跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林欣平
研究生(外文):Shin-Ping Lin
論文名稱:細菌性纖維之生產及其於傷口癒創之應用
論文名稱(外文):Production of Bacterial Cellulose and Its Application in Wound Healing
指導教授:鄭光成鄭光成引用關係
口試委員:劉嚞睿劉啟德沈偉強羅翊禎
口試日期:2017-03-06
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:152
中文關鍵詞:細菌性纖維塑化基材轉動式生物反應器菌種鑑定生醫敷材傷口照護
外文關鍵詞:bacterial celluloseplastic composite supportrotating disk bioreactorstrain identificationwound dressingwound healing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:609
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌性纖維(bacterial cellulose, BC)係一種由微生物所生產之纖維素,其具有如高保水性、良好機械性質以及生物相容性等優點,可被用以作為食品加工、香妝工業及醫療應用等用途。
本研究以提高BC的商業價值為主,可分為四個方向:(1) BC之半連續式生產系統建立; (2)半連續式系統之產量提升;(3) BC生產菌株之鑑定以及 (4) BC於癒創敷材之應用。
首先,我們將轉動式生物反應器(rotating disk bioreactor, RDB)結合塑化基材(plastic composite support, PCS)以開發為塑化基材轉動式生物反應器(PCS-RDB)。塑化基材為一種於高溫高壓下擠壓而成之支架,其成分為黃豆殼、黃豆粉、豬血球粉、酵母粗萃物以及聚丙烯等材料。過去研究發現PCS具有粗糙表面可幫助微生物附著,並可緩慢釋出養分以利微生物生長。本研究結果發現PCS-RDB可用以生產BC產量達0.24 g/L/day,並可於無再次接種之情況下持續生產BC達到五個循環以上。由掃描式電子顯微鏡(Scanning electron microscope, SEM)結果可知,PCS具有粗糙之表面,並於使用後可被發現仍有許多BC生產菌種Gluconacetobacter xylinus (G. xylinus)附著於PCS表面,這些附著之細菌可於下一次生產時做為種菌之來源。於X光繞射(X-ray diffraction patterns, XRD)之結果可知,與靜置培養(static culture, SC)之BC (SC/BC)相比,由PCS-RDB生產之BC (PCS-RDB/BC)具有較低之結晶度。於機械性質分析(mechanical property analysis)可發現PCS-RDB/BC具有較低的應力以及較高的應變,顯示其具有較脆弱但有彈性之材料特性。
而於第二部分之研究,我們嘗試提升PCS-RDB生產BC之能力。我們選擇了四種不同聚合物如微晶纖維(microcrystalline cellulose, Avicel was used herein)、甲基化纖維(carboxymethyl cellulose, CMC)、瓊脂(agar)以及藻醣酸鈉(sodium alginate)作為培養基添加物。並對添加不同添加物之PCS-RDB/BC進行材料特性分析。結果顯示於CMC及Avicel添加下可顯著增加BC於PCS-RDB系統之產量,並在0.8% Avcel添加之組別中可達最高產量約3.84 g/L。由傅立葉轉換紅外光譜分析(transform infrared spectroscopy, FTIR)、熱重分析儀(thermogravimetric analysis, TGA)、SEM以及XRD等分析可知CMC及Avicel於BC生產過程中會被再吸收進入BC內部進而影響其材料特性。此外,這些添加物會增加培養基之黏性,進而使得BC生產菌株得以抵禦PCS-RDB轉動過程所產生之剪切力而導致的傷害。而機械性質及保水性分析顯示於Avicel添加組別之PCS-RDB/BC仍具有高保水性、高彈性以及較低之應力。
除了生產系統之建立及其優化之外,挑選具潛力之BC生產菌株亦能提升其於產業之實際應用性。於此部分之研究,我們嘗試由坊間之水果發酵產物取得未知之BC生產菌種,透過分子生物學以及生化分析等方式鑑定未知菌種,並對其生產特性進行測試以了解該未知菌種是否與常用BC生產菌株G. xylinus 23769相比是否有所不同。藉由16s rDNA 序列比對以及生化特性分析結果可知,該菌種為Komagataeibacter intermedius (K. intermedius),因此我們將其命名為K. intermedius FST213-1。藉由將其培養於不同起始pH值之環境中,我們發現K. intermedius FST213-1 具有耐鹼性之特性,其可於pH值達到8之環境中存活並生產BC。而在產量之比較上,K. intermedius FST213-1具有比G. xylinus 23769更高之BC產量(1.2 g/L v.s. 0.6 g/L)。於材料特性分析之結果可知,與G. xylinus 23769相比,K. intermedius FST213-1所生產之BC具有高保水性、較低之熱穩定性以及結晶性等。而在機械性質分析上,兩者具有相似的應變以及應力。
