|
1.Cheung, A.C., et al., Time to make the change from ‘primary biliary cirrhosis’ to ‘primary biliary cholangitis’. Can J Gastroenterol Hepatol, 2015. 29. 2.Kaplan, M.M. and M.E. Gershwin, Primary biliary cirrhosis. N Engl J Med, 2005. 353(12): p. 1261-73. 3.Bergasa, N.V., J.K. Mehlman, and E.A. Jones, Pruritus and fatigue in primary biliary cirrhosis. Baillieres Best Pract Res Clin Gastroenterol, 2000. 14(4): p. 643-55. 4.Gershwin, M.E., et al., Molecular considerations of primary biliary cirrhosis. 1998: p. p. 40–52. 5.Bittencourt, P.L., et al., Prevalence of immune disturbances and chronic liver disease in family members of patients with primary biliary cirrhosis. J Gastroenterol Hepatol, 2004. 19(8): p. 873-8. 6.Mason, A.L. and G. Zhang, Linking human beta retrovirus infection with primary biliary cirrhosis. Gastroenterol Clin Biol, 2010. 34(6-7): p. 359-66. 7.Selmi, C. and M.E. Gershwin, Bacteria and human autoimmunity: the case of primary biliary cirrhosis. Curr Opin Rheumatol, 2004. 16(4): p. 406-10. 8.Leung, P.S., et al., Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol, 2003. 170(10): p. 5326-32. 9.Poupon, R.E., R. Poupon, and B. Balkau, Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med, 1994. 330(19): p. 1342-7. 10.Nevens, F., et al., A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. N Engl J Med, 2016. 375(7): p. 631-43. 11.Shimoda, S., et al., Natural killer cells regulate T cell immune responses in primary biliary cirrhosis. Hepatology, 2015. 62(6): p. 1817-27. 12.Wu, S.J., et al., Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology, 2011. 53(3): p. 915-25. 13.Wang, L., et al., CXCR5+ CD4+ T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis. Hepatology, 2015. 61(2): p. 627-38. 14.Wang, L., et al., Increased numbers of circulating ICOS(+) follicular helper T and CD38(+) plasma cells in patients with newly diagnosed primary biliary cirrhosis. Dig Dis Sci, 2015. 60(2): p. 405-13. 15.Li, Y., et al., Chemokine (C-X-C motif) ligand 13 promotes intrahepatic chemokine (C-X-C motif) receptor 5+ lymphocyte homing and aberrant B-cell immune responses in primary biliary cirrhosis. Hepatology, 2015. 61(6): p. 1998-2007. 16.Kita, H., et al., Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest, 2002. 109(9): p. 1231-40. 17.Ma, H.D., et al., Chemokine receptor CXCR3 deficiency exacerbates murine autoimmune cholangitis by promoting pathogenic CD8+ T cell activation. J Autoimmun, 2017. 78: p. 19-28. 18.Wakabayashi, K., et al., Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology, 2008. 48(2): p. 531-40. 19.Amano, K., et al., Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol, 2005. 174(9): p. 5874-83. 20.Syu, B.J., et al., Dual Roles of IFN-gamma and IL-4 in the Natural History of Murine Autoimmune Cholangitis: IL-30 and Implications for Precision Medicine. Sci Rep, 2016. 6: p. 34884. 21.Daya, S. and K.I. Berns, Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev, 2008. 21(4): p. 583-93. 22.Deyle, D.R. and D.W. Russell, Adeno-associated virus vector integration. Curr Opin Mol Ther, 2009. 11(4): p. 442-7. 23.Grimm, D., et al., In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol, 2008. 82(12): p. 5887-911. 24.Rochman, Y., R. Spolski, and W.J. Leonard, New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol, 2009. 9(7): p. 480-90. 25.Gharibi, T., et al., Biological effects of IL-21 on different immune cells and its role in autoimmune diseases. Immunobiology, 2016. 221(2): p. 357-67. 26.Leonard, W.J. and R. Spolski, Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol, 2005. 5(9): p. 688-98. 27.Ettinger, R., et al., IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol, 2005. 175(12): p. 7867-79. 28.Spolski, R. and W.J. Leonard, The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr Opin Immunol, 2008. 20(3): p. 295-301. 29.Mehta, D.S., et al., IL-21 induces the apoptosis of resting and activated primary B cells. J Immunol, 2003. 170(8): p. 4111-8. 30.Ozaki, K., et al., Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol, 2004. 173(9): p. 5361-71. 31.Caruso, R., et al., A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3alpha, by gut epithelial cells. Gastroenterology, 2007. 132(1): p. 166-75. 32.Kinter, A.L., et al., The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol, 2008. 181(10): p. 6738-46. 33.Parrish-Novak, J., et al., Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature, 2000. 408(6808): p. 57-63. 34.Spolski, R. and W.J. Leonard, Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov, 2014. 13(5): p. 379-95. 35.Caprioli, F., et al., Autocrine regulation of IL-21 production in human T lymphocytes. J Immunol, 2008. 180(3): p. 1800-7. 36.Kwon, H., et al., Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity, 2009. 31(6): p. 941-52. 37.Zeng, R., et al., Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med, 2005. 201(1): p. 139-48. 38.Kasaian, M.T., et al., IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity, 2002. 