(3.237.97.64) 您好!臺灣時間:2021/03/04 14:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪麗智
研究生(外文):Li-Jhih Hung
論文名稱:評估種植冇骨消和野棉花能否有效抑制大花咸豐草族群
論文名稱(外文):Evaluation the inhibition effects of planting Sambucus chinensis L. and Urena lobata L. on the population of Bidens pilosa L. var. radiata Sch. Bip.
指導教授:高文媛
指導教授(外文):Wen-Yuan Kao
口試委員:黃玲瓏賴宜鈴黃雅倫
口試委員(外文):Ling-Long Kuo-HuangI-Ling LaiYa-Lun Huang
口試日期:2017-04-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:大花咸豐草外來入侵種臺灣原生種種子發芽小苗生長相剋作用
外文關鍵詞:Bidens pilosa var. radiatainvasive plantnative speciesseed germinationseedling growthallelopathy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大花咸豐草 (Bidens pilosa var. radiata) 是多年生、入侵臺灣的植物;而臺灣目前主要用「移除法」控制入侵植物。在本研究中,我先做田間調查以了解移除是否可有效控制大花咸豐草;在移除北投樣區 (優勢物種為大花咸豐草) 內的植物後,觀察且測量樣區內植物群落的消長,發現一年生植物會先成為優勢物種,當其逐漸死亡,多年生的大花咸豐草會再次成為優勢物種;因此只靠移除不能有效控制大花咸豐草。根據前人研究,在實施移除法後,若能再搭配種植原生植物,可能是抑制入侵植物的有效方式。冇骨消 (Sambuscus chinensis) 和野棉花 (Urena lobata) 為臺灣常見的多年生原生植物,其種子大小與大花咸豐草之種子相當;本研究接著比較這兩種原生植物和大花咸豐草的種子發芽速率、小苗生長速率和成熟植株生理及生長表現,並測試這兩種原生植物之組織水溶液萃取液是否會抑制大花咸豐草,以評估如果移除大花咸豐草後再種植這兩種原生植物是否可以抑制大花咸豐草的族群數量。結果顯示,雖然大花咸豐草的發芽率比野棉花高,但野棉花的發芽速率較大花咸豐草快,此現象在高溫 (30 ̊C/25 ̊C) 較顯著;冇骨消在播種後11天內沒有發芽。在冬季,小苗栽植六周後野棉花的植株高度、葉片面積和總生物量都顯著高於大花咸豐草。在夏季,小苗在栽植六周後,野棉花的植株高度和總生物量和大花咸豐草相似,然而在持續栽植三個月後,野棉花成熟植株的總生物量比大花咸豐草高;而冇骨消小苗在栽植六周後與大花咸豐草有相似的總生物量,但植株高度小於大花咸豐草。本研究沒有發現野棉花和冇骨消的組織水溶液萃取液可以有效抑制大花咸豐草的種子發芽率或小苗生長。根據實驗結果推測,在夏季移除大花咸豐草後再播撒野棉花種子或種植野棉花小苗可能可以抑制大花咸豐草的數量;而移除大花咸豐草後再播撒冇骨消種子或種植冇骨消小苗可能無法抑制大花咸豐草的族群數量。
Bidens pilosa var. radiata is a perennial invasive plant in Taiwan. Eradication is the most often used method to inhibit the spread of invasive plants in Taiwan. In this research, I conducted a field survey to examine whether the method is applicable to control the population of B. pilosa var. radiata. After eradicating all plants growing in a farm, in Peitou, dominated by B. pilosa var. radiata, I found that annual species dominated the plots at the beginning of the succession but they died out soon, and subsequently, B. pilosa var. radiata became dominant again. Therefore, eradication alone cannot control the population of B. pilosa var. radiata. According to previous studies, planting suitable native species might be able to prevent the invasion of invasive plants after their removal. Sambucus chinensis and Urena lobata are two native perennial species producing seed size compatible to B. pilosa var. radiata. In the second part of this study, I evaluated whether planting these two native species could inhibit the population size of B. pilosa var. radiata after its eradication. I compared seed germination, seedling growth, physiological and growth traits of the three species and also investigated allelopathic effects. Results of seed germination experiments revealed that among the three species, B. pilosa var. radiata had the highest germination percentage, U. lobata had the fast germination rate at the temperature of 30 ̊C/25 ̊C, while S. chinensis did not germinate during the incubation period of 11 days. During the six weeks of culture period in winter, seedlings of U. lobata had higher plant height, accumulated more biomass and more leaf area than those of B. pilosa var. radiata. In summer, seedlings of U. lobata and B. pilosa var. radiata had similar plant height and biomass at the end of the 6-week of culture period. When the culture period was extended to 3 months, U. lobata accumulated more biomass than B. pilosa var. radiata. S. chinensis had similar biomass but lower plant height than B. pilosa var. radiata after 6 weeks of culture period. In general, I did not find that aquatic extracts of S. chinensis and U. lobata had apparent effect on seed germination and growth of B. pilosa var. radiata. According to these results, I suggested that sowing the seeds or planting the seedlings of U. lobata might be able to control the population size of B. pilosa var. radiata after the eradication treatment in summer. However, S. chinensis might not be a good candidate for the application.