BC因為其特殊材料特性而具有廣泛的應用,而在其所有應用中,醫療應用具有最高之商業價值,因此我們將BC與右旋糖酐(dextran)透過化學交聯以形成水凝膠,並希望其能作為癒創敷材以促進傷口癒合。於本研究中,我們使用10%, 20%以及30% dextran與BC交聯形成dextran/BC水膠。由機械性質分析可知交聯後之dextran/BC,其應力會隨著交聯之dextran濃度增加而下降,而其應變則是於10-20%之交聯組別保持彈性,但會於30%之交聯組別急速下降,此結果顯示於高濃度之dextran交聯組別具有易碎及不穩定之特性。而於細胞實驗中,我們使用NIH-3T3纖維母細胞來測試dextran是否具有細胞毒性(cytotoxicity)以及其細胞增生能力(cell proliferation)之測試。結果顯示於所有組別之dextran/BC均不具有細胞毒性。而在細胞增生實驗上,10% dextran/BC具有最佳之細胞增生能力以及穩定性。而於動物實驗中,我們將小鼠背部打孔形成切割傷口,經10% dextran/BC處理後可發現其具有加速小鼠傷口癒合之能力,顯示10% dextran/BC具有研發成為癒創敷材之潛力。
總結來說,本研究透過半連續生產系統之建立及優化、新式菌種之發現及生醫敷材之應用等方向來提昇BC之應用價值。透過PCS-RDB之研發,我們僅需接種一次,便可半連續式生產BC達五個循環以上,並可透過不同添加物的添加來提昇該系統生產BC之能力。此外,我們也鑒定出一新式BC生產菌株-K. intermedius FST213-1,並發現其具有鹼耐受性以及高產量等特性。最後我們將BC與dextran結合以研發出新式水凝膠,並於細胞以及動物實驗發現其不具有細胞毒性、可促進纖維母細胞增生以及幫助小鼠傷口癒合等能力,適合作為癒創敷材之應用。這些結果將可用以降低BC於工業生產之成本並提升其應用性。
Bacterial cellulose (BC), a kind of cellulose produced from microorganism, provides a lot of advantages such as high water content, great strength and good biocompatibility. Because of these advantages, BC has been applied in manufacturing industry, food processing, cosmetics industry and medical application.
The purpose of this research aimed to improve the application value of BC. It can be classified to four areas: (1) establishment of semi-continuous BC producing system, (2) improving the BC yield in the semi-continuous system, (3) selection of novel BC producing strain and (4) application of modified BC in wound healing.
First of all, A rotating disk bioreactor (RDB) with plastic composite support (PCS) as the solid support was developed for BC production. The functions of PCS are to provide the rough surface for microorganism adhesion and enhance microbe growth by mean of slowly nutrition release. The material properties of BC produced from this system were estimated. The results indicated that BC can be produced in a semi-continuous manner. The BC productivity reached around 0.24 g/L/day, and can be sustrained for at least five consecutive runs. Scanning electron microscopy (SEM) results showed that the BC producing strain Gluconacetobacter xylinus (G. xylinus) attached on the PCS surface leading to BC production in next round fermentation no need for inoculation. In the X-ray diffraction patterns (XRD), the BC produced from PCS-RDB presented lower crystallinity when compared to the BC obtained from static culture. In mechanical analysis, PCS-RDB/BC revealed the lower stress and higher strain suggesting that it exhibits a fragile but flexible material property.
