(3.235.108.188) 您好!臺灣時間:2021/03/07 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡孟穎
研究生(外文):Meng-Ying Tsai
論文名稱:探討台灣紫花酢漿草的繁殖和生長
論文名稱(外文):The studies on reproduction and growth of Oxalis corymbosa in Taiwan
指導教授:陳淑華陳淑華引用關係高文媛
指導教授(外文):Su-Hwa ChenWen-Yuan KAo
口試日期:2017-07-14
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:149
中文關鍵詞:花柱型花粉萌發授粉結實花藥組織學雄不孕小孢子發生花粉發育臺灣花柱三型性胚珠發育雌可稔性溫度生物量無性繁殖
外文關鍵詞:Floral morphspollen germinationpollinationseed-setanther histologymale sterilitymicrosporogenesispollen developmentTaiwantri-styled flower morphovule developmentfemale fertilitytemperaturebiomassvegetative propagation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:330
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紫花酢漿草(Oxalis corymbosa),原產於南美洲,具有花柱三型性(tristyly:長花柱型、中花柱型、短花柱型),在台灣缺少有性繁殖的紀錄。先前研究發現:台灣的紫花酢漿草缺少長花柱型,中花柱型個體最多,短花柱型很少,也有半等高型個體;不同花柱型比率很懸殊,可能會造成合適花柱型之間的傳粉機率下降;此外,花粉活性很低可能也是造成紫花酢漿草在台灣缺少有性繁殖的原因之一。本論文延續先前研究,除了針對紫花酢漿草的有性繁殖進行深入探討外,並測量不同花柱型的紫花酢漿草個體在不同溫度下的生長反應,了解溫度對紫花酢漿草的生長與無性繁殖的影響。使用人工授粉方式以檢驗紫花酢漿草是否有傳粉限制(第二章),結果顯示:僅半等高型(黃色花藥)花柱接收中花柱型(黃色花藥)下輪雄蕊的花粉後能產生極少數種子(7顆),其他各種人工授粉組合則沒有產生種子,顯示台灣的紫花酢漿草有少量可孕性的配子,而傳粉上的限制可能是導致其缺乏有性繁殖的一項原因;此外,量測雄蕊與花柱後發現,台灣的三個花柱型個體,下輪雄蕊與雌蕊的高度變異大,並非具有固定高度,這可能會降低傳粉效率。觀察紫花酢漿草在不同發育時期的小孢子囊與花藥(第三章),發現到營養層與中介層細胞液胞化、減數分裂時期之小孢子無妥善分隔(與胼胝體沉降異常或細胞分裂的異常有關)、中介層細胞瓦解時間過晚等異常現象,這些現象導致紫花酢漿草的成熟花粉敗育或者最終沒有正常花粉產生。製作胚珠切片觀察並量化可孕性胚珠比率(第四章)後,發現具有卵細胞的胚珠數量很少,在所觀察的中花柱型(黃色花藥)花的胚珠中有1.7%(2/121)、半等高型(黃色花藥)花的胚珠中有4.3%(7/162)具有5核的胚囊(雌配子體),而半等高型(白色花藥)花的胚珠中,則沒有觀察到任何具有5核的胚囊(0/129),此測量數據和人工授粉實驗結果相符。紫花酢漿草的生長明顯受到生長溫度的影響(第五章),中花柱型個體相對於其他花柱型,僅在15/13℃時累積較多生物量,而在20/15℃,25/20℃和30/25℃溫度處理下,並無差異;且在相同處理溫度下,中花柱型個體並沒有比半等高型個體具有更好的鱗莖生長優勢,雖然如此,相較於半等高型個體,中花柱型(黃色花藥)個體會產生較多、尺寸較小、包覆完全的成熟無性鱗莖,這可能是導致中花柱型(黃色花藥)個體數量較多的原因。
In a previous study, I studied Oxalis corymbosa, which is an exotic tristylous [long- (LS), mid- (MS), and short-styled (SS) morph] species, to investigate what limit sexual reproduction of the plant in Taiwan. Results of the study revealed that no sexual reproduction of this species in Taiwan is partly attributed to lack LS floral morph, disequilibrium in proportion of floral morphs (MS morph was the dominant), and low pollen viability. Individuals bearing semi-homostylous morphs (SHS) with white and fully male-sterile anthers were also found in Taiwan. This dissertation aims to answer several questions derived from the previous study (Chapter 1).
