跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭証元
研究生(外文):Jeng-Yuan Shiau
論文名稱:植物倍半萜化合物deoxyelephantopin及其衍生物抑制人類三陰性乳腺癌之分子機轉研究
論文名稱(外文):Molecular insights of phytoagent deoxyelephantopin and its derivative against human MDA-MB-231 triple negative breast cancer cell activities
指導教授:徐麗芬徐麗芬引用關係
口試日期:2017-07-05
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:164
中文關鍵詞:三陰性乳癌倍半萜化合物deoxyelephantopinDETD-35活性氧化物胞質液泡外泌體
外文關鍵詞:TNBCsesquiterpene lactonedeoxyelephantopinDETD-35ROScytoplasmic vacuoleexosome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
三陰性乳癌(TNBC)是一種具高度轉移性且在臨床治療出現棘手挑戰的乳癌,其因缺乏有效的標靶藥物的運用。本研究的目的是探索藥用植物衍生之植化物倍半萜類化合物deoxyelephantopin (DET)及其新型衍生物DETD-35抑制TNBC細胞活性的作用機轉。DETD-35的處理對於抑制人類三陰性MDA-MB-231細胞增長的表現優於DET,其半致死率的用藥劑量降低3.5倍 (3.62 vs. 11.24 uM)。DET和DETD-35的短時間處理(2小時)會明顯地刺激活性氧化物(ROS)的產生,而造成泛素化蛋白質和自噬體標誌物LC3的積累以及MDA-MB-231細胞中大量胞質液泡的形成。透射電子顯微鏡(TEM)和共聚焦顯微鏡分析顯示DET或DETD-35的處理並不會影響TNBC細胞的質膜完整性,而DET與DETD-35所引發的胞質空泡化起因於內質網(ER)或粒線體的腫脹。同時,DET和DETD-35處理也會誘發ER壓力相關蛋白的表達及線粒體膜電位的喪失(27%和23.5%)相對於對照組(100%)。值得注意的是兩種化合物處理所引起的抑制作用會因ROS清除劑(N-乙酰半胱氨酸與穀胱甘肽)及蛋白質合成抑製劑的預處理而被阻斷,而上述現象完全吻合了paraptotic程序性細胞死亡(PCD)的表型和生物化學特徵。再者,藉由剔除MEK上游調節者RAF1與自噬體蛋白LC3的表現及JNK與ERK1/2抑製劑的共同處理下會顯著減弱DETD-35所誘發的細胞毒性作用,而DET引起的抑制作用卻不受MAPK抑製劑的影響。另外,DET和DETD-35處理明顯地刺激TNBC細胞衍生的外泌體(exosomes)釋放到培養基中起因為細胞質中游離鈣離子的增加,而鈣螯合劑BAPTA-AM預處理會明顯消除DET或DETD-35處理所引發的外泌體釋放。有趣的是,DET和DETD-35誘發的外泌體擁有非典型的功能,其對於MDA-MB-231細胞具有抗增殖的活性,此表明DET和DETD-35處理會影響外泌體的活性與功能。質譜(MS)為基礎的定量蛋白質組結合IPA資料庫分析顯示DET和DETD-35處理會減弱TNBC細胞外泌體中與細胞遷移,細胞粘附和血管生成等生物過程相關蛋白質的表達,並且發現這些因DET和DETD-35處理而失調的蛋白質也會涉及氧化壓力和粒線體跨膜電位的降低等生物機轉。在本研究中也進行了比較蛋白質組學分析,以了解人類TNBC腫瘤以及DET或化療藥物卡培他濱(CAP)處理之老鼠三陰性4T1乳腺腫瘤中蛋白質的變化和信號網絡。因DET和CAP處理而有所反應的蛋白質群會參與氧化壓力和粒線體功能障礙或損傷相關的生物機制,例如粒線體腫脹和粒線體跨膜電位的變化,而人類TNBC腫瘤的蛋白質組學研究了解到TNBC腫瘤於不同階段會有其差異性的蛋白質表達模式。在2個IIB期的TNBC腫瘤蛋白質體中發現了21個蛋白質(如annexin A1 and A5, SLC2A1, protein Z-dependent protease inhibitor, alpha-1-acid glycoprotein 1, hemopexin等)表達與DET處理4T1腫瘤蛋白質體出現相似的表達水平。總體而言,我們的研究結果表明了DET和DETD-35抑制TNBC細胞的活性是通過氧化壓力所誘發的paraptosis似的細胞死亡及改變癌細胞釋放的外泌體內蛋白質的組成及其功能。本研究提供了藥用植物來源的倍半萜類化合物DET及其新型衍生物DETD-35抑制TNBC細胞活性之新穎的機轉見解,並用以支持於未來在開發干預TNBC活性的潛力。
The triple negative breast cancer (ER-/PR-/HER2-, TNBC) is a highly metastatic breast cancer subgroup and a thorny issue of this cancer disease for clinical therapy is the absent of efficient targeted therapeutic approaches. The objectives of this thesis study were to investigate the mechanisms of action of a phyto-sesquiterpene lactone deoxyelephantopin (DET) and its novel derivative DETD-35 for anti-TNBC cell activities. DETD-35 displayed superior activity than DET on inhibition of human TNBC MDA-MB-231 cell proliferation, with a 3.5-fold decrease of IC50 value (3.62 vs. 11.24 uM). Both DET and DETD-35 compounds can stimulate the reactive oxygen species (ROS) production within an early stage (2 h) of treatment that resulted in significant ubiquitinated protein and autophagosomal marker LC3 accumulation along with induction of massive cytoplasmic vacuole formation in MDA-MB-231 cells. Transmission electron microscopy (TEM) and confocal microscopy analysis showed that the TNBC cell plasma membrane integrity was not affected by DET or DETD-35, and both compound-induced cytoplasmic vacuolation were derived from swelling of endoplasmic reticulum (ER) or mitochondria. Meanwhile, both DET and DETD-35 treatments also evoked the expression of ER stress-related proteins and the loss of mitochondrial