For improving BC production in PCS-RDB system, we selected four kinds of polysaccharide including microcrystalline cellulose (MCC; Avicel was used herein), carboxymethyl cellulose (CMC), agar and sodium alginate as the medium additives. The material properties of BC produced from PCS-RDB were also analyzed using fourier transform infrared spectroscopy (FTIR), SEM, TGA, XRD and dynamic mechanical analysis (DMA). The results demonstrated that the addition of CMC and Avicel can help increase BC production, and the highest yield of BC from Avicel addition group reached 3.84 g/L, which is much higher than non-addition group (1.8 g/L). The FTIR, SEM and XRD results indicated that CMC and Avicel was incorporating into BC inside, and influencing BC structure during fermentation. Besides, the additives may provide high viscosity environment to help BC producing strain avoiding the damage from cut force (or shear force) which is produced from rotation of PCS. Therefore, the addition of CMC or Avicel can be used to improve BC production in PCS-RDB. The produced BC can still have the similar water content and strain but lower stress compared to BCs produced from static culture.
Moreover, the selection of microorganism is crucial for BC production in different cultivation system. In our previous study, G. xylinus was used to produce BC due to its high BC production and easy-to-culture. Consequence, exploring a new potential BC producing strain is the other direction for improving BC production. An unknown strain isolated from fermented fruit juice was identified as Komagataeibacter intermedius (K. intermedius) FST213-1 by 16s rDNA sequencing analysis and biochemical characteristics test. K. intermedius FST213-1 processed high alkaline tolerance which can produce BC at pH 8 in short-term (4-day) cultivation. It also provided higher BC production compared to G. xylinus 23769 at pH value of 8 (1.2 g/L vs. 0.6 g/L). Results of material property analysis indicated that BC produced from K. intermedius FST213-1 exhibits higher water content ability (99.5%), lower thermostability (315◦C), lower crystallinity (79.3%) and similar mechanical properties in comparison with the specimen of model BC producer- G. xylinus 23769.
Among of all applications of BC, medical application provides highly valuable commercial value. We, therefore, tried to combine BC with dextran as the hydrogel for medical application. Mechanical property result showed that the stress of modified hydrogel was decreased dependent on the added dextran concentration. And 10-20% dextran/BC groups exhibit the highest strain. The cell based experiment results presented that no cytotoxicity in all dextran/BC groups, and 10% dextran/BC shows the highest cell proliferation ability. In mice based animal model experiment, 10% dextran/BC revealed good wound healing ability that can reduce wound closure quickly and accumulate skin mature suggesting that dextran/BC can be developed as potential wound dressing in clinical application.
After all, our study focused on enhancing the application value of BC. At first, we successfully established a semi-continuous BC production system. And the effects of various additions added in this system were also estimated. Through the system with additives adjunction, BC production can be semi-continuously proceeded with high yield. In the other hand, a new BC producing substrain- K. intermedius FST213-1 was found that can produce BC in alkaline environment with high yield. Last but not least, a novel dextran modified BC hydrogel was used as wound dressing for medical healing. The hydrogel dressing can improve fibroblast cell proliferation. In addition, it can also accelerate wound healing in vivo. In the end, these results clearly disclosed that the application value of BC is increased utilizing improving production system, increasing the yield of BC, selecting novel BC producing strain and developing new application.