Can seeds be produced through hand-pollination? The result of a hand-pollination experiment suggests that O. corymbosa has potential to produce capsules in Taiwan (Chapter 2). However, limitation in pollen transfer and low percentage of fertile gametes result in no seed produced in field. So, what’s wrong with pollen and ovules? To answer this question, the development of male and female gametes were observed. In histological observation of microsporangium and anther development at different stages, several developmental aberrations, including incomplete callose deposition or cytokinesis failure at tetrad stage (MS and SHS morphs) and persistent/highly vacuolated middle layer cells during free microspore stage (SHS morph) were observed. These results reveal that male-sterility of the species is caused by multiple defects during microsporegenesis and pollen development in Taiwan (Chapter 3). High proportion of ovule abortion was frequently observed among floral types. Consequently, five-nucleate embryo sacs (megagametophytes) were only observed in ovules of few SHS-Y (4.3%) and MS-Y (1.7%) types of flowers, but not in those of SHS-W flowers during anthesis stage of O. corymbosa (Chapter 4). The observation of female fertility of O. corymbosa is consistent with the data of hand-pollination experiment. The results of temperature experiments showed that biomass accumulations of O. corymbosa was affected by different temperature regimes (Chapter 5). Individuals bearing MS-Y type flowers grown at low temperature treatment (15/13℃) accumulated more biomass than individuals bearing other floral types, but not at 20/15℃, 25/20℃, and 30/25℃. Moreover, MS individuals did not accumulated more biomass in bulbs than SHS individuals under any temperature regimes. However, MS-Y individuals at 25/20℃ produced more and smaller mature bulbs than individuals bearing other floral types. With more easily dispersed small-bulbs, MS-Y individuals might be able to establish more populations than individuals of other floral types.
中文摘要 I
Abstract III
Content V
LIST OF FIGURES VIII
LIST OF TABLES X
LIST OF APPENDIX XII

Chapter 1 General introduction 1
1.1 Plant reproduction 2
1.2 Heterostyly 3
1.3 Oxalis corymbosa in Taiwan 5
1.4 Objectives of this study 8

Chapter 2 Floral morphs and seed production from hand-pollination 11
中文摘要 12
Abstract 13
Introduction 15
Materials and methods 17
Results 22
Discussion 25

Chapter 3 Microsporangium development 41
中文摘要 42
Abstract 43
Introduction 45
Materials and methods 48
Results 50
Discussion 54

Chapter 4 Morphology and development of ovules 69
中文摘要 70
Abstract 71
Introduction 73
Materials and methods 75
Results 78
Discussion 81

Chapter 5 Vegetative growth and reproduction of Oxalis corymbosa DC. grown under different temperature regimes 91
中文摘要 92
Abstract 93
Introduction 94
Materials and methods 96
Results 98
Discussion 102

Conclusion 113
Literature cited 116
Appendix 138
Abad, A.R., Mehrtens, B.J., Mackenzie, S.A., 1995. Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell 7, 271-285.
Alexander, H.M., Burdon, J.J., 1984. The effect of disease induced by Albugo candida (white rust) and Peronospora parasitica (downy mildew) on the survival and reproduction of Capsella burna-pastoris (shepherd''s purse). Oecologia 64, 314-318.
Ariizumi, T., Toriyama, K., 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu. Rev. Plant. Biol. 62, 437-460.
Baker, H.G., 1965. Characteristics and modes of origin of weeds, in: Baker, H.G., Stebbins, G.L. (Eds.), The Genetics of Colonizing Species, 1st ed. Academic Press, New York, pp. 147-168.
Baker, H.G., 1966. The evolution, fuctioning and breakdown of heteromorphic incompatibility system Ⅰ. The Plumbaginaceae. Evolution 20, 349-368.
Barrett, S.C.H., 1979. The evolutionary breakdown of tristyly in Eichhornia crassipes (Mart.) Solms (water hyacinth). Evolution 33, 499-510.
Barrett, S.C.H., 1980. Sexual reproduction in Eichhornia crassipes (Water Hyacinth). II. Seed production in natural populations. J. Appl. Ecol. 17, 113-124.
Barrett, S.C.H., 1985. Floral trimorphism and monomorphism in continental and island populations of Eichhornia paniculata (Spreng.) Solms. (Pontederiaceae). Biol. J. Linn. Soc. 25, 41-60.
Barrett, S.C.H., 1988. Evolution of breeding systems in Eichhornia (Pontederiaceae): a review. Ann. Mo. Bot. Gard., 741-760.
Barrett, S.C.H., 1992. Heterostylous genetic polymorphism: model systems for evolutionary analysis, in: Barrett, S.C.H. (Ed.), Evolution and Function of Heterostyly Springer-Verlag, Heidelberg, Germany, pp. 1-29.
Barrett, S.C.H., 2010. Why reproductive systems matter for the invasion biology of plants, in: Richardson, D.M. (Ed.), Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Wiley-Blackwell, Oxford, UK, pp. 195-210.
Barrett, S.C.H., 2015. Influences of clonality on plant sexual reproduction. P. Natl. Acad. Sci. USA 112, 8859-8866.
