跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳鳴展
研究生(外文):Ming-Chan Wu
論文名稱:以固定化漆氧化酶分解銀杏葉萃取物中銀杏酸之研究
論文名稱(外文):Study on Immobilized-Laccase for Ginkgolic Acid Degradation in Ginkgo biloba Leaf Extract
指導教授:鄭光成鄭光成引用關係
指導教授(外文):Kuan-Chen Cheng
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:銀杏酸酵素固定化漆氧化酶酵素動力學
外文關鍵詞:ginkgolic acidenzyme immobilizationlaccaseenzyme kinetic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
銀杏 (Ginkgo biloba) ,其種子稱白果,常作傳統藥材;銀杏葉萃取物亦廣泛應用於臨床治療;然而銀杏葉和白果種皮中含有大量銀杏酸(ginkgolic acid),具有嚴重過敏性。因此德國 Commission E 規定,其驗出量不得高於 5 ppm。
本研究以酵素固定化的方式,將漆氧化酶 (laccase) 固定於玻璃微球、纖維素顆粒和尼龍載體,方便反應完後可回收重複利用,解決酵素成本高昂的缺點。將載體與酵素進行交聯反應後,以掃描式電子顯微鏡觀察,發現固定化處理前後載體表面具有明顯差異;且於原子能譜 (electron spectroscopy for chemical analysis, ESCA) 發現,固定化處理後載體表面均出現 C=N 鍵結,佐證酵素確實與載體結合。並量測各載體上酵素固定率分別為:玻璃微球 88.0%、纖維素顆粒 18.3%、尼龍載體 74.1%。進一步將各載體上之酵素與游離態酵素活性比較,玻璃微球活性可達游離酵素之90.9%,而纖維素顆粒與尼龍載體分別僅有65.8% 及 60.4%;酵素動力學測試中,玻璃微球具有最小的 Km (0.06) 與最大的 Vmax (30.5),對比纖維素顆粒 0.21、30.0 與尼龍載體 0.22、29.6。證實玻璃微球具有最好的固定率與反應活性,因此選用玻璃微球為載體,進行銀杏酸的降解反應。
進一步進行反應條件最適化,發現溫度於 40 – 50oC、pH於4 – 5的環境中,固定化 laccase 可達最高活性。但是當溫度超過 40 oC 後,反應時間拉長,固定化 laccase 活性隨之下降;因此將溫度設定於25 oC、pH = 4進行反應。以高效液相層析儀 (high performance liquid chromatography, HPLC) 偵測銀杏葉萃取物中銀杏酸含量,經固定化 laccase 催化降解反應後,銀杏葉萃取物中的總銀杏酸量可降解至低於最小偵測極限 ( 2.12 ppm )。於穩定性實驗中,固定化 laccase 可回收重複使用達 25次;亦可長時間貯存達10週後再使用;確認其活性都仍可有效進行降解反應。證實固定化 laccase 可重複使用以降低生產成本,且耐久存,具有產業應用價值。
關鍵字:銀杏酸、酵素固定化、漆氧化酶、酵素動力學
Ginkgo biloba is known as the ginkgo tree. The tree is widely cultivated in northeast Asia and its fruit has various uses in traditional medicine. Ginkgo biloba leaf extract also have been proved to have wide biological activities. However, ginkgolic acid is a toxic compound in the leaf and the fruit of Ginkgo biloba and it should be less than 5 ppm in the ginkgo product in the guide of Commission E.
Laccase was immobilized on solid carriers by crosslinking reaction for the degradation of ginkgolic acid in this study. The binding ratio of laccase could reached 88% on the carrier. In SEM image, carriers with immobilized treatment had significant difference compared with carriers before immobilized in surface morphology. ESCA image also shown that the signal of C=N double bond appeared after carrier with immobilized treatment. These results proved that laccase immobilized on the carriers after crosslinking reaction.
Degradation efficiency of immobilized laccase was also well researched in this study. The activity of immobilized laccase could be 25.0 ± 3.06 compared with free laccase (27.5 ±1.67). Moreover, the Km value of immobilized laccase is 0.06 compared with free laccase (0.10). The complete reaction can be less than 1 hour and the reusability and storage stability were also further verified. The enzymatic system can be used more than 25 cycles and 10 weeks which still retained 73.8% of enzyme activity. The results indicated that the immobilized laccase system exhibited a significant efficiency for ginkgolic acid degradation in Ginkgo biloba leaf extract. It is capable of being further applied to prepare large scale of ginkgolic acid free ginkgo product.