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 Ⅶ
一、前言 1
二、材料與方法 8
(一) 田野調查 8
1. 研究地點與氣象資料來源 8
2. 植物種類記錄與覆蓋度測量 8
3. 植物與土壤之碳、氮含量及碳、氮穩定性同位素比值分析 9
(二) 大花咸豐草、冇骨消和野棉花之比較 10
1. 在不同光度及溫度下種子發芽率之比較 10
2. 小苗生長特徵分析 11
3. 成熟植株之比較 12
4. 相剋作用 15
(三) 統計與分析 16
三、結果 17
(一) 田野調查 17
1. 氣象資料 17
2. 植物種類記錄與覆蓋度測量 17
3. 碳、氮含量及碳、氮穩定性同位素比值分析 18
4. 整個樣區覆蓋度占前五名之物種消長 18
(二) 大花咸豐草、冇骨消和野棉花之比較 27
1. 在不同光度及溫度下種子發芽率之比較 27
2. 小苗生長特徵分析 30
3. 成熟植株 35
4. 相剋作用 44
四、討論 49
(一) 田野調查 49
(二) 大花咸豐草、冇骨消和野棉花之比較 51
1. 在不同光度及溫度下種子發芽率之比較 51
2. 小苗生長比較 52
3. 成熟植株比較 53
4. 相剋作用 54
(三) 未來工作 55
五、結論 57
六、參考文獻 58
七、附錄 67
行政院農委會 (2014) 藥用植物主題館,2017年3月10日,取自
https://kmweb.coa.gov.tw/subject/ct.asp?xItem=1047934&ctNode=9329&mp=369&kpi=0&hashid=。
李雪利、李正、李彥濤、張文帄、曾憲立、鄭文冉、劉國順、葉協鋒 (2009) 植
物化感作用研究進展。中國農學通報,25(23): 142-146。
徐玲明、林訓仕 (2005) 三種鬼針草植株、種子外觀形態及發芽率之比較。中華
民國雜草學會會刊,26(1): 33-42。
徐國鈞、王強 (2006) 中草藥彩色圖譜 (第三版)。福建科學技術出版社,中國。
徐曉玫 (2006) 大花咸豐草對鬼針的競爭優勢及入侵性探討。碩士論文,國立臺
灣大學,臺北市。
秦衛華、張金池、徐網谷、繆春春 (2012) 藥用植物接骨草的化感作用。江蘇農
業學報,28(6): 1263-1266。
郭華仁 (2015) 種子學。國立臺灣大學出版中心,87-88頁。
郭耀綸、陳志遠、黃慈薇 (2003) 小花蔓澤蘭的生態生理性狀。小花蔓澤蘭危害
與管理研討會專刊,11-27頁。
黃涵靈 (2008) 比較生長在不同海拔高度咸豐草 (Bidens pilosa) 族群間的差異。
碩士論文,國立臺灣大學,臺北市。
黃雅倫 (2014) 比較咸豐草三個變種的生物特徵以了解大花咸豐草在臺灣的入侵
優勢。博士論文,國立臺灣大學,臺北市。
蔣慕琰、徐玲明、袁秋英、陳富永、蔣永正 (2003) 臺灣外來植物之危害與生態。
小花蔓澤蘭危害與管理研討會專刊,97-109頁。


Adler, P. B., D''Antonio, C. M., & Tunison, J. T. (1998). Understory succession following a dieback of Myrica faya in Hawai’i Volcanoes National Park. Pacific Science, 52(1), 69-78.