Barrett, S.C.H., Ness, R.W., Vallejo-Marin, M., 2009. Evolutionary pathways to self-fertilization in a tristylous plant species. New Phytol. 183, 546-556.
Barrett, S.C.H., Shore, J.S., 2008. New insights on heterostyly: comparative biology, ecology and genetics, in: Franklin-Tong, V.E. (Ed.), Self-Incompatibility in Flowering Plants. Springer-Verlag, Berlin Heidelberg, pp. 3-32.
Batch, J.J., Morgan, D.G., 1974. Male sterility induced in barley by photoperiod. Nature 250, 165-167.
Bedinger, P., 1992. The remarkable biology of pollen. Plant Cell 4, 879-887.
Beeckman, T., Engler, G., 1994. An easy technique for the clearing of histochemically stained plant tissue. Plant Mol. Biol. Rep. 12, 37-42.
Berleth, T., Jürgens, G., 1993. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118, 575-587.
Bhandari, N.N., 1984. The microsporangium, in: Johri, B.M. (Ed.), Embryology of Angiosperms. Springer-Verlag, pp. 53-122.
Bingham, J., 1966. Varietal response in wheat to water supply in the field, and male sterility caused by a period of drought in a glasshouse experiment. Ann. Appl. Biol. 57, 365-377.
Bione, N.C., Pagliarini, M.S., de Almeida, L.A., 2005. A male-sterile mutation in soybean (Glycine max) affecting chromosome arrangement in metaphase plate and cytokinesis. Biocell 29, 177-181.
Brandham, P.E., 1982. Inter-embryo competition in the progeny of autotriploid Aloineae (Liliaceae). Genetica 59, 29-42.
Broadhvest, J., Hauser, B.A., 2006. Genes regulating ovule development, in: Jordan, B.R. (Ed.), The molecular biology and biotechnology of flowering. CABI, p. 332.
Brooking, I.R., 1976. Male sterility in Sorghum bicolor (L.) Moench induced by low night temperature. I. Timing of the stage of sensitivity. Funct. Plant Biol. 3, 589-596.
Brys, R., Jacquemyn, H., 2015. Disruption of the distylous syndrome in Primula veris. Ann. Bot. 115, 27-39.
Carniel, K., 1967. Licht- und elektronenmikroskopische Untersuchung der Ubischkörperentwicklung in der Gattung Oxalis. Österr bot Z 114, 490-501.
Castro, S., Ferrero, V., Costa, J., Sousa, A., Castro, M., Navarro, L., Loureiro, J., 2013. Reproductive strategy of the invasive Oxalis pes-caprae: Distribution patterns of floral morphs, ploidy levels and sexual reproduction. Biol. Invasions 15, 1863-1875.
Castro, S., Loureiro, J., Santos, C., Ater, M., Ayensa, G., Navarro, L., 2007. Distribution of flower morphs, ploidy level and sexual reproduction of the invasive weed Oxalis pes-caprae in the western area of the mediterranean region. Ann. Bot. 99, 507-517.
Chen, S.H., Chung, N.J., Wang, Y.N., Lee, C.L., Lee, Y.L., Tsai, P.F., 2006. Study of male sterility in Taiwania cryptomerioides Hayata (Taxodiaceae). Protoplasma 228, 137-144.
Chen, W., Yu, X.-H., Zhang, K., Shi, J., De Oliveira, S., Schreiber, L., Shanklin, J., Zhang, D., 2011. Male sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol. 157, 842-853.
Christensen, A.C., King, J.E., Jordan, R.J., Drews, N.G., 1997. Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10, 49-64.
Christensen, C.A., Gorsich, S.W., Brown, R.H., Jones, L.G., Brown, J., Shaw, J.M., Drews, G.N., 2002. Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. The Plant Cell 14, 2215-2232.
Christensen, C.A., Subramanian, S., Drews, G.N., 1998. Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev. Biol. 202, 136-151.
Costa, J., Castro, S., Loureiro, J., Barrett, S.C.H., 2016. Variation in style morph frequencies in tristylous Lythrum salicaria in the Iberian Peninsula: the role of geographical and demographic factors. Ann. Bot. 117, 331-340.
Costa, J., Ferrero, V., Loureiro, J., Castro, M., Navarro, L., Castro, S., 2014. Sexual reproduction of the pentaploid, short-styled Oxalis pes-caprae allows the production of viable offspring. Plant Biol. 16, 208-214.
Couteau, F., Belzile, F., Horlow, C., Grandjean, O., Vezon, D., Doutriaux, M.-P., 1999. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. The Plant Cell 11, 1623-1634.
Cui, H.-H., Liao, H.-Z., Tang, Y., Du, X.-Y., Chen, L.-Q., Ye, D., Zhang, X.-Q., 2015. ABORTED GAMETOPHYTE 1 is required for gametogenesis in Arabidopsis. J. Integr. Plant Biol. 57, 1003-1016.