Key words : ginkgolic acid, enzyme immobilization, laccase and enzyme kinetic.
目錄

摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 x
壹、 前言 1
貳、 文獻回顧 3
2.1 銀杏簡介 3
2.1.1 銀杏傳統功效 3
2.1.2 銀杏有效成分 3
2.1.3 銀杏葉近代醫學研究 6
2.1.4 銀杏專利與產品市場價值分析 7
2.1.5 銀杏酸 9
2.1.5.1 銀杏酸常見降解方法 10
2.1.5.2 酵素降解法 10
2.2 漆氧化酶 10
2.2.1 漆氧化酶結構 12
2.2.2 漆氧化酶作用機制 13
2.2.3 漆氧化酶的應用 14
2.3 酵素固定化 15
2.3.1 酵素固定化方法 16
2.3.1.1 吸附法 16
2.3.1.2 共價結合法 16
2.3.1.3 交聯法 18
2.3.1.4 酵素包埋法 18
2.3.2 載體材料 21
2.3.2.1 無機載體 21
2.3.2.2 有機高分子載體 21
2.3.2.3 複合載體 22
2.3.2.4 廢棄物載體材料 22
參、 材料與方法 23
3.1 研究目的 23
3.2 實驗架構 24
3.3 實驗材料 24
3.3.1 銀杏葉萃取物 24
3.3.2 實驗藥品 24
3.3.3 儀器設備 26
3.4 實驗方法 27
3.4.1 固定化laccase置備 27
3.4.1.1 尼龍 (Nylon pellets) 27
3.4.1.2 纖維素顆粒 (Cellulose beads) 27
3.4.1.3 玻璃微球 (Glass microspheres) 27
3.4.1.4 將載體與laccase共價結合 27
3.4.2 Laccase含量檢測 28
3.4.3 Laccase 活性檢測 28
3.4.4 載體表面型態分析 29
3.4.5 載體表面共價鍵分析 29
3.4.6 最佳反應條件測試 29
3.4.6.1 溫度 29
3.4.6.2 pH 30
3.4.6.3 酵素動力學參數測定 30
3.4.7 銀杏酸反應液製備 30
3.4.8 銀杏酸定量分析 30
3.4.9 統計分析 31
肆、 結果與討論 32
4.1 Laccase固定化系統建立 32
4.1.1 Laccase吸光值標準曲線製作 32
4.1.2 載體上酵素固定量測試 34
4.1.3 Laccase固定前後載體表面微觀結構分析 36
4.1.3.1 尼龍載體固定化處理前後表面微觀結構分析 36
4.1.3.2 纖維素顆粒載體固定化處理前後表面微觀結構分析 36
4.1.3.3 玻璃微球載體固定化處理前後表面微觀結構分析 37
4.1.4 固定化laccase與載體表面元素和化學鍵結分析 41
4.1.4.1 尼龍載體表面元素和化學鍵結分析 42
4.1.4.2 纖維素顆粒表面元素和化學鍵結分析 42
4.1.4.3 玻璃微球載體表面元素和化學鍵結分析 43
4.1.5 固定化 laccase系統反應活性測試 47
4.1.6 固定化 laccase系統反應pH和反應溫度測試 49
4.1.7 固定化 laccase系統酵素動力學參數 52
4.1.8 玻璃微球酵素固定系統穩定性測試 56
4.1.8.1 溫度穩定性測試 56
4.1.8.2 貯存穩定性測試 58
4.1.8.3 重複操作利用穩定性測試 58
4.2 固定化酵素系統對於銀杏酸之降解 61
4.2.1 HPLC-UV對銀杏酸分析與定量 61
4.2.2 銀杏酸經 laccase酵素系統降解 65
4.2.3 銀杏葉萃取液經由 laccase酵素降解之結果分析 69
4.2.4 玻璃微球固定化 laccase系統之穩定性測試 72
4.2.4.1 固定化 laccase進行銀杏酸降解反應連續27個批次之結果分析 72
4.2.4.2 固定化 laccase貯存穩定性測試 74
伍、 結論與展望 76
陸、 參考文獻 77
柒、 附錄 91
7.1 個人簡歷 91


