(44.192.112.123) 您好!臺灣時間:2021/03/06 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游適駿
研究生(外文):Shin-Jiun Yu
論文名稱:HSA32-HSP101交互作用影響植物長期後天耐熱性之探討
論文名稱(外文):Studies on the mechanism in regulating long-term acquired thermotolerance by HSA32-HSP101 interplay
指導教授:常怡雍
指導教授(外文):Yee-yung Charng
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:97
中文關鍵詞:熱逆境記憶HSA32HSP101長期後天耐熱性硫代謝亞硫酸基轉移酶
外文關鍵詞:Heat stress memoryHSA32HSP101Long-term acquired thermotolerancesulfur metabolismsulfotransferase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前研究發現,阿拉伯芥及水稻幼苗可藉由HSA32和HSP101的交互作用延長後天耐熱性:HSP101促進HSA32的表現,而HSA32減緩HSP101的降解。在分子層次上,HSA32如何作用仍不清楚,高等植物的HSA32和古生菌的2-磷酸-3-磺基乳酸合成酶 ((2R)-phospho-3-sulfolactate synthase, PSL synthase) 蛋白質序列相似,並含有一個結合3''-磷酸腺苷-5''-磷酸硫酸 (3''-phosphoadenosine-5''-phosphosulfate, PAPS) 的高度保守結構基序 (motif) 。由於PAPS是亞硫酸基轉移酶 (sulfotransferase) 催化硫酸化反應 (sulfonation reaction) 的磺酸基 (sulfonate group) 供給者,因此,我們推測HSA32可能是一種亞硫酸基轉移酶 (sulfotransferase),參與一種已知或未知含硫化合物之合成,例如,硫酸膽鹼 (choline sulfate)。硫酸膽鹼是一種兼容滲透劑,由未知的亞硫酸基轉移酶催化膽鹼及PAPS反應而成。我假設HSA32會在熱逆境下催化硫酸膽鹼之生成,用以調節HSP101的降解。然而,UPLC-MS/MS分析結果發現硫酸膽鹼的含量不會受到加熱或缺少HSA32影響,顯示HSA32並不參與硫酸膽鹼合成。由於HSA32的同源蛋白在陸生植物普遍地存在,為了解該蛋白的結構與功能的演化程度,我們將來自高等和低等植物的五種HSA32同源蛋白表達於阿拉伯芥hsa32-1突變株,以進行功能互補測試。結果顯示只有高等植物的HSA32可以減緩HSP101的降解以及恢復hsa32-1的耐熱性。總結我的實驗結果,高等及低等植物的HSA32具有不同的分子功能,可能分別合成不同的含硫化合物。
It has been shown that the effect of acquired thermotolerance is extended by the interplay between Heat-Stress-Associated 32-kD protein (HSA32) and Heat Shock Protein 101 (HSP101) in Arabidopsis and rice. HSP101 promotes the production of HSA32, and HSA32 reduces the degradation of HSP101. The molecular action of HSA32 is unknown. It had been proposed that HSA32 may participate in sulfur metabolism due to sequence similarity with archaea (2R)-phospho-3-sulfolactate synthase (PSL synthase). Moreover, this study identified found a highly conserved 3''-phosphoadenosine-5''-phosphosulfate (PAPS)-binding motif sequence of HSA32 in higher plants. PAPS is an activated sulfur donor for the sulfation reaction catalyzed by sulfotransferases. Thus, HSA32 probably acts as a sulfotransferase. Choline sulfate is synthesized by choline sulfotransferase whose activity had been detected but had not been cloned yet. Therefore, I hypothesized that HSA32 catalyzes the production of choline sulfate under heat stress to suppress the degradation of HSP101. However, the result of UPLC-MS/MS analysis showed that choline sulfate can be detected in hsa32-1 to a level as high as in wild type under both normal and heat stress condition. The result indicates that HSA32 is not involved in choline sulfate biosynthesis. To further examine the crosstalk between HSA32 and HSP101 of higher and lower plant origins, Arabidopsis hsa32-1 knockout mutant was complemented with HSA32 from higher and lower plants. The results showed that only higher plant HSA32 rescued the defect of hsa32-1 under heat stress by retarding the degradation of HSP101. Taken together, the results suggest that higher and lower plant HSA32s have distinct molecular functions, probably by synthesizing different sulfur-containing compounds.