Darwin, C., 1877. The different forms of flowers on plants of the same species. John Murray, London.
Davis, G.L., 1967. Oxalidaceae, in: Davis, G.L. (Ed.), Systematic Embryology of the Angiosperms. Jhon Wiley and Sons, Inc., p. 197.
Denton, M.F., 1973. in: Denton, M.F. (Ed.), Amonograph of Oxalis, section Ionoxalis (Oxalidaceae) in North America. Publication of the Michigan State University Museum.
Dickinson, H.G., Bell, P.R., 1972. The rôle of the tapetum in the formation of sporopollenin-containing structures during microsporogenesis in Pinus banksiana. Planta 107, 205-215.
Drews, G.N., Yadegari, R., 2002. Development and function of the angiosperm female gametophyte. Annu. Rev. Genet. 36, 99-124.
Dreyer, L.L., Van Wyk, A.E., 1998. Aberrant pollen in southern African Oxalis (Oxalidaceae). Grana 37, 337-342.
Dulberger, R., 1970. Floral dimorphism in Anchusa hybrida Ten. Israel J. Bot. 19, 37-41.
Dulberger, R., 1992. Floral polymorphism and their functional significance in the heterostylous syndrome, in: Barrett, S.C.H. (Ed.), Evolution and Function of Heterostyly. Springer-Verlag, Germany, pp. 41-84.
Echlin, P., Godwin, H., 1968. The ultrastructure and ontogeny of pollen in Helleborus foetidus L. : I. The development of the tapetum and ubisch bodies. J. Cell Sci. 3, 161-174.
Eckert, C.G., Barrett, S.C.H., 1995. Style morph ratios in tristylous Decodon verticillatus (Lythraceae): Selection vs. Historical contingency. Ecology 76, 1051-1066.
Endo, T., Sato, H., Yamaguchi, M., Kataoka, T., Nakagomi, K., Ito, T., Mori, K.-i., 2009. Estimate of outcrossing rates in a rice plant (Oryza sativa L.) under field conditions using a purple grain rice cultivar, Okunomurasaki. Breed. Sci. 59, 195-202.
Falasca, G., D''Angeli, S., Biasi, R., Fattorini, L., Matteucci, M., Canini, A., Altamura, M.M., 2013. Tapetum and middle layer control male fertility in Actinidia deliciosa. Ann. Bot. 112, 1045-1055.
Ferrero, V., Chapela, I., Arroyo, J., Navarro, L., 2011. Reciprocal style polymorphisms are not easily categorised: the case of heterostyly in Lithodora and Glandora (Boraginaceae). Plant Biol. 13, 7-18.
Freeman, S., Quillin, K., Allison, L., Black, M., Podgorski, G., Taylor, E., Carmichael, J., 2016. Biological Science. Benjamin-Cummings Publishing Company.
Fu, S., Zhang, Y., Wang, Y., Zhu, X., Tian, H., Russell, S., 2013. Defects in cytoskeletal microtubule deployment of microsporocytes contribute to fertility loss in genic male-sterile Chinese cabbage. Plant Reprod. 26, 55-61.
Fu, X.-p., Hu, J.-y., Hu, H.-r., Bao, M.-z., 2008. Cytological observation of microsporogenesis in male-sterile lines of Chinese pink (Dianthus chinensis L.). Agr. Sci. China 7, 547-553.
Futuyma, D.J., 2005. How to be fit: reproductive success, Evolution. Sinauer Associates, Inc., USA, pp. 405-428.
Gaiser, J.C., Robinson-Beers, K., Gasser, C.S., 1995. The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integument of ovules. The Plant Cell 7, 333-345.
Ganders, F.R., 1975. Heterostyly, homostyly, and fecundity in Amsinckia spectabilis (Boraginaceae). Madroño 23, 56-62.
Ganders, F.R., 1979. The biology of heterostyly. New Zeal . J. Bot. 17, 607-635.
Ghosh, S., Shivanna, K.R., 1982. Studies on pollen-pistil interaction in Linum grandiflorum. Phytomorphology 32, 385-395.
Gorczynski, T., 1934. Zytologische analyse einiger pollen entwicklungsvorgänge bei der Apfelsorte Schoner von Boskoop. Acta Soc. Bot. Pol. 11, 103-118.
Graham, R.D., 1975. Male sterility in wheat plants deficient in copper. Nature 254, 514-515.
Guth, C.J., Weller, S.G., 1986. Pollination, fertilization and ovule abortion in Oxalis magnifica. Am. J. Bot. 73, 246-253.
Hammond, H.S., 1908. Embryology of Oxalis corniculata. Ohio Nat. 8, 261-264.