圖目錄

圖 1 銀杏葉與銀杏果。 4
圖 2 銀杏黃酮結構圖。 5
圖 3 神經認知領域,銀杏專利年申請案量。 8
圖 4 漆氧化酶結構圖。 12
圖 5 漆氧化酶作用機制。 13
圖 6 H2O2分解過程能量變化。 15
圖 7 物理吸附法。 17
圖 8 共價結合法。 17
圖 9 交聯法。 19
圖 10 包埋法。 19
圖 11 實驗架構流程圖 24
圖 12 Laccase 酵素蛋白濃度標準曲線。 33
圖 13 尼龍載體酵素固定化前 (A-1) 30x (A-2) 10000x 和固定化後 (B-1) 30x (B-2) 10000x 表面微觀結構圖。 38
圖 14 纖維素顆粒載體酵素固定化前 (A-1) 30x (A-2) 10000x 和固定化後 (B-1) 30x (B-2) 10000x 表面微觀結構圖。 39
圖 15 玻璃微球載體酵素固定化前 (A-1) 10000x (A-2) 20000x 和固定化後 (B-1) 9500x (B-2) 20000x 表面微觀結構圖。 40
圖 16 尼龍載體酵素固定前 (A) 和酵素固定化後 (B) 之ESCA圖譜。 44
圖 17 纖維素顆粒酵素固定前 (A) 和酵素固定後 (B) 之ESCA圖譜。 45
圖 18 玻璃微球酵素固定前 (A) 和酵素固定化後 (B) 之ESCA圖譜。 46
圖 19 ABTS氧化反應結構圖。 47
圖 20 各酵素系統於不同pH值之反應活性。 50
圖 21 各酵素系統於不同溫度之反應活性。 51
圖 22 反應受質ABTS濃度對 (A)free laccase (B) 玻璃微球 (C) 纖維素顆粒 (D)尼龍 等固定方式催化反應之影響。 53
圖 23 反應受質ABTS濃度對 (A)free laccase (B) 玻璃微球 (C) 纖維素顆粒 (D)尼龍 等固定方式催化反應之影響雙倒數圖。 54
圖 24 (A) Free laccase (B) 玻璃微球固定化酵素 溫度穩定性測試。 57
圖 25 Laccase貯存穩定性測試。 59
圖 26 玻璃微球固定化 laccase重複使用反應能力測試。 60
圖 27 銀杏酸HPLC層析圖 (A) 銀杏酸C15和C17;(B) 銀杏葉粗萃液 (內含200 ppm之總銀杏酸);(C) 於40°C 反應 30 分鐘之銀杏葉粗萃液。 63
圖 28 銀杏酸 C15 標準曲線。 64
圖 29 銀杏酸 C17 標準曲線。 64
圖 30 銀杏葉萃取物水溶液經由free laccase 和固定化laccase系統轉化銀杏酸 (A) C15 (B) C17 濃度隨時間的變化。 68
圖 31 不同濃度之銀杏酸對 (A)游離laccase (B)固定化laccase 降解催化反應之影響。 70
圖 32 不同濃度之銀杏酸對 (A)游離 laccase (B)固定化 laccase 降解催化反應之影響雙倒數圖。 71
圖 33 固定化 laccase於銀杏葉萃取液連續27個批次的重複試驗。 73
圖 34 固定化 laccase系統保存十週貯存穩定性測試。 75


表目錄

表 1 銀杏萜內脂結構。 5
表 2 各研究領域銀杏專利分布表。 8
表 3 銀杏酸結構。 9
表 4 固定化酵素在工業上固定方法與應用。 20
表 5 玻璃微球、纖維素和尼龍載體上固定化laccase含量。 35
表 6 游離態和玻璃微球、纖維素和尼龍載體固定化 laccase 活性比較。 48
表 7 Free laccase、玻璃微球、纖維素顆粒和尼龍等固定方式酵素動力學參數值。 55
表 8 銀杏酸C15、C17之偵測極限和定量極限 (ppm)。 63
表 9 Laccase酵素系統銀杏酸降解率。 66
表 10 游離 laccase和固定化 laccase擬合動力參數。 67
表 11 Free laccase、固定化laccase系統酵素動力學參數值。 70
柯昱丞。2013。藥用材料專利案例剖析-以銀杏為例。國立雲林科技大學 材料科技研究所 碩士論文。雲林。台灣。

Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and environmental microbiology, 66(8), 3357-3362.