謝誌 i
摘要 ii
Abstract iv
Abbreviations vi
Chapter 1 Introduction 1
1.1 Plant heat shock response 1
1.2 Thermotolerance and heat stress memory in plants 2
1.3 The function of HSA32 and its homologs 3
1.4 Sulfotransferases in Arabidopsis 6
1.5 Specific aims 8
Chapter 2 Materials and Methods 10
2.1 Bioinformatic analysis 10
2.2 Plant materials and thermotolerance assays 11
2.3 Total RNA extraction, synthesis of cDNA, and quantitative PCR 13
2.4 Genomic DNA extraction 15
2.5 Cloning and building binary vectors for Arabidopsis transformation 15
2.6 Selection of homozygous transgenic lines with single T-DNA insertion event 18
2.7 Protein extraction and immunoblotting 18
2.8 Analysis of 35S-labeled metabolites in plant extract 19
2.9 Detection and measurement of choline sulfate in plant extract 20
Chapter 3 Results 22
3.1 Phylogenetic analysis of HSA32 homologs 22
3.2 Choline sulfate content is not affected in hsa32-1 25
3.3 Functional analysis of HSA32 homologs by complementation assay 27
3.3.1 Cloning of PpHSA32 and plant transformation 27
3.3.2 Thermotolerance assay and expression analysis of HSA32 homologs and AtHSP101 in transgenic plants 29
3.4 Functional analysis of HSP101 homologs by complementation assay 31
3.4.1 Cloning of HSP101 homologs and plant transformation 31
3.4.2 Thermotolerance assay and expression analysis of HSP101 homologs in transgenic plants 33
Chapter 4 Discussion 35
4.1 The origin of HSA32 homologs 35
4.2 The function of HSA32 in higher plants is different from that in lower plants 36
4.3 N-terminal HA-tagged HSP101 cannot complement the defect of hsp101 under heat stress 37
Chapter 5 Future work 39
Tables and Figures 41
Appendix 70
References 91
Al-Whaibi, M.H. (2011). Plant heat-shock proteins: A mini review. Journal of King Saud University - Science 23, 139-150.
Bäurle, I. (2016). Plant Heat Adaptation: priming in response to heat stress. F1000Research 5, F1000 Faculty Rev-1694.
Baek, D., Pathange, P., Chung, J.-S., Jiang, J., Gao, L., Oikawa, A., Hirai, M.Y., Saito, K., Pare, P.W., and Shi, H. (2010). A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant, Cell Environ. 33, 1383-1392.
Bonsen, P.P., Spudich, J.A., Nelson, D.L., and Kornberg, A. (1969). Biochemical studies of bacterial sporulation and germination XII. A sulfonic acid as a major sulfur compound of Bacillus subtilis spores. J. Bacteriol. 98, 62-68.
Burggraf, S., Fricke, H., Neuner, A., Kristjansson, J., Rouvier, P., Mandelco, L., Woese, C.R., and Stetter, K.O. (1990). Methanococcus igneus sp. nov., a Novel Hyperthermophilic Methanogen from a Shallow Submarine Hydrothermal System. Syst. Appl. Microbiol. 13, 263-269.
Chang, C.-Y., Lin, W.-D., and Tu, S.-L. (2014). Genome-Wide Analysis of Heat-Sensitive Alternative Splicing in Physcomitrella patens. Plant Physiol. 165, 826-840.
Charng, Y.-y., Liu, H.-c., Liu, N.-y., Hsu, F.-c., and Ko, S.-s. (2006). Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation. Plant Physiol. 140, 1297-1305.
Charng, Y.-y., Liu, H.-c., Liu, N.-y., Chi, W.-t., Wang, C.-n., Chang, S.-h., and Wang, T.-t. (2007). A Heat-Inducible Transcription Factor, HsfA2, Is Required for Extension of Acquired Thermotolerance in Arabidopsis. Plant Physiol. 143, 251-262.
Chi, W.-T., Fung, R.W.M., Liu, H.-C., Hsu, C.-C., and Charng, Y.-Y. (2009). Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant, Cell Environ. 32, 917-927.
Chow, I.T., Barnett, M.E., Zolkiewski, M., and Baneyx, F. (2005). The N-terminal domain of Escherichia coli ClpB enhances chaperone function. FEBS Lett. 579, 4242-4248.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743.
DasSarma, P., and DasSarma, S. (2008). On the origin of prokaryotic "species": the taxonomy of halophilic Archaea. Saline Systems 4, 5.
de Vries, J., Stanton, A., Archibald, J.M., and Gould, S.B. (2016). Streptophyte Terrestrialization in Light of Plastid Evolution. Trends Plant Sci. 21, 467-476.