Herr, J.M.J., 1972. An extended investigation on megagametophyte in Oxalis corniculata L., in: Murty, Y.S., Johri, B.M., Ram, H.Y.M., Varghese, T.M. (Eds.), Advances in Plant Morphology: (Professor V. Puri Commemoration). Sarita Prakashan, pp. 92-101.
Herr, J.M.J., Dowd, M.L., 1968. Development of the ovule and megagametophyte in Oxalis corniculata L. Phytomorphology 18, 43-53.
Heslop-Harrison, J., 1968. Tapetal origin of pollen-coat substances in Lilium. New Phytol. 67, 779-786.
Heslop-Harrison, J., Dickinson, H.G., 1969. Time relationships of sporopollenin synthesis associated with tapetum and microspores in Lilium. Planta 84, 199-214.
Heslop-Harrison, J., Heslop-Harrison, Y., 1970. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Biotech. Histochem. 45, 115-120.
Holford, P., Croft, J., Newbury, H.J., 1991. Structural studies of microsporogenesis in fertile and male-sterile onions (Allium cepa L.) containing the cms-S cytoplasm. Theoret. Appl. Genet. 82, 745-755.
Hu, C.-y., Zeng, Y.-x., Guo, H.-b., Lu, Y.-g., Chen, Z.-x., Shahid, M.Q., Liu, X.-d., 2010. Megasporogenesis and megagametogenesis in autotetraploid Indica/Japonica rice hybrid. Rice Sci. 17, 296-302.
Huang, T.-Y., 2003. The sprouting and growth of bulbs in Oxalis debilis var. corymbosa (DC) lourteig, Department of Agronomy. National Taiwan University, Taipei.
Huang, T.C., Liu, T.S., 1993. Oxlidaceae, in: Hsieh, C.F., Huang, T.C., Li, Z.Y., Lo, H.C., Ohashi, H., Shen, C.F., Wang, J.C., Yang, K.C. (Eds.), Flora of Taiwan, 2nd ed. Editorical committe of the Flora of Taiwan, Taipei, Taiwan, ROC, pp. 397-402.
Huang, X.Y., Niu, J., Sun, M.X., Zhu, J., Gao, J.F., Yang, J., Zhou, Q., Yang, Z.N., 2013. CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE5 splicing and pollen wall formation in Arabidopsis. Plant Cell 25, 637-648.
Huang, Y.L., Kao, W.Y., 2014. Different breeding systems of three varieties of Bidens pilosa in Taiwan. Weed Res. 54, 162-168.
Huck, N., Moore, J.M., Federer, M., Grossniklaus, U., 2003. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130, 2149-2159.
Huysmans, S., El-Ghazaly, G., Smets, E., 1998. Orbicules in angiosperms: Morphology, function, distribution, and relation with tapetum types. Bot. Rev. 64, 240-272.
Ishiguro, S., Nishimori, Y., Yamada, M., Saito, H., Suzuki, T., Nakagawa, T., Miyake, H., Okada, K., Nakamura, K., 2010. The Arabidopsis FLAKY POLLEN1 gene encodes a 3-hydroxy-3-methylglutaryl-coenzyme a synthase required for development of tapetum-specific organelles and fertility of pollen grains. Plant Cell Physiol. 51, 896-911.
Izhar, S., Frankel, R., 1971. Mechanism of male sterility in Petunia: The relationship between pH, callase activity in the anthers, and the breakdown of the microsporogenesis. Theoret. Appl. Genet. 41, 104-108.
Jarosz, A.M., Davelos, A.L., 1995. Tansley review no. 81. Effects of disease in wild plant populations and the evolution of pathogen aggressiveness. New Phytol. 129, 371-387.
Johnson, M.A., Preuss, D., 2002. Plotting a course: Multiple signals guide pollen tubes to their targets. Dev. Cell 2, 273-281.
Johri, B.M., 1992. Oxalidaceae, in: Johri, B.M., Ambegaokar, K.B., Srivastava, P.S. (Eds.), Comparative Embryology of Angiosperms. Springer-Verlag.
Kao, W.-Y., Tsai, T.-T., Chen, W.-H., 1998. A comparative study of Miscanthus floridulus (Labill) Warb and M. transmorrisonensis Hayata: Photosynthetic gas exchange, leaf characteristics and growth in controlled environments. Ann. Bot. 81, 295-299.
Keller, B., Thomson, J.D., Conti, E., 2014. Heterostyly promotes disassortative pollination and reduces sexual interference in Darwin''s primroses: evidence from experimental studies. Funct. Ecol. 28, 1413-1425.
Krishnamurthy, K.V., 2015. Pre-fertilization: Reproductive growth and development, in: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K.V. (Eds.), Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement. Springer India, New Delhi, pp. 409-440.
Lambers, H., Chapin III, F.S., Pons, T.L., 2008. Plant Physiological Ecology. Springer.