membrane potential in TNBC cells (27% and 23.5%) relative to vehicle control (100%). Of note, the observed DET and DETD-35 effects were blockaded by pretreatment with ROS scavengers N-acetylcysteine and glutathione, and protein synthesis inhibitor, cycloheximide, that perfectly matched the phenotypic and biochemical characteristic features of paraptotic programmed cell death (PCD) of cancer cells. Further, knockdown of MEK upstream regulator RAF1 and autophagosomal protein LC3, or co-treatment with JNK or ERK1/2 inhibitor can significantly attenuated DETD-35-triggered cytotoxic effects in TNBC cells, while the anti-cancer cell effect of DET was not influenced by MAPK inhibitor treatment. Moreover, both DET and DETD-35 treatment significantly stimulated the release of TNBC cell-derived exosomes into culture media due to increase of cytosolic free calcium ion level, as calcium chelator BAPTA-AM pretreatment significantly abolished exosome release in DET or DETD-35 treated cancer cells. Interestingly, both DET- and DETD-35-induced exosomes had an atypical function that showed anti-proliferative activity against MDA-MB-231 cells, suggesting that both DET and DETD-35 treatments affected exosome activities and functions. Comparative LC-mass spectrometry (MS)-based quantitative proteomics coupled with Ingenuity Pathway Analysis (IPA) database analysis of exosome from DET- and DETD-35-treated TNBC cells showed that DET and DETD-35 attenuated the expression of exosomal proteins related to several biological processes, such as cell migration, cell adhesion, and angiogenesis. Furthermore, several exosomal proteins participating in biological mechanisms such as oxidative stress and decrease of transmembrane potential of mitochondria were found deregulated by treatment with either compound. Comparative proteomic analysis was also conducted in this study to decipher the proteins and signaling networks in human TNBC specimens and murine triple negative 4T1 mammary tumors with or without DET or chemotherapeutic drug capecitabine (CAP) treatment. DET- and CAP-responsive proteomes could involve in a few biological mechanisms related to oxidative stress and mitochondria dysfunction or damage, such as mitochondria swelling and change of transmembrane potential of mitochondria. A parallel proteomic study on the clinical human TNBC specimens obtained the differential protein expression patterns in different stages of TNBC tumors. Among 2 TNBC tumors at stage IIB, 21 proteins, such as annexin A1 and A5, SLC2A1, protein Z-dependent protease inhibitor, alpha-1-acid glycoprotein 1, hemopexin, etc., displayed similarly expressed levels with those observed in murine 4T1 tumors and that were responsive and deregulated by DET treatment. Overall, this study demonstrates that the DET and DETD-35 inhibitory TNBC cell activities were through promoting exosome release from the cancer cells and oxidative stress-induced paraptosis-like programmed cell death by calcium dependent mechanism. The DET and DETD-35 induced cancer cell releasing exosomes was in tandem with alteration of exosomal protein composition and functions. Overall, this study provides novel mechanistic insights of medicinal plant derived sesquiterpene lactose DET and its novel derivative DETD-35 against TNBC cell actives in support of the potential for future developing these agents in TNBC intervention.
