(3.231.29.122) 您好!臺灣時間:2021/02/25 15:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建浩
研究生(外文):Chien-Hao Chen
論文名稱:環境擾動與生物多樣性影響翡翠水庫浮游植物生質量之穩定性
論文名稱(外文):Environmental fluctuations and biodiversity effect on phytoplankton biomass stability in Feitsui Reservoir
指導教授:謝志豪謝志豪引用關係
指導教授(外文):Chih-hao Hsieh
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:34
中文關鍵詞:生物多樣性擾動穩定性浮游植物生質量翡翠水庫
外文關鍵詞:biodiversitydisturbancestabilityphytoplankton biomassFeitsui Reservoir
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一方面,生物多樣性被認為能維持生態穩定性,儘管有些爭議圍繞在物種豐度和物種均勻度的影響。另一方面,由極端氣候事件造成的擾動會降低生態穩定性。我使用翡翠水庫從1999年12月到2013年11月的每月浮游植物時間序列資料,檢測生物多樣性和擾動對生態穩定性的影響。我假設越強的擾動會降低生態穩定性,而越高的生物多樣性則會提升生態穩定性。我使用不重疊的每三個月的視窗(即每個季節)進行調查。為了測試假說,我以每一季節的浮游植物總生質量的變異係數(Coefficient of variation)當作是不穩定指標(proxy of instability);使用三個月平均的生物多樣性指數包含物種豐度、香儂多樣性指數(Shannon-Wiener index of diversity)和皮洛均勻度指數(Pielou’s evenness index)檢測生物多樣性的效應;使用每一季節的降雨量、表層水溫、表層營養鹽和表層濁度的平均與變異係數評估擾動的效應。我使用廣義混合線性模型(Generalized linear mixed-effect model),檢測浮游植物總生質量的變異係數與擾動及生物多樣性之間的關係,並把季節當作隨機因子(random effect),避免得到的統計結果單純是因為季節變異所造成的。我發現浮游植物總生質量在高物種豐度和低溫度變化時較穩定,但生物多樣性和擾動之間的交互作用是不顯著的。此外,在翡翠水庫系統中,溫度變化的效應在影響浮游植物穩定性上比物種豐度更重要。本篇的貢獻是使用野外長期的時間資料,發現擾動和生物多樣性的交互作用影響浮游植物總生質量的穩定性是不存在的。
On the one hand, biodiversity has been suggested to maintain ecological stability, although some debates surround on species richness versus evenness effects. On the other hand, disturbances as a result of extreme weather events were found to destabilize ecosystems. Here, using monthly data of phytoplankton community and environmental variables in Feitsui Reservoir from December 1999 to November 2013, I examined the effects of biodiversity and disturbance on ecological stability. I hypothesized that a higher level of disturbance results in lower ecological stability, whereas a higher level of biodiversity promotes stability. Specifically, I used a non-overlapping window of three-month data (i.e. one season) for investigation. To test the hypotheses, I used coefficient of variation (CV) of phytoplankton total biomass at community level in each season as a proxy for instability, examined biodiversity effects using the average of three months diversity indices including species richness, Shannon-Wiener index of diversity, and Pielou’s evenness index, and evaluated disturbance effects using mean and CV of precipitation, water temperature, nutrients and turbidity at the surface layer in each season. I then used generalized linear mixed-effect model (GLMM) to examine the relationship between phytoplankton stability versus biodiversity and disturbance, with season as random effect to avoid spurious results that simply arise due to seasonality. I found that the phytoplankton biomass was more stable with a higher level of species richness as well as a lower level of CV of temperature, whereas the interaction was not significant. Moreover, effect of CV of temperature was stronger than species richness on affecting phytoplankton biomass stability in Feitsui Reservoir. The contribution of this study was to suggest that the interactive effect of disturbance and biodiversity on phytoplankton stability may not exist by using long-term data in natural system.
口試委員審定書...Ⅰ
誌謝...Ⅱ
中文摘要...Ⅲ
Abstract...Ⅴ
Contents...Ⅶ
Introduction...1
Materials & Methods...4
Study Site...4
Sample Collection...4
Parameters...6
Stability index...6
Disturbance index...7
Biodiversity index...7
Data Analysis...8
Results...10
Disturbance effects on CV of phytoplankton biomass...10
Biodiversity effects on CV of phytoplankton biomass...10
Interactive effect of disturbance and biodiversity on CV of phytoplankton biomass...11
Discussion...12
Disturbance effects on phytoplankton stability...12
Biodiversity effects on phytoplankton stability...13
Interactive effect of disturbance and biodiversity on phytoplankton stability...13
Conclusions...15
Figure References...16
Table References...17
Figures...18
Tables...22
References...26
Appendixes...33
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
American Public Health Association (APHA), American Water Works Association, Water Environmental Federation. (1998). Standard Methods for Examination of Water and Wastewater, 20th ed. Washington, DC.
Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American statistical Association, 88(421), 9-25.
Casella, G., & Berger, R. L. (2002). Statistical inference (Vol. 2). Pacific Grove, CA: Duxbury Press.
Chen, C. S., Chen, Y. L., Liu, C. L., Lin, P. L., & Chen, W. C. (2007). Statistics of heavy rainfall occurrences in Taiwan. Weather and Forecasting, 22(5), 981-1002.
Cottingham, K. L., Brown, B. L., & Lennon, J. T. (2001). Biodiversity may regulate the temporal variability of ecological systems. Ecology letters, 4(1), 72-85.
Cottingham, K. L., Rusak, J. A., & Leavitt, P. R. (2000). Increased ecosystem variability and reduced predictability following fertilization: evidence from paleolimnology. Ecology letters, 3(4), 340-348.