Li, H., Zhang, D., 2010. Biosynthesis of anther cuticle and pollen exine in rice. Plant signaling & behavior 5, 1121-1123.
Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X.X., Liang, W.Q., Yuan, Z., Xu, B., Chu, H.W., Wang, J., Wen, T.Q., Huang, H., Luo, D., Ma, H., Zhang, D.B., 2006. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18, 2999-3014.
Liu, B., Ho, C.-M.K., Lee, Y.-R.J., 2011. Microtubule reorganization during mitosis and cytokinesis: Lessons learned from developing microgametophytes in Arabidopsis thaliana. Front. Plant Sci. 2.
Lloyd, D.G., Webb, C.J., 1992. The evolution of heterostyly, in: Barrett, S.C.H. (Ed.), Evolution and Function of Heterostyly Springer-Verlag, Heidelberg, Germany, pp. 1-29.
Lu, P., Chai, M., Yang, J., Ning, G., Wang, G., Ma, H., 2014. The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis. Plant Physiol. 164, 1893-1904.
Luo, S., Zhang, D., Renner, E., Susanne, S., 2006. Oxalis debilis in China: distribution of flower morphs, sterile pollen and polyploidy. Ann. Bot. 98, 459-464.
Maheshwari, P., 1950. An introduction to the embryology of angiosperms. McGraw-Hill.
Mal, T.K., Lovett-Doust, J., 1997. Morph frequencies and floral variation in a heterostylous colonizing weed, Lythrum salicaria. Can. J. Bot. 75, 1034-1045.
Matsui, T., Omasa, K., Horie, T., 1997. High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Jpn. J. Crop Sci. 66, 449-455.
Mauseth, J.D., 2016. Botany. Jones & Bartlett Learning.
Mittler, R., 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15-19.
Narayana, L.L., 1970. Oxalidaceae, in: Indian National Science Academy, I.R., Research, I.N.C.o.O. (Eds.), Comparative Embryology of Angiosperms: Proceedings. Bulletin of the Indian National Science Academy. Indian National Science Academy, pp. 114-116.
Nepi, M., Guarnieri, M., Mugnaini, S., Cresti, L., Pacini, E., Piotto, B., 2005. A modified FCR test to evaluate pollen viability in Juniperus communis L. Grana 44, 148 - 151.
Ornduff, R., 1972. The breakdown of trimorphic incompatibility in Oxalis Section Corniculatae. Evolution 26, 52-65.
Overman, M.A., Warmke, H.E., 1972. Cytoplasmic male sterility in Sorghum. J. Hered. 63, 227-234.
Palmer, R.G., Albertsen, M.C., Horner, H.T., Skorupska, H., 1992. Male sterility in soybean and maize: developmental comparisons. Nucleus 35, 1-18.
Papini, A., Mosti, S., Brighigna, L., 1999. Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 207, 213-221.
Pargney, J.C., 1978. Etude ultrastructurale de la gamétogenése mâle dans une espéce à floraison cléistogame: Oxalis corniculata, suivie quelques considérations générales sur la cléistogamie. Can. J. Bot. 56, 1262-1269.
Pauw, A., 2005. Inversostyly: a new stylar polymorphism in an oil-secreting plant, Hemimeris racemosa (Scrophulariaceae). Am. J. Bot. 92, 1878-1886.
Peet, M.M., Sato, S., Gardner, R.G., 1998. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ. 21, 225-231.
Pimienta, E., Polito, V.S., 1982. Ovule abortion in `Nonpareil'' Almond (Prunus dulcis [Mill.] D. A. Webb). Am. J. Bot. 69, 913-920.
Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., Mommer, L., 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30-50.
Rédei, G.P., 1965. Non-mendelian megagametogenesis in Arabidopsis. Genetics 51, 857-872.
Raven, P.H., Evert, R.F., Eichhorn, S.E., 1999. Meiosis and sexual repoduction, Biology of Plants, Sixth ed. W.H. Freeman and Company, USA, pp. 169-182.
Reece, J.B., Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V., Jackson, R.B., 2011. Angiosperm reproduction and biotechnology, Cambell Biology, Ninth ed. Pearson Education, Inc., USA, pp. 847-866.
Richards, A.J., 1997. Heteromorphy, in: Richards, A.J. (Ed.), Plant Breeding Systems. Chapman and Hall, UK, pp. 242-296.
Richards, J.H., Barrett, S.C.H., 1992. The development of heterostyly, in: Barrett, S.C.H. (Ed.), Evolotion and Fuction of Heterostyly. Springer-Verlag Berlin Heidelberg, Germany, pp. 85-127.
Roland, J., Vian, B., 1991. General preparation and staining of thin sections, in: Hawes, C. (Ed.), Electron Microscopy of Plant Cells. Academic Press.
Rosenfeldt, S., Galati, B.G., 2005. Ubisch bodies and pollen ontogeny in Oxalis articulata Savigny. Biocell 29, 271-278.
