997). The origin and early evolution of plants on land. Nature 389, 33-39. Kim, K.I., Cheong, G.-W., Park, S.-C., Ha, J.-S., Woo, K.M., Choi, S.J., and Chung, C.H. (2000). Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli. J. Mol. Biol. 303, 655-666. Klein, M., and Papenbrock, J. (2004). The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J. Exp. Bot. 55, 1809-1820. Klein, M., and Papenbrock, J. (2009). Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Arabidopsis thaliana. Physiol. Plant. 135, 140-149. Komatsu, K., Driscoll, W.J., Koh, Y.C., and Strott, C.A. (1994). A P-Loop-Related Motif (GxxGxxK) Highly Conserved in Sulfotransferases Is Required for Binding the Activated Sulfate Donor. Biochem. Biophys. Res. Commun. 204, 1178-1185. Komori, R., Amano, Y., Ogawa-Ohnishi, M., and Matsubayashi, Y. (2009). Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proceedings of the National Academy of Sciences 106, 15067-15072. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870-1874. Kurr, M., Huber, R., König, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K., and Stetter, K.O. (1991). Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol. 156, 239-247. Lämke, J., Brzezinka, K., Altmann, S., and Bäurle, I. (2016). A hit‐and‐run heat shock factor governs sustained histone methylation and transcriptional stress memory. The EMBO Journal 35, 162-175. Le, S.Q., and Gascuel, O. (2008). An Improved General Amino Acid Replacement Matrix. Mol. Biol. Evol. 25, 1307-1320. Lee, S., Sowa, M.E., Watanabe, Y.-h., Sigler, P.B., Chiu, W., Yoshida, M., and Tsai, F.T.F. (2003). The Structure of ClpB: A Molecular Chaperone that Rescues Proteins from an Aggregated State. Cell 115, 229-240. Lenton, K.J., Therriault, H., and Wagner, J.R. (1999). Analysis of glutathione and glutathione disulfide in whole cells and mitochondria by postcolumn derivatization high-performance liquid chromatography with ortho-phthalaldehyde. Anal. Biochem. 274, 125-130. Lin, M.-y., Chai, K.-h., Ko, S.-s., Kuang, L.-y., Lur, H.-S., and Charng, Y.-y. (2014). A Positive Feedback Loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN Modulates Long-Term Acquired Thermotolerance Illustrating Diverse Heat Stress Responses in Rice Varieties. Plant Physiol. 164, 2045-2053. Liu, N.-y., Ko, S.-s., Yeh, K.-C., and Charng, Y.-y. (2006a). Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci. 170, 976-985. Liu, N.-Y., Hsieh, W.-J., Liu, H.-C., and Charng, Y.-Y. (2006b). Hsa32, a phosphosulfolactate synthase-related heat-shock protein, is not involved in sulfolipid biosynthesis in Arabidopsis. Botanical Studies 47, 389-394. Marsolais, F., Boyd, J., Paredes, Y., Schinas, A.-M., Garcia, M., Elzein, S., and Varin, L. (2006). Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta 225, 1233. Mishra, R.C., and Grover, A. (2015). ClpB/Hsp100 proteins and heat stress tolerance in plants. Crit. Rev. Biotechnol., 1-13. Mittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends Biochem. Sci. 37, 118-125. Mushtaq, M.Y., Choi, Y.H., Verpoorte, R., and Wilson, E.G. (2014). Extraction for Metabolomics: Access to The Metabolome. Phytochem. Anal. 25, 291-306. Nissen, P., and Benson, A.A. (1961). Choline Sulfate in Higher Plants. Science 134, 1759-1759. Noctor, G., and Foyer, C.H. (1998). Simultaneous Measurement of Foliar Glutathione, γ-Glutamylcysteine, and Amino Acids by High-Performance Liquid Chromatography: Comparison with Two Other Assay Methods for Glutathione. Anal. Biochem. 264, 98-110. Olsen, J.L., Rouzé, P., Verhelst, B., Lin, Y.