Ahmad, M., Saleem, S., Ahmad, A. S., Yousuf, S., Ansari, M. A., Khan, M. B., ... & Islam, F. (2005). Ginkgo biloba affords dose‐dependent protection against 6‐hydroxydopamine‐induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. Journal of neurochemistry, 93(1), 94-104.

Alcalde, M. (2007). Laccases: biological functions, molecular structure and industrial applications. In Industrial enzymes, 461-476.

Amitai, G., Adani, R., Sod-Moriah, G., Rabinovitz, I., Vincze, A., Leader, H., & Hadar, Y. (1998). Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS letters, 438(3), 195-200.

Anık Kırgöz, Ü., Tural, H., Timur, S., Pazarlıoğlu, N., Telefoncu, A., & Pilloton, R. (2005). Laccase biosensors based on mercury thin film electrode. Artificial cells, blood substitutes, and biotechnology, 33(4), 447-456.

Asgher, M., Noreen, S., & Bilal, M. (2017). Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers. International journal of biological macromolecules, 95, 54-62.

Baratto, L., Candido, A., Marzorati, M., Sagui, F., Riva, S., & Danieli, B. (2006). Laccase-mediated oxidation of natural glycosides. Journal of Molecular Catalysis B: Enzymatic, 39(1), 3-8.

Bigwood, M. P. (1986). Immobilization of enzymes by covalent binding to an oxirane bearing macroreticular acrylic resin: Factors affecting the binding process and the activity of the bound enzyme. Reactive Polymers, Ion Exchangers, Sorbents, 4(2), 179.

Bolivar, J. M., & Nidetzky, B. (2012). Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Zbasic2: design of a heterogeneous D‐amino acid oxidase catalyst on porous glass. Biotechnology and bioengineering, 109(6), 1490-1498.

Bornscheuer, U.T. (2003). Immobilizing enzymes: how to create more suitable biocatalysts. Angew. Chem. Int. Ed. 42, 3336-3337.

Brändén, R., Malmström, B. G., & Vänngård, T. (1971). The interaction of fungal laccase with hydrogen peroxide and the removal of fluoride from the inhibited enzyme. European Journal of Biochemistry, 18(2), 238-241.

Calapai, G., Crupi, A., Firenzuoli, F., Marciano, M. C., Squadrito, F., Inferrera, G., ... & Caputi, A. P. (2000). Neuroprotective effects of Ginkgo biloba extract in brain ischemia are mediated by inhibition of nitric oxide synthesis. Life sciences, 67(22), 2673-2683.

Cao, L. (2005). Immobilised enzymes: science or art? Curr. Opin. Chem. Biol. 9, 217-226.

Çelik, A., Dinçer, A., and Aydemir, T. (2016). Characterization of β-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTS) and their application on tea extracts for aroma enhancement. Int. J. Biol. Macromol. 89, 406-414.

Chakraborty, S., Rusli, H., Nath, A., Sikder, J., Bhattacharjee, C., Curcio, S., and Drioli, E. (2016). Immobilized biocatalytic process development and potential application in membrane separation: a review. Crit. Rev. Biotechnol. 36, 43-58.

Chen, J. X., Zeng, H., Chen, X., Su, C. Y., & Lai, C. C. (2001). Induction of heme oxygenase-1 by Ginkgo biloba extract but not its terpenoids partially mediated its protective effect against lysophosphatidylcholine-induced damage. Pharmacological Research, 43(1), 63-69.

Chen, K.-I., Lo, Y.-C., Su, N.-W., Chou, C.-C., and Cheng, K.-C. (2012). Enrichment of two isoflavone aglycones in black soymilk by immobilized β-glucosidase on solid carriers. J. Agric. Food Chem. 60, 12540-12546.

Chen, K.-I., Lo, Y.-C., Liu, C.-W., Yu, R.-C., Chou, C.-C., and Cheng, K.-C. (2013). Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for β-glucosidase. Food Chem. 139, 79-85.