口試委員審定書...........................................i
誌謝...................................................ii
摘要..................................................iii
Abstract................................................v
Table of Contents....................................viii
List of Figures......................................xiii
List of Tables.........................................xv
Abbreviations.........................................xvi
Chapter 1 General Introduction..........................1
1.1 Triple negative breast cancer (TNBC)................1
1.2 Highlights of current proteomic research of TNBC....3
1.3 Cytoplasmic vacuolation-related cell death..........5
1.4 Cancer cell-derived exosomes........................6
1.5 Anti-cancer plant sesquiterpene lactones (SLs) and deoxyelephantopin from Elephantopus scaber L. and its novel derivatives.......................................9
1.6 Novel deoxyelephantopin derivatives (DETDs)........12
1.7 General objective and specific aims................13
Chapter 2 Materials and Methods........................16
2.1 Isolation and structure elucidation of DET.........16
2.2 Chemicals and antibodies...........................17
2.3 Cell culture.......................................17
2.4 Cell viability assay...............................18
2.5 Animals............................................18
2.6 Inhibition of triple negative tumor growth in NOD/SCID mice..........................................18
2.7 Western blot analysis..............................19
2.8 Immunofluorescence cell staining...................20
2.9 Immunohistochemistry analysis......................21
2.10 Measurement of reactive oxygen species (ROS)......21
2.11 Measurement of mitochondrial membrane potential (MMP)..................................................22
2.12 Transmission electron microscopy (TEM)............22
2.13 Transfection of small hairpin RNA.................22
2.14 Protein digestion and iTRAQ labeling..............23
2.15 Strong cation exchange fractionation and LC-MS/MS analysis...............................................24
2.16 Protein identification and quantitation...........26
2.17 Bioinformatics analysis...........................27
2.18 Statistical analysis..............................28
Chapter 3 Results......................................29
3.1 To elucidate the mechanisms of action of DET and its derivative DETD-35 against TNBC cell activities........29
3.1.1 DET and DETD-35 inhibited cell proliferation and growth and induced cytoplasmic vacuolation formation in MDA-MB-231 cells.......................................29
3.1.2 DETD-35 promotes non-autophagic cytoplasmic vacuolation death in TNBC cells........................31
3.1.3 DET- and DETD-35-caused cytoplasmic vacuolation death is associated with endoplasmic reticulum (ER) stress and ubiquitinated protein accumulation..........34
3.1.4 DET and DETD-35 induce the loss of mitochondrial membrane potential (MMP) and the formation of mitochondria-derived vacuoles in MDA-MB-231 cells......36
3.1.5 DET- and DETD-35-induced cytoplasmic vacuolation require protein synthesis..............................38
3.1.6 Role of MAP kinases in DET- and DETD-35-induced cytoplasmic vacuolation death in TNCB cells............39
3.1.7 DET- or DETD-35-induced ROS mediates cytoplasmic vacuolation-associated cell death......................41
3.2 To investigate the DET and DETD-35 effects on TNBC cell release of exosomes and exosomal proteins.........43
3.2.1 DET and DETD-35 promoted Ca2+-dependent release of exosomes from TNBC cells...............................44
3.2.2 Comparative exosomal proteomes analysis..........46
3.2.3 Analysis of differentially expressed proteins in exosomes...............................................48
3.3 To investigate the comparative proteome of human triple negative breast tumors and murine 4T1 mammary tumors with DET or anti-cancer drug treatment..........51
3.3.1 Comparative proteomics study of human clinical triple negative breast tumors and adjacent normal mammary tissues................................................51
3.3.2 Analysis of differentially expressed proteins in TNBC 4T1 tumor with or without DET treatment...........54
Chapter 4 Discussion...................................60
4.1 DET and DETD-35 inhibited TNBC cell activity by induction of ROS-dependent, cytoplasmic vacuole-mediated paraptosis-like programmed cell death (PCD)............60
4.1.1 DET and DETD-35 induced the formation of ER or mitochondria-originated cytoplasmic vacuoles in MDA-MB-231 cells..............................................60
4.1.2 DET and DETD-35 augmented autophagosome accumulation leading to non-autophagic PCD in TNBC cells..................................................60
4.1.3 DET- and DETD-35-caused cytoplasmic vacuolation death was associated with ER stress and ubiquitinated protein accumulation that was reversed by cycloheximide..........................................63
4.1.4 DET- or DETD-35-induced ROS plays as a role as upstream initiator to initiate paraptotic PCD in TNBC cells..................................................64
4.1.5 Cytotoxic effects of PTX in TNBC cells...........66
4.2 DET and DETD-35 significantly induced exosome release from TNBC cells and DET/DETD-35 changed exosomal protein profile and content was associated with their anti-TNBC cell activity..........................................67
4.2.1 DET and DETD-35 induced deteriorate effect on structural integrity and function of ER and mitochondria, and promoted calcium-dependent exosome release from TNBC cells..................................................67
4.2.2 DET- or DETD-35-induced oxidative stress altered the protein composition and activity of TNBC cell-secreted exosomes......................................69
4.2.3 DET or DETD-35 deregulated the expression of oxidative stress- and transmembrane potential of mitochondria-related proteins in TNBC cell-secreted exososmes..............................................70
4.3 Comparative proteomes of human triple negative breast tumors and the mouse triple negative 4T1 mammary tumors with DET or chemotherapeutic drug CAP treatment........73
4.3.1 Significantly high or low expressed proteins in human triple negative breast tumors....................73
4.3.2 Comparative protein profiling in the 4T1 tumors with or without DET treatment..........................77
Chapter 5 Conclusions..................................82
References............................................148
Appendix I Published article 1......................162
Appendix II Published article 2......................163
Appendix III Published article 3......................164
1.Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.1, v: IARC CancerBase No. 11.