Fournier, G. (2009). Horizontal Gene Transfer and the Evolution of Methanogenic Pathways. In Horizontal Gene Transfer: Genomes in Flux, M.B. Gogarten, J.P. Gogarten, and L.C. Olendzenski, eds (Totowa, NJ: Humana Press), pp. 163-179.
Gidda, S.K., and Varin, L. (2006). Biochemical and molecular characterization of flavonoid 7-sulfotransferase from Arabidopsis thaliana. Plant Physiol. Biochem. 44, 628-636.
Gidda, S.K., Miersch, O., Levitin, A., Schmidt, J., Wasternack, C., and Varin, L. (2003). Biochemical and Molecular Characterization of a Hydroxyjasmonate Sulfotransferase from Arabidopsis thaliana. J. Biol. Chem. 278, 17895-17900.
Godat, E., Madalinski, G., Muller, L., Heilier, J.-F., Labarre, J., and Junot, C. (2010). Chapter 2 - Mass Spectrometry-Based Methods for the Determination of Sulfur and Related Metabolite Concentrations in Cell Extracts. In Methods in Enzymology, C. Enrique and P. Lester, eds (Academic Press), pp. 41-76.
Graham, D.E., Graupner, M., Xu, H., and White, R.H. (2002). Identification of coenzyme M biosynthetic phosphosulfolactate phosphatase. Eur. J. Biochem. 268, 5176-5188.
Guček, M., Makuc, S., Mlakar, A., Beričnik-Vrbovšek, J., and Marsel, J. (2002). Determination of glutathione in spruce needles by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry 16, 1186-1191.
Gurley, W.B. (2000). HSP101: A Key Component for the Acquisition of Thermotolerance in Plants. The Plant Cell 12, 457-460.
Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series ([London]: Information Retrieval Ltd., c1979-c2000.), pp. 95-98.
Hammermeister, D.E., Serrano, J., Schmieder, P., and Kuehl, D.W. (2000). Characterization of dansylated glutathione, glutathione disulfide, cysteine and cystine by narrow bore liquid chromatography/electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry 14, 503-508.
Hanson, A., and Gage, D. (1991). Identification and Determination by Fast Atom Bombardment Mass Spectrometry of the Compatible Solute Choline-O-sulfate in Limonium Species and Other Halophytes. Funct. Plant Biol. 18, 317-327.
Hanson, A.D., Rathinasabapathi, B., Rivoal, J., Burnet, M., Dillon, M.O., and Gage, D.A. (1994). Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proceedings of the National Academy of Sciences 91, 306-310.
Harrison, S.J., Mott, E.K., Parsley, K., Aspinall, S., Gray, J.C., and Cottage, A. (2006). A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2, 19.
Hashiguchi, T., Sakakibara, Y., Hara, Y., Shimohira, T., Kurogi, K., Akashi, R., Liu, M.-C., and Suiko, M. (2013). Identification and characterization of a novel kaempferol sulfotransferase from Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 434, 829-835.
Hashiguchi, T., Sakakibara, Y., Shimohira, T., Kurogi, K., Yamasaki, M., Nishiyama, K., Akashi, R., Liu, M.-C., and Suiko, M. (2014). Identification of a novel flavonoid glycoside sulfotransferase in Arabidopsis thaliana. The Journal of Biochemistry 155, 91-97.
Horton, R.M., Ho, S.N., Pullen, J.K., Hunt, H.D., Cai, Z., and Pease, L.R. (1993). Gene splicing by overlap extension. In Methods in Enzymology (Academic Press), pp. 270-279.
Huber, H., Thomm, M., König, H., Thies, G., and Stetter, K.O. (1982). Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132, 47-50.
Huijser, P., and Schmid, M. (2011). The control of developmental phase transitions in plants. Development 138, 4117-4129.
Hung, M.-J. (2015). Functional Analysis of the Arabidopsis Mitochondrial Chaperones mtHSC70 and MGE. In Department of Biochemical Science and Technology (National Taiwan University), pp. 1-44.
Jeanthon, C., apos, Haridon, S., Reysenbach, A.L., Vernet, M., Messner, P., Sleytr, U.B., and Prieur, D. (1998). Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 48, 913-919.
Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275-282.
Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R., and Wolfe, R.S. (1983). Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136, 254-261.
Katiyar-Agarwal, S., Agarwal, M., and Grover, A. (2003). Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol. Biol. 51, 677-686.