De Senerpont Domis, L. N., Elser, J. J., Gsell, Huszar, V. L., Ibelings, B. W., Jeppesen, E., Kosten, S., Mooij, W. M., Roland, F., Sommer, U., Donk, E., Winder, M., Lürling, M. (2013). Plankton dynamics under different climatic conditions in space and time. Freshwater Biology, 58(3), 463-482.
Fan, C. W., & Kao, S. J. (2008). Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan. Science of the Total Environment, 393(2), 326-332.
Gardner, E. M., McKnight, D. M., Lewis Jr, W. M., & Miller, M. P. (2008). Effects of nutrient enrichment on phytoplankton in an alpine lake, Colorado, USA. Arctic, Antarctic, and Alpine Research, 40(1), 55-64.
Hidalgo, H. G., & Dracup, J. A. (2003). ENSO and PDO effects on hydroclimatic variations of the Upper Colorado River Basin. Journal of Hydrometeorology, 4(1), 5-23.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., De Luca, E., Ebeling, A., Griffin, J. N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Manning, P., Meyer, S., T., Mori, A. S., Naeem, S., Niklaus, P. A., Polley, H. W., Reich, P. B., Roscher, C., Seabloom, E. W., Smith, M. D., Thakur, M. P., Tilman, D., Tracy, B. F., Van der Putten, W. H., van Ruijven, J., Weigelt, A., Weisser, W. W., Wilsey, B., & Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526(7574), 574-577.
Jacobsen, B. A., & Simonsen, P. (1993). Disturbance events affecting phytoplankton biomass, composition and species diversity in a shallow, eutrophic, temperate lake. Hydrobiologia, 249, 9-14.
Levin, S. A., Carpenter, S. R., Godfray, H. C., Kinzig, A. P., Loreau, M., Losos, J. B., Walker, B., & Wilcove, D. S. (Eds.) (2009). The Princeton guide to ecology. Princeton: Princeton University Press.
Liboriussen, L., & Jeppesen, E. (2003). Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology, 48(3), 418-431.
May, R. M. (1972). Will a large complex system be stable? Nature, 238(5364), 413-414.
McCann, K. S. (2000). The diversity–stability debate. Nature, 405(6783), 228-233.
Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology, 12(1), 39-45.
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods in Ecology and Evolution, 4(2), 133-142.
Namba, T. (2015). Multi-faceted approaches toward unravelling complex ecological networks. Population Ecology, 57(1), 3-19.
Neyman, J., & Pearson, E. S. (1933). On the Problem of the Most Efficient Tests of Statistical Hypotheses. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 231 (694-706), 289-337
Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of theoretical biology, 13, 131-144.
Polley, H. W., Wilsey, B. J., & Derner, J. D. (2007). Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos, 116(12), 2044-2052.
Pomati, F., Matthews, B., Jokela, J., Schildknecht, A., & Ibelings, B. W. (2012). Effects of re-oligotrophication and climate warming on plankton richness and community stability in a deep mesotrophic lake. Oikos, 121(8), 1317-1327.
Rasmusson, E. M., & Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Monthly Weather Review, 110(5), 354-384.
Rutledge, R. W., Basore, B. L., & Mulholland, R. J. (1976). Ecological stability: an information theory viewpoint. Journal of Theoretical Biology, 57(2), 355-371.
Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Communication. Univ. Illinois Press, Urbana, Ill, USA.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (Eds.) (2013). IPCC, 2013: Summary for Policymakers. Climate change, 3-29.
Taipei Feitsui Reservoir Administration (TFRA). (2012). Annual Report of Feitsui Reservoir. TFRA, Taipei, Taiwan, pp. 48.
Theil, H. (1961). Economic Forecasts and Policy (2nd revised edn.). North Holland Publishing Co, Amsterdam.
Tilman, D. (1996). Biodiversity: population versus ecosystem stability. Ecology, 77(2), 350-363.
Tilman, D. (1999). The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80(5), 1455-1474.
Tilman, D., Lehman, C. L., & Bristow, C. E. (1998). Diversity-stability relationships: statistical inevitability or ecological consequence? The American Naturalist, 151(3), 277-282.
Tilman, D., Reich, P. B., & Knops, J. M. (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441(7093), 629-632.
Turner, L., Tracey, D., Tilden, J., & Dennison, W. (Eds.) (2004). Where river meets sea: Exploring Australia''s estuaries. Cooperative Research Centre for Coastal Zone, Estuary, and Waterways Management, Brisbane.
Venail, P. A., Alexandrou, M. A., Oakley, T. H., & Cardinale, B. J. (2013). Shared ancestry influences community stability by altering competitive interactions: evidence from a laboratory microcosm experiment using freshwater green algae. Proceedings of the Royal Society of London B: Biological Sciences, 280(1768), 20131548.
Wang, B., Wu, R., & Fu, X. (2000). Pacific–East Asian teleconnection: how does ENSO affect East Asian climate? Journal of Climate, 13(9), 1517-1536.
Wardle, D. A., Bonner, K. I., Barker, G. M., Yeates, G. W., Nicholson, K. S., Bardgett, R. D., Watson, R. N., & Ghani, A. (1999). Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs, 69(4), 535-568.
Webb, B. W., & Nobilis, F. (2007). Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrological Sciences Journal, 52(1), 74-85.
Wu, J. T., Hsu, Y. B., & Kow, L. C. (2015). Resilience of a phytoplankton community after disturbance in a subtropical reservoir: A case study in Feitsui Reservoir, Taiwan. Ecological Indicators, 52, 284-291.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