|
1.Enright, M.C., et al., Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol, 2000. 38(3): p. 1008-15. 2.Planet, P.J., et al., Architecture of a Species: Phylogenomics of Staphylococcus aureus. Trends Microbiol, 2017. 25(2): p. 153-166. 3.Hung, W.C., et al., Molecular Evolutionary Pathways toward Two Successful Community-Associated but Multidrug-Resistant ST59 Methicillin-Resistant Staphylococcus aureus Lineages in Taiwan: Dynamic Modes of Mobile Genetic Element Salvages. PLoS One, 2016. 11(9): p. e0162526. 4.International Working Group on the Classification of Staphylococcal Cassette Chromosome, E., Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother, 2009. 53(12): p. 4961-7. 5.Chuang, Y.Y. and Y.C. Huang, Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Asia. Lancet Infect Dis, 2013. 13(8): p. 698-708. 6.Sekiguchi, J., et al., Emergence of rifampicin resistance in methicillin-resistant Staphylococcus aureus in tuberculosis wards. J Infect Chemother, 2006. 12(1): p. 47-50. 7.Feil, E.J., et al., eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol, 2004. 186(5): p. 1518-30. 8.Huang, Y.H., et al., Clonal spread of SCCmec type IV methicillin-resistant Staphylococcus aureus between community and hospital. Clin Microbiol Infect, 2007. 13(7): p. 717-24. 9.Tsao, F.Y., H.W. Kou, and Y.C. Huang, Dissemination of methicillin-resistant Staphylococcus aureus sequence type 45 among nursing home residents and staff in Taiwan. Clin Microbiol Infect, 2015. 21(5): p. 451-8. 10.Enright, M.C., et al., The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A, 2002. 99(11): p. 7687-92. 11.Tan, C.K., et al., Increased rifampicin resistance in blood isolates of meticillin-resistant Staphylococcus aureus (MRSA) amongst patients exposed to rifampicin-containing antituberculous treatment. Int J Antimicrob Agents, 2011. 37(6): p. 550-3. 12.Tan, C.K., et al., Vancomycin plus rifampicin for methicillin-resistant Staphylococcus aureus pneumonia benefits only those who have no development of rifampicin resistance during treatment. Crit Care Med, 2010. 38(8): p. 1754; author reply 1754-5. 13.Forrest, G.N. and K. Tamura, Rifampin combination therapy for nonmycobacterial infections. Clin Microbiol Rev, 2010. 23(1): p. 14-34. 14.Russell, C.D., et al., Adjunctive rifampicin may improve outcomes in Staphylococcus aureus bacteraemia: a systematic review. J Med Microbiol, 2014. 63(Pt 6): p. 841-8. 15.Septimus, E.J. and M.L. Schweizer, Decolonization in Prevention of Health Care-Associated Infections. Clin Microbiol Rev, 2016. 29(2): p. 201-22. 16.Ammerlaan, H.S., et al., Eradication of methicillin-resistant Staphylococcus aureus carriage: a systematic review. Clin Infect Dis, 2009. 48(7): p. 922-30. 17.Falagas, M.E., I.A. Bliziotis, and K.N. Fragoulis, Oral rifampin for eradication of Staphylococcus aureus carriage from healthy and sick populations: a systematic review of the evidence from comparative trials. Am J Infect Control, 2007. 35(2): p. 106-14. 18.Wannet, W.J., et al., Widespread dissemination in The Netherlands of the epidemic berlin methicillin-resistant Staphylococcus aureus clone with low-level resistance to oxacillin. J Clin Microbiol, 2004. 42(7): p. 3077-82. 19.Chen, C.J. and Y.C. Huang, New epidemiology of Staphylococcus aureus infection in Asia. Clin Microbiol Infect, 2014. 20(7): p. 605-23. 20.Qi, W., et al., Molecular epidemiology of methicillin-resistant Staphylococcus aureus in Zurich, Switzerland (2003): prevalence of type IV SCCmec and a new SCCmec element associated with isolates from intravenous drug users. J Clin Microbiol, 2005. 43(10): p. 5164-70. 21.Chen, F.J., et al., mecA-positive Staphylococcus aureus with low-level oxacillin MIC in Taiwan. J Clin Microbiol, 2012. 50(5): p. 1679-83. 22.Ho, C.M., et al., Methicillin-resistant Staphylococcus aureus isolates with SCCmec type V and spa types t437 or t1081 associated to discordant susceptibility results between oxacillin and cefoxitin, Central Taiwan. Diagn Microbiol Infect Dis, 2016. 86(4): p. 405-411. 23.Chen, C.J., et al., Molecular epidemiology and antimicrobial resistance of methicillin-resistant Staphylococcus aureus bloodstream isolates in Taiwan, 2010. PLoS One, 2014. 9(6): p. e101184. 24.Shopsin, B., et al., Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol, 1999. 37(11): p. 3556-63. 25.Wichelhaus, T.A., et al., Molecular characterization of rpoB mutations conferring cross-resistance to rifamycins on methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 1999. 43(11): p. 2813-6. 26.Chen, H.J., et al., Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother, 2010. 54(12): p. 4985-91. 27.Chen, S.Y., et al., Methicillin-resistant Staphylococcus aureus (MRSA) staphylococcal cassette chromosome mec genotype effects outcomes of patients with healthcare-associated MRSA bacteremia independently of vancomycin minimum inhibitory concentration. Clin Infect Dis, 2012. 55(10): p. 1329-37. 28.Rangel-Frausto, M.S., et al., The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA, 1995. 273(2): p. 117-23. 29.Milheirico, C., D.C. Oliveira, and H. de Lencastre, Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother, 2007. 51(9): p. 3374-7. 30.Gillet, Y., et al., Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet, 2002. 359(9308): p. 753-9. 31.Chen, F.J., et al., Role of the mecA gene in oxacillin resistance in a Staphylococcus aureus clinical strain with a pvl-positive ST59 genetic background. Antimicrob Agents Chemother, 2014. 58(2): p. 1047-54. 32.Takahata, M., et al., Mutations in thegyrA and grlA genes of quinolone-resistant clinical isolates of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother, 1996. 38(3): p. 543-6. 33.Watanabe, Y., et al., Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J Clin Microbiol, 2011. 49(7): p. 2680-4. 34.Baek, K.T., et al., Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrob Agents Chemother, 2015. 59(11): p. 6983-91. 35.Chen, C.J., et al., Reduced susceptibility to vancomycin in isogenic Staphylococcus aureus strains of sequence type 59: tracking evolution and identifying mutations by whole-genome sequencing. J Antimicrob Chemother, 2014. 69(2): p. 349-54. 36.Wang, J.L., et al., Comparison of both clinical features and mortality risk associated with bacteremia due to community-acquired methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus. Clin Infect Dis, 2008. 46(6): p. 799-806.
|