Kenrick, P., and Crane, P.R. (1997). The origin and early evolution of plants on land. Nature 389, 33-39.
Kim, K.I., Cheong, G.-W., Park, S.-C., Ha, J.-S., Woo, K.M., Choi, S.J., and Chung, C.H. (2000). Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli. J. Mol. Biol. 303, 655-666.
Klein, M., and Papenbrock, J. (2004). The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J. Exp. Bot. 55, 1809-1820.
Klein, M., and Papenbrock, J. (2009). Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Arabidopsis thaliana. Physiol. Plant. 135, 140-149.
Komatsu, K., Driscoll, W.J., Koh, Y.C., and Strott, C.A. (1994). A P-Loop-Related Motif (GxxGxxK) Highly Conserved in Sulfotransferases Is Required for Binding the Activated Sulfate Donor. Biochem. Biophys. Res. Commun. 204, 1178-1185.
Komori, R., Amano, Y., Ogawa-Ohnishi, M., and Matsubayashi, Y. (2009). Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proceedings of the National Academy of Sciences 106, 15067-15072.
Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870-1874.
Kurr, M., Huber, R., König, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K., and Stetter, K.O. (1991). Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol. 156, 239-247.
Lämke, J., Brzezinka, K., Altmann, S., and Bäurle, I. (2016). A hit‐and‐run heat shock factor governs sustained histone methylation and transcriptional stress memory. The EMBO Journal 35, 162-175.
Le, S.Q., and Gascuel, O. (2008). An Improved General Amino Acid Replacement Matrix. Mol. Biol. Evol. 25, 1307-1320.
Lee, S., Sowa, M.E., Watanabe, Y.-h., Sigler, P.B., Chiu, W., Yoshida, M., and Tsai, F.T.F. (2003). The Structure of ClpB: A Molecular Chaperone that Rescues Proteins from an Aggregated State. Cell 115, 229-240.
Lenton, K.J., Therriault, H., and Wagner, J.R. (1999). Analysis of glutathione and glutathione disulfide in whole cells and mitochondria by postcolumn derivatization high-performance liquid chromatography with ortho-phthalaldehyde. Anal. Biochem. 274, 125-130.
Lin, M.-y., Chai, K.-h., Ko, S.-s., Kuang, L.-y., Lur, H.-S., and Charng, Y.-y. (2014). A Positive Feedback Loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN Modulates Long-Term Acquired Thermotolerance Illustrating Diverse Heat Stress Responses in Rice Varieties. Plant Physiol. 164, 2045-2053.
Liu, N.-y., Ko, S.-s., Yeh, K.-C., and Charng, Y.-y. (2006a). Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci. 170, 976-985.
Liu, N.-Y., Hsieh, W.-J., Liu, H.-C., and Charng, Y.-Y. (2006b). Hsa32, a phosphosulfolactate synthase-related heat-shock protein, is not involved in sulfolipid biosynthesis in Arabidopsis. Botanical Studies 47, 389-394.
Marsolais, F., Boyd, J., Paredes, Y., Schinas, A.-M., Garcia, M., Elzein, S., and Varin, L. (2006). Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta 225, 1233.
Mishra, R.C., and Grover, A. (2015). ClpB/Hsp100 proteins and heat stress tolerance in plants. Crit. Rev. Biotechnol., 1-13.
Mittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends Biochem. Sci. 37, 118-125.
Mushtaq, M.Y., Choi, Y.H., Verpoorte, R., and Wilson, E.G. (2014). Extraction for Metabolomics: Access to The Metabolome. Phytochem. Anal. 25, 291-306.
Nissen, P., and Benson, A.A. (1961). Choline Sulfate in Higher Plants. Science 134, 1759-1759.
Noctor, G., and Foyer, C.H. (1998). Simultaneous Measurement of Foliar Glutathione, γ-Glutamylcysteine, and Amino Acids by High-Performance Liquid Chromatography: Comparison with Two Other Assay Methods for Glutathione. Anal. Biochem. 264, 98-110.
Olsen, J.L., Rouzé, P., Verhelst, B., Lin, Y.-C., Bayer, T., Collen, J., Dattolo, E., De Paoli, E., Dittami, S., Maumus, F., Michel, G., Kersting, A., Lauritano, C., Lohaus, R., Töpel, M., Tonon, T., Vanneste, K., Amirebrahimi, M., Brakel, J., Boström, C., Chovatia, M., Grimwood, J., Jenkins, J.W., Jueterbock, A., Mraz, A., Stam, W.T., Tice, H., Bornberg-Bauer, E., Green, P.J., Pearson, G.A., Procaccini, G., Duarte, C.M., Schmutz, J., Reusch, T.B.H., and Van de Peer, Y. (2016). The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331-335.