2.Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha, N. Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol. 2015; 172(17):4228-4237.
3.Ovcaricek T, Grazio Frkovic S, Matos E, Mozina B, Borstnar S. Triple negative breast cancer – prognostic factors and survival. Radiol Oncol. 2011; 45(1):46-52.
4.Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, McCue P, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients. Cancer. 2007; 110(4):876-884.
5.Florea AM, Bu¨sselberg D. Breast cancer and possible mechanisms of therapy resistance. Journal of Local and Global Health Science. 2013; 2:1-9.
6.Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016; 13(11):674-690.
7.Oakman C, Viale G, Di Leo A. Management of triple negative breast cancer. Breast. 2010; 19(5):312-321.
8.Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016; 13(11):674-690.
9.von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012; 30(15):1796-1804.
10.Chougule MB, Patel AR, Jackson T, Singh M. Antitumor activity of noscapine in combination with doxorubicin in triple negative breast cancer. PLoS One. 2011; 6(3):e17733.
11.Zheng R, Han S, Duan C, Chen K, You Z, Jia J, et al. Role of taxane and anthracycline combination regimens in the management of advanced breast cancer: a meta-analysis of randomized trials. Medicine (Baltimore). 2015; 94(17):e803.
12.Gelmon K, Dent R, Mackey JR, Laing K, McLeod D, Verma S. Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann Oncol. 2012; 23(9):2223-2234.
13.Mustacchi G, De Laurentiis M. The role of taxanes in triple-negative breast cancer: literature review. Drug Des Devel Ther. 2015; 9:4303-4318.
14.Berrada N, Delaloge S, André F. Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann Oncol. 2010; 21(7):30-35.
15.Sallam RM. Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers. 2015; 2015:321370.
16.Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014; 505(7484):495-501.
17.Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006; 312(5771):212-217.
18.Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res. 2008; 7(1):51-61.
19.Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods. 2014; 11:149-155.
20.Campone M, Valo I, Je´ze´quel P, Moreau M, Boissard A, Campion L, et al. Prediction of recurrence and survival for triple-negative breast cancer (TNBC) by a protein signature in tissue samples. Mol Cell Proteomics. 2015; 14:2936-2946.
21.He J, Whelan SA, Lu M, Shen D, Chung DU, Saxton RE, et al. Proteomic-based biosignatures in breast cancer classification and prediction of therapeutic response. Int J Proteomics. 2011; 2011:896476.
22.Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M, Geiger T. Proteomic maps of breast cancer subtypes. Nat Commun. 2016; 7:10259.
23.Zahreddine H, Borden KL. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013; 4:28.
24.Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A. 2000; 97(26):14376-14381.
25.Maltese WA, Overmeyer JH. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. Am J Pathol. 2014; 184(6):1630-1642.
26.Lee D, Kim IY, Saha S, Choi KS. Paraptosis in the anti-cancer arsenal of natural products. Pharmacol Ther. 2016; 162:120-133.
27.Sperandio S, Poksay K, de Belle I, Lafuente MJ, Liu B, Nasir J, et al. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ. 2004; 11(10):1066-1075.
28.Ram BM, Ramakrishna G. Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine A treated cancer cervix cells is mediated by cyclophilin B inhibition. Biochim Biophys Acta. 2014; 1843(11):2497-2512.
29.Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biology Reports. 2011; 3(15):3-15.
30.Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci. 2013; 14(3):5338-5366.
31.Mathiasa RA, Gopala SK, Simpsona RJ. Contribution of cells undergoing epithelial–mesenchymal transition to the tumour microenvironment. Journal of Proteomics. 2013; 78:545-557.
32.Urbanelli L, Magini A, Buratta S, Brozzi A, Sagini K, Polchi A. Signaling pathways in exosomes biogenesis, secretion and fate. Genes. 2013; 4:152-170.
33.O''Brien K, Rani S, Corcoran C, Wallace R, Hughes L, Friel AM, et al. Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer. 2013; 49(8):1845-1859.