Awan, T. H., Chauhan, B. S., & Cruz, P. C. S. (2014). Influence of environmental factors on the germination of Urena lobata L. and its response to herbicides. Plos One, 9(3), 1-8.
Baker, H. G. (1974). The evolution of weeds. Annual Review of Ecology and Systematics, 5(1), 1-24.
Baraloto, C., Forget, P.-M., & Goldberg, D. E. (2005). Seed mass, seedling size and neotropical tree seedling establishment. Journal of Ecology, 93(6), 1156-1166.
Baskin, C. C., & Baskin, J. M. (1988). Germination ecophysiology of herbaceous plant species in a temperate region. American Journal of Botany, 75(2), 286-305.
Batish, D. R., Lavanya, K., Singh, H. P., & Kohli, R. K. (2007). Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regulation, 51(2), 119-128.
Batish, D. R., Singh, H. P., Kohli, R. K., Saxena, D. B., & Kaur, S. (2002). Allelopathic effects of parthenin against two weedy species, Avena fatua and Bidens pilosa. Environmental and Experimental Botany, 47(2), 149-155.
Bekker, R. M., Bakker, J. P., Grandin, U., Kalamees, R., Milberg, P., Poschlod, P., Thompson, K., Willems, J. H. (1998). Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional Ecology, 12(5), 834-842.
Bonito, A., Varone, L., & Gratani, L. (2011). Relationship between acorn size and seedling morphological and physiological traits of Quercus ilex L. from different climates. Photosynthetica, 49(1), 75.
Brousseau, L., Bonal, D., Cigna, J., & Scotti, I. (2013). Highly local environmental variability promotes intrapopulation divergence of quantitative traits: an example from tropical rain forest trees. Annals of Botany, 112(6), 1169-1179.
Burns, J. H. (2006). Relatedness and environment affect traits associated with invasive and noninvasive introduced Commelinaceae. Ecological Applications, 16(4), 1367-1376.
Causton, D. R., & Venus, J. C. (1981). The Biometry of Plant Growth. London: Edward Arnold.
Chang, C.-E. Abutilon by Yang, A. T.-Y. (1998). Malvaceae. In: Huang, T.-C. and Editorial Committee of the Flora of Taiwan. (eds.), Flora of Taiwan Vol. 3. 2nd ed. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan, 752.
Chen, S.-Y., Chien, C.-T., Hidayati, S. N., & Walck, J. L. (2014). Taiwanese montane Sambucus chinensis seeds require warm stratification, contrasting with other congeneric temperate members. Seed Science Research, 24(03), 217-228.
Chong, T. V., & Ismail, B. S. (2006). Field evidence of the allelopathic properties of Dicranopteris linearis. Weed Biology and Management, 6(2), 59-67.
Daehler, C. C. (2003). Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution, and Systematics, 34(1), 183-211.
Donald, W. W. (1990). Management and control of Canada thistle (Cirsium arvense). Reviews of weed Science, 5, 193-249.
Douglass, C. H., Weston, L. A., & Wolfe, D. (2011). Phytotoxicity and potential allelopathy in pale (Cynanchum rossicum) and black swallowwort (C. nigrum). Invasive Plant Science and Management, 4(1), 133-141.
Drenovsky, R. E., Martin, C. E., Falasco, M. R., & James, J. J. (2008). Variation in resource acquisition and utilization traits between native and invasive perennial forbs. American Journal of Botany, 95(6), 681-687.
Durand, L. Z., & Goldstein, G. (2001). Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia, 126(3), 345-354.
Fenner, M. (1980). The inhibition of germination of Bidens Pilosa seeds by leaf canopy shade in some natural vegetation types. New Phytologist, 84(1), 95-101.
Flory, S. L., & Clay, K. (2010). Non-native grass invasion suppresses forest succession. Oecologia, 164(4), 1029-1038.
Foster, B. L., Houseman, G. R., Hall, D. R., & Hinman, S. E. (2015). Does tallgrass prairie restoration enhance the invasion resistance of post-agricultural lands? Biological Invasions, 17(12), 3579-3590.