-C., Bayer, T., Collen, J., Dattolo, E., De Paoli, E., Dittami, S., Maumus, F., Michel, G., Kersting, A., Lauritano, C., Lohaus, R., Töpel, M., Tonon, T., Vanneste, K., Amirebrahimi, M., Brakel, J., Boström, C., Chovatia, M., Grimwood, J., Jenkins, J.W., Jueterbock, A., Mraz, A., Stam, W.T., Tice, H., Bornberg-Bauer, E., Green, P.J., Pearson, G.A., Procaccini, G., Duarte, C.M., Schmutz, J., Reusch, T.B.H., and Van de Peer, Y. (2016). The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331-335. Park, S.K., Kim, K.I., Woo, K.M., Seol, J.H., Tanaka, K., Ichihara, A., Ha, D.B., and Chung, C.H. (1993). Site-directed mutagenesis of the dual translational initiation sites of the clpB gene of Escherichia coli and characterization of its gene products. J. Biol. Chem. 268, 20170-20174. Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., and Cassman, K.G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101, 9971-9975. Piotrowski, M., Schemenewitz, A., Lopukhina, A., Müller, A., Janowitz, T., Weiler, E.W., and Oecking, C. (2004). Desulfoglucosinolate Sulfotransferases from Arabidopsis thaliana Catalyze the Final Step in the Biosynthesis of the Glucosinolate Core Structure. J. Biol. Chem. 279, 50717-50725. Qu, A.-L., Ding, Y.-F., Jiang, Q., and Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 432, 203-207. Queitsch, C., Hong, S.-W., Vierling, E., and Lindquist, S. (2000). Heat Shock Protein 101 Plays a Crucial Role in Thermotolerance in Arabidopsis. The Plant Cell 12, 479-492. Ravilious, G.E., and Jez, J.M. (2012). Structural biology of plant sulfur metabolism: From assimilation to biosynthesis. Natural Product Reports 29, 1138-1152. Rivoal, J., and Hanson, A.D. (1994). Choline-O-Sulfate Biosynthesis in Plants (Identification and Partial Characterization of a Salinity-Inducible Choline Sulfotransferase from Species of Limonium (Plumbaginaceae). Plant Physiol. 106, 1187-1193. Satake, T., and Yoshida, S. (1978). High Temperature-Induced Sterility in Indica Rices at Flowering. Japanese journal of crop science 47, 6-17. Scheller, S., Goenrich, M., Thauer, R.K., and Jaun, B. (2013). Methyl-Coenzyme M Reductase from Methanogenic Archaea: Isotope Effects on the Formation and Anaerobic Oxidation of Methane. J. Am. Chem. Soc. 135, 14975-14984. Siddique, M., Gernhard, S., von Koskull-Döring, P., Vierling, E., and Scharf, K.-D. (2008). The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress and Chaperones 13, 183-197. Smith, J., Smith, N., Yu, L., Paton, I.R., Gutowska, M.W., Forrest, H.L., Danner, A.F., Seiler, J.P., Digard, P., Webster, R.G., and Burt, D.W. (2015). A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance. BMC Genomics 16, 574. Stief, A., Brzezinka, K., Lämke, J., and Bäurle, I. (2014a). Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signaling & Behavior 9, e970430. Stief, A., Altmann, S., Hoffmann, K., Pant, B.D., Scheible, W.-R., and Bäurle, I. (2014b). Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. The Plant Cell 26, 1792-1807. Vierling, E. (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Biol. 42, 579-620. Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199-223. Wu, S.-H. (2007). Studies on the Role of Hsa32 in Arabidopsis Thermotolerance. In Institute of Microbiology and Biotechnology (National Taiwan University), pp. 1-49. Wu, S.-h. (2016). Studies on the mechanism of HSA32-mediated long-term acquired thermotolerance and HSP101 degradation in Arabidopsis. In Department of Biochemical Science and Technology (National Taiwan University ), pp. 1-51. Wu, T.-y., Juan, Y.-t., Hsu, Y.-h., Wu, S.-h., Liao, H.-t., Fung, R.W.M., and Charng, Y.-y. (2013). Interplay between Heat Shock Proteins HSP101 and HSA32 Prolongs Heat Acclimation Memory Posttranscriptionally in Arabidopsis. Plant Physiol. 161, 2075-2084. Yeh, C.-H., Kaplinsky, N.J., Hu, C., and Charng, Y.-y. (2012). Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Sci. 195, 10-23. Zhou, W., Wei, L., Xu, J., Zhai, Q., Jiang, H., Chen, R., Chen, Q., Sun, J., Chu, J., Zhu, L., Liu, C.-M., and Li, C. (2010). Arabidopsis Tyrosylprotein Sulfotransferase Acts in the Auxin/PLETHORA Pathway in Regulating Postembryonic Maintenance of the Root Stem Cell Niche. The Plant Cell 22, 3692-3709.
|