34.Cho JA, Park H, Lim EH, Lee KW. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 2012; 40(1):130-138.
35.Zhang Y, Wang XF. A niche role for cancer exosomes in metastasis. Nat Cell Biol. 2015; 17(6):709-711.
36.Melo SA, Sugimoto H, O''Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014; 26(5):707-721.
37.Choi DS, Kim DK, Kim YK, Gho YS. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom Rev. 2015; 34:474-490.
38.Raimondo F, Morosi L, Chinello C, Magni F, Pitto M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011; 11(4):709-720.
39.Chan YK, Zhang H, Liu P, Tsao SW, Lung ML, Mak NK, et al. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int J Cancer. 2015; 137(8):1830-1841.
40.Bosque A, Dietz L, Gallego-Lleyda A, Sanclemente M, Iturralde M, Naval J, et al. Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein. Oncotarget. 2016; 7(20):29287-29305.
41.Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B. 2016; 6(4):287-296.
42.Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson''s disease therapy. J Control Release. 2015; 207:18-30.
43.Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011; 19(10):1769-1779.
44.Osterman CJ, Lynch JC, Leaf P, Gonda A, Ferguson Bennit HR, Griffiths D, et al. Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PLoS One. 2015; 10(7):e0132845.
45.Wu H, Zhou J, Zeng C, Wu D, Mu Z, Chen B, et al. Curcumin increases exosomal TCF21 thus suppressing exosome-induced lung cancer. Oncotarget. 2016; 7(52):87081-87090.
46.Hannafon BN, Carpenter KJ, Berry WL, Janknecht R, Dooley WC, Ding WQ. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer. 2015; 14:133.
47.Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, D''Herde K. Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs. 2012; 23(9):883-896.
48.Shoaib M, Shah I, Ali N, Adhikari A, Tahir MN, Ali Shah SW, et al. Sesquiterpene lactone! a promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jacquem. BMC Complement Altern Med. 2017; 17:27.
49.Ren Y, Yu J, Kinghorn AD. Development of anticancer agents from plant-derived sesquiterpene lactones. Curr Med Chem. 2016; 23(23):2397-2420.
50.Nakshatri H, Rice SE, Bhat-Nakshatri P. Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene. 2004; 23:7330-7344.
51.Sun Y, St Clair DK, Xu Y, Crooks PA, St Clair WH. A NADPH oxidase dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells. Cancer Res. 2010; 70:2880-2890.
52.Hung JY, Hsu YL, Ni WC, Tsai YM, Yang CJ, Kuo PL, et al. Oxidative and endoplasmic reticulum stress signaling are involved in dehydrocostus lactone-mediated apoptosis in human non-small cell lung cancer cells. Lung Cancer. 2010; 68:355-365.
53.Denmeade SR, Isaacs JT. The SERCA pump as a therapeutic target: making a ‘smart bomb’ for prostate cancer. Cancer Biol Ther. 2005; 4:14-22.
54.Liu Z, Liu S, Xie Z, Pavlovicz RE, Wu J, Chen P, et al. Modulation of DNA methylation by a sesquiterpene lactone parthenolide. J Pharmacol Exp Ther. 2009; 329:505-514.
55.Xu G, Liang Q, Gong Z, Yu W, He S, Xi L. Antitumor activities of the four sesquiterpene lactones from Elephantopus scaber L. Exp Oncol. 2006; 28 (2):106-109.
56.Ichikawa H, Nair MS, Takada Y, Sheeja DB, Kumar MA, Oommen OV, et al. Isodeoxyelephantopin, a novel sesquiterpene lactone, potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis through suppression of nuclear factor-κB (NF-κB) activation and NF-κB-regulated gene expression. Clin Cancer Res. 2006; 12(19):5910-5918.
57.Hiradeve SM, Rangari VD. Elephantopus scaber Linn.: A review on its ethnomedical, phytochemical and pharmacological profile. Journal of Applied Biomedicine. 2014; 12(12):49-61.
58.Huang CC, Lin KJ, Cheng YW, Hsu CA, Yang SS, Shyur LF. Hepatoprotective effect and mechanistic insights of deoxyelephantopin, a phyto-sesquiterpene lactone, against fulminant hepatitis. J Nutr Biochem. 2013; 24(3):516-530.
59.Lee KH, Cowherd CM, Wolo MT. Antitumor agents. XV: deoxyelephantopin, an antitumor principle from Elephantopus carolinianus Willd. J Pharm Sci. 1975; 64:1572-1573.
60.Lee WL, Huang JY, Shyur LF. Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxid Med Cell Longev. 2013; 2013:925804.
61.Farha AK, Dhanya SR, Mangalam SN, Geetha BS, Latha PG, Remani P. Deoxyelephantopin impairs growth of cervical carcinoma SiHa cells and induces apoptosis by targeting multiple molecular signaling pathways. Cell Biol Toxicol. 2014; 30(6):331-343.