Chung, T. P., Tseng, H. Y., & Juang, R. S. (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochemistry, 38(10), 1497-1507.

Cohen-Salmon, C., Venault, P., Martin, B., Raffalli-Sebille, M. J., Barkats, M., Clostre, F., ... & Chapouthier, G. (1997). Effects of Ginkgo biloba extract (EGb 761) on learning and possible actions on aging. Journal of Physiology-Paris,91(6), 291-300.

Cybulska-Heinrich, A. K., Mozaffarieh, M., & Flammer, J. (2012). Ginkgo biloba: an adjuvant therapy for progressive normal and high tension glaucoma. Molecular vision, 18, 390.

Dai, Y., Yao, J., Song, Y., Liu, X., Wang, S., & Yuan, Y. (2016). Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. Journal of hazardous materials, 317, 485-493.
de Souza Bezerra, T. M., Bassan, J. C., de Oliveira Santos, V. T., Ferraz, A., & Monti, R. (2015). Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochemistry, 50(3), 417-423.

Dessouki, A.M., Issa, G.I., and Atia, K.S. (2001). Pullulanase immobilization on natural and synthetic polymers. J. Chem. Technol. Biotechnol. 76, 700-706.

Diano, N., Grimaldi, T., Bianco, M., Rossi, S., Gabrovska, K., Yordanova, G., Godjevargova, T., Grano, V., Nicolucci, C., Mita, L., et al. (2008). Apple juice clarification by immobilized pectolytic enzymes in packed or fluidized bed reactors. J. Agric. Food Chem. 56, 11471-11477.

DeFeudis, F. V. (2003). A brief history of EGb 761® and its therapeutic uses. Pharmacopsychiatry, 36(S 1), 2-7.

Dodor, D. E., Hwang, H. M., & Ekunwe, S. I. (2004). Oxidation of anthracene and benzo [a] pyrene by immobilized laccase from Trametes versicolor. Enzyme and Microbial Technology, 35(2), 210-217.

Figueira, J. D. A., Dias, F. F. G., Sato, H. H., & Fernandes, P. (2011). Screening of Supports for the Immobilization of-Glucosidase. Enzyme research, 2011.

Fuzzati, N., Pace, R., & Villa, F. (2003). A simple HPLC-UV method for the assay of ginkgolic acids in Ginkgo biloba extracts. Fitoterapia, 74(3), 247-256

Fu, Y., Hong, S., Li, D., & Liu, S. (2013). Novel chemical synthesis of ginkgolic acid (13: 0) and evaluation of its tyrosinase inhibitory activity. Journal of agricultural and food chemistry, 61(22), 5347-5352.

Gengembre, L. (2003). ESCA and catalysts. Vide-Science Technique Et Applications, 58(308), 282-+.

Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences,67(3), 369-385.

González-Sáiz, J.M., and Pizarro, C. (2001). Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters. Eur. Polym. J. 37, 435-444.

Han, Y. (2005). Ginkgo terpene component has an anti-inflammatory effect on Candida albicans-caused arthritic inflammation. International immunopharmacology, 5(6), 1049-1056.

Hu, X., Zhao, X., & Hwang, H. M. (2007). Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere, 66(9), 1618-1626.

Huang, X., Whitworth, C. A., & Rybak, L. P. (2007). Ginkgo biloba extract (EGb 761) protects against cisplatin-induced ototoxicity in rats. Otology & Neurotology, 28(6), 828-833.

Jastreboff, P. J., Zhou, S., Jastreboff, M. M., Kwapisz, U., & Gryczynska, U. (1997). Attenuation of Salicylate-lnduced Tinnitus by Ginkgo biloba Extract in Rats. Audiology and Neurotology, 2(4), 197-212.
Juretzck, W. (1998). Zusmmenfass und der Ergebnisse einer plazebokontrollierten Doppelblindstudie zur Therapie des Tinnitus mit dem Ginkgo-Extrakt Egb 761. Schwabe Arzneimittel Internal Report 21.7.

Kolb, M., Sieber, V., Amann, M., Faulstich, M., & Schieder, D. (2012). Removal of monomer delignification products by laccase from Trametes versicolor. Bioresource technology, 104, 298-304.

Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 35, 126-139.