Rosenfeldt, S., Galati, B.G., 2007. Pollen morphology of Oxalis species from Buenos Aires province (Argentina). Biocell 31, 13-21.
Rosenfeldt, S., Galati, B.G., 2011. Megasporogenesis and megagametophyte development in ten species of Oxalis. Ann. Bot. Fenn. 48, 263-271.
Rosenfeldt, S., Galati, B.G., 2012. Embryological studies of Oxalis debilis Kunth. Plant Syst. Evol. 298, 1567-1573.
Ross, L.C., Lambdon, P.W., Hulme, P.E., 2008. Disentangling the roles of climate, propagule pressure and land use on the current and potential elevational distribution of the invasive weed Oxalis pes-caprae L. on Crete. Perspect. Plant Ecol. 10, 251-258.
Rowley, J.R., Erdtman, G., 1967. Sporoderm in Populus and Salix. Grana 7, 517-567.
Saini, H.S., 1997. Effects of water stress on male gametophyte development in plants. Sex Plant Reprod 10, 67-73.
Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., Miyazawa, Y., Takahashi, H., Watanabe, M., Higashitani, A., 2010. Auxins reverse plant male sterility caused by high temperatures. P. Natl. Acad. Sci. USA 107, 8569-8574.
Sala, A., Verdaguer, D., Vilà, M., 2007. Sensitivity of the invasive geophyte Oxalis pes-caprae to nutrient availability and competition. Ann. Bot. 99, 637-645.
Satake, T., 1969. Research on cool injury of paddy rice plants in Japan. Jap. Agric. Res. Q. 4, 5-10.
Sato, S., Peet, M.M., Thomas, J.F., 2002. Determining critical pre‐ and post‐anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J. Exp. Bot. 53, 1187-1195.
Schneitz, K., 1999. The molecular and genetic control of ovule development. Curr, Opin. Plant Biol. 2, 13-17.
Shibaike, H., Ishiguri, Y., Kawano, S., 1995. Reproductive biology of Oxalis corniculata (Oxalidaceae): Style length polymorphisms and breeding systems of Japanese populations. Plant Species Bio.l 10, 83-93.
Shivanna, K.R., 2003a. Pollen-pistil interaction and fertilization, in: Shivanna, K.R. (Ed.), Pollen Biology and Biotechnology. Science Publishers, Enfield, NH, USA, pp. 114-139.
Shivanna, K.R., 2003b. Pollen development, in: Shivanna, K.R. (Ed.), Pollen Biology and Biotechnology. Science Publishers, Enfield, NH, USA.
Shivanna, K.R., 2003c. Self-incompatibility, in: Shivanna, K.R. (Ed.), Pollen Biology and Biotechnology. Science Publishers, Enfield, NH, USA, pp. 140-166.
Shukla, A., Sawhney, V.K., 1993. Metabolism of dihydrozeatin in floral buds of wild-type and a genic male sterile line of rapeseed (Brassica napus L.). J. Exp. Bot. 44, 1497-1505.
Sidorchuk, Y.V., Dorogova, N.V., Deĭneko, E.V., Shumnyĭ, V.K., 2008. Premature cytokinesis in pollen mother cells of transgenic tobacco plants (Nicotiana tabacum L.). Cell Tiss. Biol. 2, 337-341.
Signorini, M.A., Calamassi, R., Bruschi, P., Tani, C., 2014. Stigma and style anatomy and ultrastructure in Italian Oxalis pes-caprae L. and their possible connection with self-incompatibility. Flora 209, 471-483.
Spurr, A.R., 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. of Ultrastruct. Res. 26, 31-43.
Sun, M.-X., Huang, X.-Y., Yang, J., Guan, Y.-F., Yang, Z.-N., 2013. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod. 26, 83-91.
Tang, Z., Zhang, L., Yang, D.I., Zhao, C., Zheng, Y., 2011. Cold stress contributes to aberrant cytokinesis during male meiosis I in a wheat thermosensitive genic male sterile line. Plant Cell Environ. 34, 389-405.
Teng, N., Huang, Z., Mu, X., Jin, B., Hu, Y., Lin, J., 2005. Microsporogenesis and pollen development in Leymus chinensis with emphasis on dynamic changes in callose deposition. Flora 200, 256-263.
Tsai, M.-Y., 2007. Studies on factors limiting the distribution and sexual reproduction of Oxalis corymbosa DC. in Taiwan, Institute of Ecology and Evolutionary biology. National Taiwan University, Taipei, Taiwan, p. 60.
Tsai, M.-Y., Chen, S.-H., Kao, W.-Y., 2010. Floral morph, pollen viability, and ploidy level of Oxalis corymbosa DC. in Taiwan. Bot. Stud. 51, 81-88.