62.Xu G, Liang Q, Gong Z, Yu W, He S, Xi L. Antitumor activities of the four sesquiterpene lactones from Elepephantopus scaber L. Exp Oncol. 2006; 28(2):106-109.
63.Farha AK, Geetha BS, Mangalam SN, Dhanya SR, Latha PG, Sujathan K, et al. Antineoplastic effects of deoxyelephantopin, a sesquiterpene lactone from Elephantopus scaber, on lung adenocarcinoma (A549) cells. Journal of Integrative Medicine. 2013; 11(4):269-277.
64.Zou G, Gao Z, Wang J, Zhang Y, Ding H, Huang J, et al. Deoxyelephantopin inhibits cancer cell proliferation and functions as a selective partial agonist against PPARgamma. Biochem Pharmacol. 2008; 75(6):1381-1392.
65.Lee WL, Wen TN, Shiau JY, Shyur LF. Differential proteomic profiling identifies novel molecular targets of paclitaxel and phytoagent deoxyelephantopin against mammary adenocarcinoma cells. J Proteome Res. 2010; 9(1):237-253.
66.Lee WL, Shyur LF. Deoxyelephantopin impedes mammary adenocarcinoma cell motility by inhibiting calpain-mediated adhesion dynamics and inducing reactive oxygen species and aggresome formation. Free Radic Biol Med. 2012; 52(8):1423-1436.
67.Huang CC, Lo CP, Chiu CY, Shyur LF. Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice. Br J Pharmacol. 2010; 159(4):856-871.
68.Nakagawa-Goto K, Chen JY, Cheng YT, Lee WL, Takeya M, Saito Y, et al. Novel sesquiterpene lactone analogues as potent anti-breast cancer agents. Molecular Oncology. 2016; 10(6):921-937.
69.Feng JH, Nakagawa-Goto K, Lee KH, Shyur LF. A novel plant sesquiterpene lactone derivative, DETD-35, suppresses BRAFV600E mutant melanoma growth and overcomes acquired vemurafenib resistance in mice. Mol Cancer Ther. 2016; 15(6):1163-1176.
70.But PP, Hon PM, Cao H, Chan TWD, Wu BM, Mak TCW, et al. Sesquiterpene lactones from Elephantopus scaber. Phytochemistry. 1997; 44:113-116.
71.Chiang YM, Lo CP, Chen YP, Wang SY, Yang NS, Kuo YH, et al. Ethyl caffeate suppresses NF-kB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br J Pharmacol. 2005; 146 (3):352-363.
72.Berard AR, Cortens JP, Krokhin O, Wilkins JA, Severini A, Coombs KM. Quantification of the host response proteome after mammalian reovirus T1L infection. PLoS One. 2012; 7:e51939.
73.Mena S, Rodríguez ML, Ponsoda X, Estrela JM, Jäättela M, Ortega AL. Pterostilbene-induced tumor cytotoxicity: a lysosomal membrane permeabilization-dependent mechanism. PLoS One. 2012; 7(9):e44524.
74.Lee WJ, Chien MH, Chow JM, Chang JL, Wen YC, Lin YW, et al. Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species-mediated endoplasmic reticulum stress. Sci Rep. 2015; 5:10420.
75.Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol. 2013; 3:292.
76.Paschen W, Frandsen A. Endoplasmic reticulum dysfunction-a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem. 2001; 79(4):719-725.
77.Savina A, Furla´ n M, Vidal M, Colombo MI. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem. 2003; 278:20083-20090.
78.Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006; Chapter 3, Unit 3.22.
80.Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009; 21:575-581.
81.Harris DA, Patel SH, Gucek M, Hendrix A, Westbroek W, Taraska JW. Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS One. 2015; 10:e0117495.
82.Kar R, Singha PK, Venkatachalam MA, Saikumar P. A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene. 2009; 28(28):2556-2568.
83.Wasik AM, Almestrand S, Wang X, Hultenby K, Dackland ÅL, Andersson P, et al. WIN55,212-2 induces cytoplasmic vacuolation in apoptosis-resistant MCL cells. Cell Death Dis. 2011; 2:e225.
84.Ryter SW, Lee SJ, Smith A, Choi AM. Autophagy in vascular disease. Proc Am Thorac Soc. 2010; 7(1):40-47.
85.Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010; 221(1):3-12.
86.Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 2008; 90(2):313-323.
87.Zhang C, Jiang Y, Zhang J, Huang J, Wang J. 8-p-Hdroxybenzoyl tovarol induces paraptosis like cell death and protective autophagy in human cervical cancer HeLa cells. Int J Mol Sci. 2015; 16(7):14979-14996.