Foster, L. (1989). The biology and non-chemical control of dock species Rumex obtusifolius and R. crispus. Biological Agriculture and Horticulture, 6(1), 11-25.
Gaertner, M., Biggs, R., Beest, M. T., Hui, C., Molofsky, J., & Richardson, D. M. (2014). Invasive plants as drivers of regime shifts: identifying high‐priority invaders that alter feedback relationships. Diversity and Distributions, 20(7), 733-744.
Gallagher, R. V., Randall, R. P., & Leishman, M. R. (2015). Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conservation Biology, 29(2), 360-369.
Hatcher, P. E., & Melander, B. (2003). Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Research, 43(5), 303-322.
Horton, J. L., & Neufeld, H. S. (1998). Photosynthetic responses of Microstegium vimineum (Trin.) A. Camus, a shade-tolerant, C4 grass, to variable light environments. Oecologia, 114(1), 11-19.
Howell, C. J. (2012). Progress toward environmental weed eradication in New Zealand. Invasive Plant Science and Management, 5(2), 249-258.
Hsu, H. -M., & Kao, W. -Y. (2009). Contrasting effects of aqueous tissue extracts
from an invasive plant, Bidens pilosa L. var. radiata, on the performance of its
sympatric plant species. Taiwania, 54(3), 255-260.
Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A., & Vitousek, P. M. (1990). Effects of soil resources on plant invasion and community structure in californian serpentine grassland. Ecology, 71(2), 478-491.
Rao, N. K., & Jackson, M. T. (1996). Seed longevity of rice cultivars and strategies for their conservation in genebanks. Annals of Botany, 77(3), 251-260.
Kitajima, K., & Fenner, M. (2000). Ecology of seedling regeneration. Seeds, the ecology of regeneration in plant communities, 2, 331-359.
Krishna, N. R., & Singh, M. (1992). Germination and emergence of hairy beggarticks (Bidens pilosa). Weed Science, 40(2), 195-199.
Kwembeya, A., Rugare, J. T., & Mabasa, S. (2013). Allelopathic effects of lantana (Lantana camara) on blackjack (Bidens pilosa) and pearl millet (Pennisetum glaucum). Asian Journal of Agriculture and Rural Development, 3(8), 543.
Leishman, M. R., & Westoby, M. (1994). Hypotheses on seed size: tests using the semiarid flora of western New South Wales, Australia. The American Naturalist, 143(5), 890-906.
Leishman, M. R., Wright, I. J., Moles, A. T., & Westoby, M. (2000). The evolutionary ecology of seed size. Seeds: the ecology of regeneration in plant communities, 2, 31-57.
Leiva, M. J., & Fernández-Alés, R. (1998). Variability in seedling water status during drought within a Quercus ilex subsp. ballota population, and its relation to seedling morphology. Forest Ecology and Management, 111(2–3), 147-156.
Levine, J. M., & D''Antonio, C. M. (1999). Elton revisited: a review of evidence linking diversity and invasibility. Oikos, 15-26.
Müller-Schärer, H., Schaffner, U., & Steinger, T. (2004). Evolution in invasive plants: implications for biological control. Trends in Ecology and Evolution, 19(8), 417-422.
Mack, R. N. (1996). Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biological Conservation, 78(1), 107-121.
Maron, John L., & Marler, M. (2008). Effects of native species diversity and resource additions on invader impact. The American Naturalist, 172(1), 18-33.
Marrs, R. H., Johnson, S. W., & Duc, M. G. L. (1998). Control of bracken and restoration of heathland. VIII. The regeneration of the heathland community after 18 years of continued bracken control or 6 years of control followed by recovery. Journal of Applied Ecology, 35(6), 857-870.
Moles, A. T., & Westoby, M. (2006). Seed size and plant strategy across the whole life cycle. Oikos, 113(1), 91-105.
Murrell, C., Gerber, E., Krebs, C., Parepa, M., Schaffner, U., & Bossdorf, O. (2011). Invasive knotweed affects native plants through allelopathy. American Journal of Botany, 98(1), 38-43.
Naeem, S., Knops, J. M. H., Tilman, D., Howe, K. M., Kennedy, T., & Gale, S. (2000). Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos, 91(1), 97-108.