Kudanga, T., Nyanhongo, G. S., Guebitz, G. M., & Burton, S. (2011). Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme and microbial technology, 48(3), 195-208.

Kumar, A., Kumar, S., & Kumar, S. (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22(2), 151-159.

Kurniawati, S., & Nicell, J. A. (2008). Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresource technology,99(16), 7825-7834.

Kurokawa, Y., Suzuki, K., and Tamai, Y. (1998). Adsorption and enzyme (β-galactosidase and α-chymotrypsin): Immobilization properties of gel fiber prepared by the gel formation of cellulose acetate and titanium iso-propoxide. Biotechnol. Bioeng, 59, 651-656.

Larsson, S., Cassland, P., & Jönsson, L. J. (2001). Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Applied and environmental microbiology, 67(3), 1163-1170.

Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas‐Wasilewska, M., Matuszewska, A., ... & Rogalski, J. (2001). Fungal laccase: properties and activity on lignin. Journal of basic microbiology, 41(3‐4), 185-227.

Lettera, V., Pezzella, C., Cicatiello, P., Piscitelli, A., Giacobelli, V. G., Galano, E., ... & Sannia, G. (2016). Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food chemistry, 196, 1272-1278.

Li, K., Helm, R. F., & Eriksson, K. E. L. (1998). Mechanistic studies of the oxidation of a non‐phenolic lignin model compound by the laccase/1‐hydroxybenzotriazole redox system. Biotechnology and Applied Biochemistry,27(3), 239-243.

Li, R., Shen, Y., Zhang, X., Ma, M., Chen, B., & van Beek, T. A. (2014). Efficient purification of ginkgolic acids from Ginkgo biloba leaves by selective adsorption on Fe3O4 magnetic nanoparticles. Journal of natural products,77(3), 571-575

Li, W., Li, Y., Liu, Z., Lin, B., Yi, H., Xu, F., ... & Yao, S. (2016). Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic acids research, 44(15), 7373-7384.

Lloret, L., Eibes, G., Feijoo, G., Moreira, M. T., Lema, J. M., & Hollmann, F. (2011). Immobilization of laccase by encapsulation in a sol–gel matrix and its characterization and use for the removal of estrogens. Biotechnology progress, 27(6), 1570-1579.

Luo, Y. (2006). Alzheimer''s disease, the nematode Caenorhabditis elegans, and Ginkgo biloba leaf extract. Life sciences, 78(18), 2066-2072.

Maalej-Kammoun, M., Zouari-Mechichi, H., Belbahri, L., Woodward, S., & Mechichi, T. (2009). Malachite green decolourization and detoxification by the laccase from a newly isolated strain of Trametes sp. International Biodeterioration & Biodegradation, 63(5), 600-606.

Majcherczyk, A., Johannes, C., & Hüttermann, A. (1998). Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme and Microbial Technology, 22(5), 335-341.

Mayer, A. M., & Staples, R. C. (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60(6), 551-565.

Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2017). Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Science of The Total Environment, 584, 393-401.

Nagawaz, M.A., Karim, A., Aman, A., Marchetti, R., Qader, S.A.U., and Molinaro, A. (2014). Continuous degradation of maltose: improvement in stability and catalytic properties of maltase (α-glucosidase) through immobilization using agar-agar gel as a support. Bioprocess Biosyst. Eng. 38, 631-638.

Ndjoko, K., Wolfender, J. L., & Hostettmann, K. (2000). Determination of trace amounts of ginkgolic acids in Ginkgo biloba L. leaf extracts and phytopharmaceuticals by liquid chromatography–electrospray mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 744(2), 249-255.

Osuna, Y., Sandoval, J., Saade, H., López, R.G., Martinez, J.L., Colunga, E.M., Cruz, G. de la, Segura, E.P., Arévalo, F.J., Zon, M.A., et al. (2015). Immobilization of aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst. Eng. 38, 1437-1445.

Phani Kumar, P., Paramashivappa, R., Vithayathil, P. J., Subba Rao, P. V., & Srinivasa Rao, A. (2002). Process for isolation of cardanol from technical cashew (Anacardium occidentale L.) nut shell liquid. Journal of Agricultural and Food chemistry, 50(16), 4705-4708.