Tsai, M.-Y., Chen, S.-H., Kao, W.-Y., 2015. Microsporangium development in two species of Oxalis (Oxalidaceae) with different male fertility. Flora 213, 85-92.
Tsai, M.-Y., Chen, S.-H., Kao, W.-Y., 2017. Floral morphs and seed production from hand-pollination in a population of Oxalis corymbosa in Taiwan. Flora 226, 89-95.
Tsuchiya, T., Toriyama, K., Yoshikawa, M., Ejiri, S.-i., Hinata, K., 1995. Tapetum-specific expression of the gene for an endo-β-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol. 36, 487-494.
Vasil, I.K., 1967. Physiology and cytology of anther developmeent. Biol. Rev. 42, 327-366.
Veldkamp, J.E., 1971. Oxalidaceae, in: Steenis, C.G.J.v. (Ed.), Flora Malesiana. Wolters-Noordhoff, Groningen, pp. 151-178.
Verdaguer, D., Sala, A., Vilà, M., 2010. Effect of environmental factors and bulb mass on the invasive geophyte Oxalis pes-caprae development. Oecologica 36, 92-99.
Verstraete, B., Moon, H.-K., Smets, E., Huysmans, S., 2014. Orbicules in flowering plants: A phylogenetic perspective on their form and function. Bot. Rev 80, 107-134.
Vignoli, L., 1937. Fenomeni riproduttivi di Oxalis cernua Thunb. Lavori del Reale Istituto Botanico di Palermo 8, 5-30.
Wan, L., Xia, X., Hong, D., Li, J., Yang, G., 2010. Abnormal vacuolization of the tapetum during the tetrad stage is associated with male sterility in the recessive genic male sterile Brassica napus L. Line 9012A. J. Plant Biol. 53, 121-133.
Wang, H., Lu, Y., Jiang, T., Berg, H., Li, C., Xia, Y., 2013. The Arabidopsis U–box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. Plant J. 74, 511-523.
Washitani, I., Osawa, R., Namai, H., Niwa, M., 1994. Patterns of female fertility in heterostylous Primula sieboldii under severe pollinator limitation. J. Ecol. 82, 571-579.
Waterkeyn, L., Bienfait, A., 1970. On a possible function of the callosic special wall in Ipomoea purpurea (L.) Roth. Grana 10, 13-20.
Webb, M.C., Gunning, B.E.S., 1990. Embryo sac development in Arabidopsis thaliana. Sex Plant Reprod 3, 244-256.
Weller, S.G., Dominguez, C.A., Molina-Freaner, F.E., Fornoni, J., LeBuhn, G., 2007. The evolution of distyly from tristyly in populations of Oxalis alpina (Oxalidaceae) in the Sky Islands of the Sonoran Desert. Am. J. Bot. 94, 972-985.
Winiarczyk, K., Jaroszuk-Ściseł, J., Kupisz, K., 2012. Characterization of callase (β-1,3-d-glucanase) activity during microsporogenesis in the sterile anthers of Allium sativum L. and the fertile anthers of A. atropurpureum. Sex Plant Reprod 25, 123-131.
Woodson, R.E., Jr., Schery, R.W., Lourteig, A., 1980. Flora of Panama. Part IV. Family 84. Oxalidaceae, Ann. Mo. Bot. Gard. Missouri Botanical Garden Press, pp. 823-850.
Worrall, D., Hird, D.L., Hodge, R., Paul, W., Draper, J., Scott, R., 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. The Plant Cell 4, 759-771.
Wu, L., Kiang, Y.-T., Antonovigs, J., 1978. Field observations on Oxalis corymbosa, a widespread weedy species in Taiwan, Studies and essays in commemoration of the golden jubilee of Academia Sinica. Academia Sinica, Taipei, Taiwan, Republic of China, pp. 619-626.
Wu, S.-H., Hsieh, C.-F., Rejmánek, M., 2004. Catalogue of the naturalized flora of Taiwan. Taiwania 49, 16-34.
Yadegari, R., Drews, G.N., 2004. Female gametophyte development. The Plant Cell 16, S133-S141.
Yamori, W., Hikosaka, K., Way, D., 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101-117.
Young, B.A., Schulz-Schaeffer, J., Carroll, T.W., 1979. Anther and pollen development in male-sterile intermediate wheatgrass plants derived from wheat × wheatgrass hybrids. Can. J. Bot. 57, 602-618.
Zhou, S., Wang, Y., Li, W., Zhao, Z., Ren, Y., Wang, Y., Gu, S., Lin, Q., Wang, D., Jiang, L., Su, N., Zhang, X., Liu, L., Cheng, Z., Lei, C., Wang, J., Guo, X., Wu, F., Ikehashi, H., Wang, H., Wan, J., 2011. Pollen semi-sterility1 encodes a kinesin-1–like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23, 111-129.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