Norman, J. M., & Campbell, G. S. (1989). Canopy structure. In: Pearcy, R. W., J.
Ehleringer, A. Mooney, and P. W. Rundel (eds.) Plant Physiological Ecology: Field Methods and Instrumentation. London: Chapman and Hall.
Oesterheld, M., & McNaughton, S. J. (1991). Effect of stress and time for recovery on the amount of compensatory growth after grazing. Oecologia, 85(3), 305-313.
Pattison, R. R., Goldstein, G., & Ares, A. (1998). Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia, 117(4), 449-459.
Peng, C.-I., Chung K.-F., & Li H.-L. (1998). Compositae. In: Huang, T.-C. and
Editorial Committee of the Flora of Taiwan. (eds.), Flora of Taiwan Vol. 4. 2nd ed. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan, 870.
Perrow, M. R., & Davy, A. J. (2002). Handbook of Ecological Restoration (Vol. 2). Cambridge University Press.
Poorter, H. (1989). Interspecific variation in relative growth rate: on ecological causes and physiological consequences. Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants, 24, 45-68.
Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vilà, M. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species'' traits and environment. Global Change Biology, 18(5), 1725-1737.
Radosevich, S. R., Holt, J. S., & Ghersa, C. M. (2007). Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management. John Wiley and Sons.
Reddy, K., N., & Singh, M. (1992). Germination and emergence of hairy beggarticks (Bidens pilosa). Weed Science, 40(2), 195-199.
Rose, S. L., Perry, D. A., Pilz, D., & Schoeneberger, M. M. (1983). Allelopathic effects of litter on the growth and colonization of mycorrhizal fungi. Journal of Chemical Ecology, 9(8), 1153-1162.
Salisbury, E. (1974). Seed size and mass in relation to environment. Proceedings of the Royal Society of London. Series B. Biological Sciences, 186(1083), 83-88.
San Emeterio, L., Arroyo, A., & Canals, R. M. (2004). Allelopathic potential of Lolium rigidum Gaud. on the early growth of three associated pasture species. Grass and Forage Science, 59(2), 107-112.
Seiwa, K. (2000). Effects of seed size and emergence time on tree seedling establishment: importance of developmental constraints. Oecologia, 123(2), 208-215.
Stanisci, A., Acosta, A. T. R., Di Iorio, A., & Vergalito, M. (2010). Leaf and root trait variability of alien and native species along Adriatic coastal dunes (Italy). Plant Biosystems, 144(1), 47-52.
Strauss, S. Y., & Agrawal, A. A. (1999). The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution, 14(5), 179-185.
Tilman, D. (1999). The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80(5), 1455-1474.
Tognetti, P. M., & Chaneton, E. J. (2015). Community disassembly and invasion of remnant native grasslands under fluctuating resource supply. Journal of Applied Ecology, 52(1), 119-128.
Vitousek, P. M., D''Antonio, C. M., Loope, L. L., & Westbrooks, R. (1996). Biological invasions as global environmental change. American Scientist, 84(5), 468-478.
Vitousek, P. M., & Walker, L. R. (1989). Biological invasion by Myrica Faya in Hawai''i: plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs, 59(3), 247-265.
Walton, C. S. (2003). Leucaena (Leucaena leucocephala) in Queensland. Pest Status Review Series - Land Protection. Queensland Department of NaturalResourcesand Mines.
Wang, C.-M., Chen, H.-T., Li, T.-C., Weng, J.-H., Jhan, Y.-L., Lin, S.-X., & Chou, C.-H. (2014). The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris. Journal of Chemical Ecology, 40(1), 90-98.
Wang, J., Ferrell, J., MacDonald, G., & Sellers, B. (2009). Factors affecting seed germination of cadillo (Urena lobata). Weed Science, 57(1), 31-35.
Wu, S.-H., Hsieh, C.-F., & Rejmánek, M. (2004). Catalogue of the naturalized flora of Taiwan. Taiwania, 49(1), 16-31.
Yang, K.-C. & Chiu, S.-T. (1998). Caprifoliaceae. In: Huang, T.-C. and Editorial Committee of the Flora of Taiwan. (eds.), Flora of Taiwan Vol. 4. 2nd ed. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan, 750.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