88.Lee YK, Lee JA. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep. 2016; 49(8):424-430.
89.Singha PK, Pandeswara S, Venkatachalam MA, Saikumar P. Manumycin A inhibits triple-negative breast cancer growth through LC3-mediated cytoplasmic vacuolation death. Cell Death Dis. 2013; 4:e457.
90.Itakura E, Mizushima N. p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol. 2011; 192(1):17-27.
91.Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett. 2016; 590(15):2375-2397.
92.Yoon MJ, Kim EH, Lim JH, Kwon TK, Choi KS. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free Radic Biol Med. 2010; 48(5):713-726.
93.Chen TS, Wang XP, Sun L, Wang LX, Xing D, Mok M. Taxol induces caspase-independent cytoplasmic vacuolization and cell death through endoplasmic reticulum (ER) swelling in ASTC-a-1 cells. Cancer Lett. 2008; 270(1):164-172.
94.Wang C, Chen T. Intratumoral injection of taxol in vivo suppresses A549 tumor showing cytoplasmic vacuolization. J Cell Biochem. 2012; 113:1397-1406.
95.Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic. 2005; 6:131-143.
96.Mizuno K, Kurokawa K, Ohkuma S. Regulatory mechanisms and pathophysiological significance of IP3 receptors and ryanodine receptors in drug dependence. J Pharmacol Sci. 2013; 123:306-311.
97.Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol. 2013; 3:292.
98.Nadanaciva S, Will Y. Current concepts in drug-induced mitochondrial toxicity. Current Protocols in Toxicology. 2009; Chapter 2, Unit 2.15.
99.Korge P, Goldhaber JI, Weiss JN. Phenylarsine oxide induces mitochondrial permeability transition, hypercontracture, and cardiac cell death. Am J Physiol Heart Circ Physiol. 2001; 280(5):2203-2213.
100.Eldh M, Ekstro¨m K, Valadi H, Sjo¨ strand M, Olsson B, Jerna°s M, et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One. 2010; 5:e15353.
101.Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol. 2002; 12:197-207.
102.Gopal SK, Greening DW, Zhu HJ, Simpson RJ, Mathias RA. Transformed MDCK cells secrete elevated MMP1 that generates LAMA5 fragments promoting endothelial cell angiogenesis. Sci Rep. 2016; 6:28321.
103.Zahir N, Lakins JN, Russell A, Ming W, Chatterjee C, Rozenberg GI, et al. Autocrine laminin-5 ligates alpha6beta4 integrin and activates RAC and NF-B to mediate anchorage-independent survival of mammary tumors. J Cell Biol. 2003; 163:1397-1407.
104.Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015; 527:329-335.
105.Beckham CJ, Olsen J, Yin PN, Wu CH, Ting HJ, Hagen FK, et al. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J Urol. 2014; 192:583-592.
106.Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009; 15:35-44.
107.Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013; 13:24-57.
108.Carlsson H, Yhr M, Petersson S, Collins N, Polyak K, Enerbäck C. Psoriasin (S100A7) and calgranulin-B (S100A9) induction is dependent on reactive oxygen species and is downregulated by Bcl-2 and antioxidants. Cancer Biol Ther. 2005; 4:998-1005.
109.Schwartz NB. Proteoglycans. Encyclopedia of Life Sciences. 2009; 15:1-9.
110.Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010; 277(19):3904-3923.
111.Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015; 42:11-55.
112.Poluzzi C, Iozzo RV, Schaefer L. Endostatin and endorepellin: a common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev. 2016; 97:156-173.
113.Neill T, Painter H, Buraschi S, Owens RT, Lisanti MP, Schaefer L, et al. Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1α, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. J Biol Chem. 2012; 287(8):5492-5506.
114. Neill T, Torres A, Buraschi S, Owens RT, Hoek JB, Baffa R, et al. Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitostatin. J Biol Chem. 2014; 289(8):4952-4968.
115.Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 2010; 277(19):3864-3875.
116.Kim S, Lee YK, Koo JS. Differential expression of lipid metabolism related proteins in different breast cancer subtypes. PLoS One. 2015; 10:e0119473.
117.Wang W, Yuan P, Yu D, Du F, Zhu A, Li Q, et al. A single-nucleotide polymorphism in the 3''-UTR region of the adipocyte fatty acid binding protein 4 gene is associated with prognosis of triple-negative breast cancer. Oncotarget. 2016; 7(14):18984-98.
118.Cha YJ, Kim HM, Koo JS. Expression of lipid metabolism-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma. Int J Mol Sci. 2017; 18(1): 232.
119.Witkiewicz AK, Dasgupta A, Sammons S, Er O, Potoczek MB, Guiles F, et al. Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biol Ther. 2010; 10(2):135-43.