16(4): p. 559-69. 39.Frederiksen, K.S., et al., IL-21 induces in vivo immune activation of NK cells and CD8(+) T cells in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol Immunother, 2008. 57(10): p. 1439-49. 40.Godfrey, D.I. and M. Kronenberg, Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest, 2004. 114(10): p. 1379-88. 41.Smyth, M.J., et al., Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J Exp Med, 2005. 201(12): p. 1973-85. 42.Coquet, J.M., et al., IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol, 2007. 178(5): p. 2827-34. 43.Mukherjee, S., P.K. Maiti, and D. Nandi, Role of CD80, CD86, and CTLA4 on mouse CD4(+) T lymphocytes in enhancing cell-cycle progression and survival after activation with PMA and ionomycin. J Leukoc Biol, 2002. 72(5): p. 921-31. 44.Attridge, K., et al., IL-21 promotes CD4 T cell responses by phosphatidylinositol 3-kinase-dependent upregulation of CD86 on B cells. J Immunol, 2014. 192(5): p. 2195-201. 45.Spolski, R. and W.J. Leonard, Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol, 2008. 26: p. 57-79. 46.Mittal, A., et al., IL-27 induction of IL-21 from human CD8+ T cells induces granzyme B in an autocrine manner. Immunol Cell Biol, 2012. 90(8): p. 831-5. 47.Brodeur, T.Y., et al., IL-21 Promotes Pulmonary Fibrosis through the Induction of Profibrotic CD8+ T Cells. J Immunol, 2015. 195(11): p. 5251-60. 48.Qi, H., T follicular helper cells in space-time. Nat Rev Immunol, 2016. 16(10): p. 612-25. 49.Forster, R., et al., A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell, 1996. 87(6): p. 1037-47. 50.Nutt, S.L. and D.M. Tarlinton, Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat Immunol, 2011. 12(6): p. 472-7. 51.Ozaki, K., et al., A critical role for IL-21 in regulating immunoglobulin production. Science, 2002. 298(5598): p. 1630-4. 52.Feng, P.H., Systemic lupus erythematosus: the face of Asia. Ann N Y Acad Sci, 2007. 1108: p. 114-20. 53.Sawalha, A.H., et al., Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis, 2008. 67(4): p. 458-61. 54.Herber, D., et al., IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol, 2007. 178(6): p. 3822-30. 55.Arnett, F.C., et al., The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum, 1988. 31(3): p. 315-24. 56.McInnes, I.B. and G. Schett, The pathogenesis of rheumatoid arthritis. N Engl J Med, 2011. 365(23): p. 2205-19. 57.Gharibi, T., et al., Investigation of IL-21 gene polymorphisms (rs2221903, rs2055979) in cases with multiple sclerosis of Azerbaijan, Northwest Iran. Am J Clin Exp Immunol, 2015. 4(1): p. 7-14. 58.Tedder, T.F. and W.J. Leonard, Autoimmunity: regulatory B cells--IL-35 and IL-21 regulate the regulators. Nat Rev Rheumatol, 2014. 10(8): p. 452-3. 59.Yoshizaki, A., et al., Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature, 2012. 491(7423): p. 264-8. 60.Lei, L., et al., Elevated frequencies of CD4(+) IL-21(+) T, CD4(+) IL-21R(+) T and IL-21(+) Th17 cells, and increased levels of IL-21 in bleomycin-induced mice may be associated with dermal and pulmonary inflammation and fibrosis. Int J Rheum Dis, 2016. 19(4): p. 392-404. 61.Pan, Q., et al., Increased levels of IL-21 responses are associated with the severity of liver injury in patients with chronic active hepatitis B. J Viral Hepat, 2014. 21(9): p. e78-88. 62.McClure, C., et al., Production and titering of recombinant adeno-associated viral vectors. J Vis Exp, 2011(57): p. e3348. 63.Shipkova, M. and E. Wieland, Surface markers of lymphocyte activation and markers of cell proliferation. Clin Chim Acta, 2012. 413(17-18): p. 1338-49. 64.Fogel, L.A., et al., Markers of nonselective and specific NK cell activation. J Immunol, 2013. 190(12): p. 6269-76. 65.Pesce, J., et al., The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J Clin Invest, 2006. 116(7): p. 2044-55. 66.Wynn, T.A., Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol, 2004. 4(8): p. 583-94. 67.Wynn, T.A., Integrating mechanisms of pulmonary fibrosis. J Exp Med, 2011. 208(7): p. 1339-50. 68.Nagano, T., et al., Cytokine profile in the liver of primary biliary cirrhosis. J Clin Immunol, 1999. 19(6): p. 422-7. 69.Kaech, S.M. and W. Cui, Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol, 2012. 12(11): p. 749-61. 70.Lee, J., et al., Interferon gamma suppresses collagen-induced arthritis by regulation of Th17 through the induction of indoleamine-2,3-deoxygenase. PLoS One, 2013. 8(4): p. e60900. 71.Crotty, S., Follicular helper CD4 T cells (TFH). Annu Rev Immunol, 2011. 29: p. 621-63. 72.Chen, L. and X. Han, Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest, 2015. 125(9): p. 3384-91. 73.Parry, R.V., et al., CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol, 2005. 25(21): p. 9543-53. 74.Dong, H., et al., B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity, 2004. 20(3): p. 327-36. 75.Chang, C.H., et al., Innate immunity drives xenobiotic-induced murine autoimmune cholangitis. Clin Exp Immunol, 2014. 177(2): p. 373-80.
|