Park, S.K., Kim, K.I., Woo, K.M., Seol, J.H., Tanaka, K., Ichihara, A., Ha, D.B., and Chung, C.H. (1993). Site-directed mutagenesis of the dual translational initiation sites of the clpB gene of Escherichia coli and characterization of its gene products. J. Biol. Chem. 268, 20170-20174.
Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., and Cassman, K.G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101, 9971-9975.
Piotrowski, M., Schemenewitz, A., Lopukhina, A., Müller, A., Janowitz, T., Weiler, E.W., and Oecking, C. (2004). Desulfoglucosinolate Sulfotransferases from Arabidopsis thaliana Catalyze the Final Step in the Biosynthesis of the Glucosinolate Core Structure. J. Biol. Chem. 279, 50717-50725.
Qu, A.-L., Ding, Y.-F., Jiang, Q., and Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 432, 203-207.
Queitsch, C., Hong, S.-W., Vierling, E., and Lindquist, S. (2000). Heat Shock Protein 101 Plays a Crucial Role in Thermotolerance in Arabidopsis. The Plant Cell 12, 479-492.
Ravilious, G.E., and Jez, J.M. (2012). Structural biology of plant sulfur metabolism: From assimilation to biosynthesis. Natural Product Reports 29, 1138-1152.
Rivoal, J., and Hanson, A.D. (1994). Choline-O-Sulfate Biosynthesis in Plants (Identification and Partial Characterization of a Salinity-Inducible Choline Sulfotransferase from Species of Limonium (Plumbaginaceae). Plant Physiol. 106, 1187-1193.
Satake, T., and Yoshida, S. (1978). High Temperature-Induced Sterility in Indica Rices at Flowering. Japanese journal of crop science 47, 6-17.
Scheller, S., Goenrich, M., Thauer, R.K., and Jaun, B. (2013). Methyl-Coenzyme M Reductase from Methanogenic Archaea: Isotope Effects on the Formation and Anaerobic Oxidation of Methane. J. Am. Chem. Soc. 135, 14975-14984.
Siddique, M., Gernhard, S., von Koskull-Döring, P., Vierling, E., and Scharf, K.-D. (2008). The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress and Chaperones 13, 183-197.
Smith, J., Smith, N., Yu, L., Paton, I.R., Gutowska, M.W., Forrest, H.L., Danner, A.F., Seiler, J.P., Digard, P., Webster, R.G., and Burt, D.W. (2015). A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance. BMC Genomics 16, 574.
Stief, A., Brzezinka, K., Lämke, J., and Bäurle, I. (2014a). Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signaling & Behavior 9, e970430.
Stief, A., Altmann, S., Hoffmann, K., Pant, B.D., Scheible, W.-R., and Bäurle, I. (2014b). Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. The Plant Cell 26, 1792-1807.
Vierling, E. (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Biol. 42, 579-620.
Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199-223.
Wu, S.-H. (2007). Studies on the Role of Hsa32 in Arabidopsis Thermotolerance. In Institute of Microbiology and Biotechnology (National Taiwan University), pp. 1-49.
Wu, S.-h. (2016). Studies on the mechanism of HSA32-mediated long-term acquired thermotolerance and HSP101 degradation in Arabidopsis. In Department of Biochemical Science and Technology (National Taiwan University
), pp. 1-51.
Wu, T.-y., Juan, Y.-t., Hsu, Y.-h., Wu, S.-h., Liao, H.-t., Fung, R.W.M., and Charng, Y.-y. (2013). Interplay between Heat Shock Proteins HSP101 and HSA32 Prolongs Heat Acclimation Memory Posttranscriptionally in Arabidopsis. Plant Physiol. 161, 2075-2084.
Yeh, C.-H., Kaplinsky, N.J., Hu, C., and Charng, Y.-y. (2012). Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Sci. 195, 10-23.
Zhou, W., Wei, L., Xu, J., Zhai, Q., Jiang, H., Chen, R., Chen, Q., Sun, J., Chu, J., Zhu, L., Liu, C.-M., and Li, C. (2010). Arabidopsis Tyrosylprotein Sulfotransferase Acts in the Auxin/PLETHORA Pathway in Regulating Postembryonic Maintenance of the Root Stem Cell Niche. The Plant Cell 22, 3692-3709.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