Polak, J., & Jarosz‐Wilkolazka, A. (2012). Structure/Redox potential relationship of simple organic compounds as potential precursors of dyes for laccase‐mediated transformation. Biotechnology progress, 28(1), 93-102.

Premstaller, A., Oberacher, H., & Huber, C. G. (2000). High-performance liquid chromatography-electrospray ionization mass spectrometry of single-and double-stranded nucleic acids using monolithic capillary columns. Analytical chemistry, 72(18), 4386-4393.

Prieto, A., Möder, M., Rodil, R., Adrian, L., & Marco-Urrea, E. (2011). Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresource technology,102(23), 10987-10995.

Ramazanov, Z., & Suarez, M. D. M. B. (2000). U.S. Patent No. 6,117,431. Washington, DC: U.S. Patent and Trademark Office.

Satyan, K. S., Jaiswal, A. K., Ghosal, S., & Bhattacharya, S. K. (1998). Anxiolytic activity of ginkgolic acid conjugates from Indian Ginkgo biloba. Psychopharmacology, 136(2), 148-152.
Shleev, S., Christenson, A., Serezhenkov, V., Burbaev, D., Yaropolov, A., Gorton, L., & Ruzgas, T. (2005). Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode. Biochemical Journal, 385(3), 745-754.

Siegers, C. P. (1999). Cytotoxicity of alkylphenols from Ginkgo biloba. Phytomedicine, 6(4), 281-283.

Sulaiman, S., Mokhtar, M.N., Naim, M.N., Baharuddin, A.S., and Sulaiman, A. (2014). A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl. Biochem. Biotechnol. 175, 1817-1842.

Takeo, M., Prabu, S. K., Kitamura, C., Hirai, M., Takahashi, H., Kato, D. I., & Negoro, S. (2006). Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. Journal of bioscience and bioengineering, 102(4), 352-361.

Tran, N. H., URASE, T., & KUSAKABE, O. (2010). Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase. Journal of Water and Environment Technology, 8(2), 125-140.

van Beek, T. A., & Montoro, P. (2009). Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. Journal of Chromatography A, 1216(11), 2002-2032.

van den Heuvel, R. H., Fraaije, M. W., Laane, C., & van Berkel, W. J. (1998). Regio-and stereospecific conversion of 4-alkylphenols by the covalent flavoprotein vanillyl-alcohol oxidase. Journal of bacteriology, 180(21), 5646-5651.

Verotta, L., & Peterlongo, F. (1993). Selective extraction of phenolic components from Ginkgo biloba extracts using supercritical carbon dioxide and off‐line capillary gas chromatography/mass spectrometry. Phytochemical Analysis, 4(4), 178-182.

Wang, J., Cao, F., Su, E., Wu, C., Zhao, L., & Ying, R. (2013). Improving flavonoid extraction from Ginkgo biloba leaves by prefermentation processing. Journal of agricultural and food chemistry, 61(24), 5783-5791.

Winter, E. (1991). Effects of an extract of Ginkgo biloba on learning and memory in mice. Pharmacology Biochemistry and Behavior, 38(1), 109-114.

Won, K., Kim, Y. H., An, E. S., Lee, Y. S., & Song, B. K. (2004). Horseradish peroxidase-catalyzed polymerization of cardanol in the presence of redox mediators. Biomacromolecules, 5(1), 1-4.

Xie, Z., Wu, X., Gong, Y., Song, Y., Qiu, Q., & Li, C. (2007). Intraperitoneal injection of Ginkgo biloba extract enhances antioxidation ability of retina and protects photoreceptors after light-induced retinal damage in rats. Current eye research, 32(5), 471-479.

Yang, S., Hai, F. I., Nghiem, L. D., Price, W. E., Roddick, F., Moreira, M. T., & Magram, S. F. (2013). Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresource technology, 141, 97-108.

Yang, T. H., Young, Y. H., & Liu, S. H. (2011). EGb 761 (Ginkgo biloba) protects cochlear hair cells against ototoxicity induced by gentamicin via reducing reactive oxygen species and nitric oxide-related apoptosis. The Journal of nutritional biochemistry, 22(9), 886-894.

Zhu, Y., Kaskel, S., Shi, J., Wage, T., & van Pée, K. H. (2007). Immobilization of Trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chemistry of Materials, 19(26), 6408-6413.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top