120.Kang J, Park JH, Lee HJ, Jo U, Park JK, Seo JH, et al. Caveolin-1 modulates docetaxel-induced cell death in breast cancer cell subtypes through different mechanisms. Cancer Res Treat. 2016; 48(2):715-26.
121.Bosquet A, Guaita-Esteruelas S, Saavedra P, Rodríguez-Calvo R, Heras M, Girona J, et al. Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells. Atherosclerosis. 2016; 249:191-9.
122.Gan L, Liu Z, Cao W, Zhang Z, Sun C. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes. Sci Rep. 2015; 5:13588.
123.Li X, Gonzalez O, Shen X, Barnhart S, Kramer F, Kanter JE, et al. Endothelial acyl-CoA synthetase 1 is not required for inflammatory and apoptotic effects of a saturated fatty acid-rich environment. Arterioscler Thromb Vasc Biol. 2013; 33(2):232-40.
124.Dou G, Sreekumar PG, Spee C, He S, Ryan SJ, Kannan R, et al. Deficiency of αB crystallin augments ER stress-induced apoptosis by enhancing mitochondrial dysfunction. Free Radic Biol Med. 2012; 53(5):1111-22.
125.Jiao Q, Sanbe A, Zhang X, Liu JP, Minamisawa S. alphaB-crystallin R120G variant causes cardiac arrhythmias and alterations in the expression of Ca2+-handling proteins and endoplasmic reticulum stress in mice. Clin Exp Pharmacol Physiol. 2014; 41:589-599.
126.Mirsaeidi M, Gidfar S, Vu A, Schraufnagel D. Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis. J Transl Med. 2016; 14:89.
127.Yom CK, Han W, Kim SW, Kim HS, Shin HC, Chang JN, et al. Clinical significance of annexin A1 expression in breast cancer. J Breast Cancer. 2011; 14(4): 262-268.
128. Hong M, Park N, Chun YJ. Role of annexin A5 on mitochondria-dependent apoptosis induced by tetramethoxystilbene in human breast cancer cells. Biomol Ther (Seoul). 2014; 22(6):519-524.
129.Park K, Ikushiro H, Seo HS, Shin KO, Kim YI, Kim JY, et al. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. Proc Natl Acad Sci U S A. 2016; 113(10):E1334-42.
130.Kuroda K, Okumura K, Isogai H, Isogai E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front Oncol. 2015; 5:144.
131.Mader JS, Mookherjee N, Hancock RE, Bleackley RC. The human host defense peptide LL-37 induces apoptosis in a calpain- and apoptosis-inducing factor-dependent manner involving Bax activity. Mol Cancer Res. 2009; 7(5):689-702.
132.Wu WK, Sung JJ, To KF, Yu L, Li HT, Li ZJ, et al. The host defense peptide LL-37 activates the tumor-suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J Cell Physiol. 2010; 223(1):178-86.
133.Li L, Ren CH, Tahir SA, Ren C, Thompson TC. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol. 2003; 23(24):9389-404.
134.Fork C, Hitzel J, Nichols BJ, Tikkanen R, Brandes RP. Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells. Basic Res Cardiol. 2014; 109(6):439.
135.Jenkitkasemwong S, Wang CY, Mackenzie B, Knutson MD. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals. 2012; 25(4):643-55.
136.Kim MH, Aydemir TB, Kim J, Cousins RJ. Hepatic ZIP14-mediated zinc transport is required for adaptation to endoplasmic reticulum stress. Proc Natl Acad Sci U S A. 2017; 114(29):E5805-5814.
137.Franklin RB, Levy BA, Zou J, Hanna N, Desouki MM, Bagasra O, et al. ZIP14 zinc transporter downregulation and zinc depletion in the development and progression of hepatocellular cancer. J Gastrointest Cancer. 2012; 43(2):249-57.
138.Li C, Chen H, Ding F, Zhang Y, Luo A, Wang M, et al. A novel p53 target gene, S100A9, induces p53-dependent cellular apoptosis and mediates the p53 apoptosis pathway. Biochem J. 2009; 422(2):363-372.
139.Hayashi R, Ishii Y, Ochiai H, Matsunaga A, Endo T, Hasegawa H, et al. Suppression of heat shock protein 27 expression promotes 5-fluorouracil sensitivity in colon cancer cells in a xenograft model. Oncol Rep. 2012; 28(4):1269-1274.
140.Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C, et al. Extracellular release and signaling by heat shock protein 27: role in modifying vascular inflammation. Front Immunol. 2016; 7:285.
141.Matsumoto T, Urushido M, Ide H, Ishihara M, Hamada-Ode K, Shimamura Y, et al. Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal tubular cells in acute kidney injury. PLoS One. 2015; 10:e0126229.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