口試委員審定書 ii
致謝 iii
中文摘要 v
ABSTRACT viii
LIST of FIGURES xv
LIST of TABLES xvii
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. LITERATURE REVIEW 4
2.1. General outline 4
2.2. Bacterial cellulose 4
2.3. Bacterial cellulose biosynthesis 5
2.3.1. Cellulose producing strain 5
2.3.2. Gluconacetobacter xylinus 6
2.3.3. Other BC producing strains 9
2.3.4. Genetics and enzyme regulation 10
2.4. Production of BC 12
2.4.1. Static cultures for BC production 13
2.4.2. Submerged fermentation 14
2.4.3. Culture media 15
2.4.4. Long-term fermentation 16
2.4.5. Effects of other additives on BC production 17
2.4.6. Bioreactor design and usage 19
2.5. Application of BC 28
2.5.1. Acoustic transducer diaphragm 28
2.5.2. Paper manufacturing 28
2.5.3. Filtration 29
2.5.4. Pharmaceutical applications 30
2.5.5. Food applications 38
2.5.6. Other applications 39
CHAPTER 3. SEMI-CONTINUOUS BACTERIAL CELLULOSE PRODUCTION in a ROTATING DISK BIOREACTOR and ITS MATERIALS PROPERTIES ANALYSIS. 44
3.1. Abstract 44
3.2. Introduction 44
3.3. Materials and methods 46
3.3.1 Microorganisms 46
3.3.2 Medium 47
3.3.3 Plastic composite support 47
3.3.4 Selection of BC production strains 48
3.3.5 Semi-continuous BC production 48
3.3.6 Materials properties analysis of BC 49
3.3.7 Statistical analysis 51
3.4. Results and discussion 52
3.4.1 Selection of BC production strain 52
3.4.2 Semi-continuous cultivation of BC in PCS-RDB 53
3.4.3 Materials properties analysis of BC 55
3.5. Conclusion 61
CHAPTER 4. PRODUCTION of BACTERIAL CELLULOSE with VARIOUS ADDITIVES in PCS ROTATING DISK BIOREACTOR and ITS MATERIAL PROPRTIES ANALYSIS. 62
4.1. Abstract 62
4.2. Introduction 62
4.3. Materials and methods 64
4.3.1. Microorganisms 64
4.3.2. Media 64
4.3.3. Plastic composite support 65
4.3.4. BC production with various additives 66
4.3.5. Materials properties analysis of BC 66
4.4. Results and discussion 68
4.4.1 Effects of various additives on BC production 68
4.4.2 Fourier transform infrared spectroscopy (FTIR) 72
4.4.3 X-ray diffraction 73
4.4.4 Morphology of BCs 74
4.4.5 Thermogravimetric analysis and water content analysis 76
4.4.6 Strength measurement 77
4.5. Conclusion 78
CHAPTER 5. ISOLATION and IDENTIFICATION of CELLULOSE-PRODUCING STRAIN Komagataeibacter intermedius FST213-1 from FERMENTED FRUIT JUICE. 80
5.1. Abstract 80
5.2. Introduction 80
5.3. Materials and methods 82
5.3.1. Fermented fruit juice preparation 82
5.3.2. Isolation of BC-producing strain 82
5.3.3. Identification of BC-producing strain 82
5.3.4. Cultivation and harvest of BCs 83
5.3.5. Material property analysis 84
5.3.6. Statistical analysis 86
5.4. Results and discussion 86
5.4.1. Isolation and identification of cellulose-producing strain 86
5.4.2. Materials properties of bacterial cellulose 92
5.5. Conclusion 96
CHAPTER 6. EVALUATION of DEXTRAN MODIFIED BACTERIAL CELLULOSE HYDEOGEL ACCELELERATING CUTANEOUS WOUND HEALING 97
6.1. Abstract 97
6.2. Introduction 97
6.3. Materials and methods 99
6.3.1. Production and preparation of dextran modified BC hydrogel 99
6.3.2. Material property analysis 100
6.3.3. Cell based experiments 101
6.3.4. Wound healing modeling 102
6.3.5. Statistical analysis 103
6.4. Results and discussion 104
6.4.1. Morphology of dextran/BC hydrogel 104
6.4.2. Thermogravimetric analysis 105
6.4.3. Mechanical property and water content ability 107
6.4.4. Cell cytotoxicity and cell proliferation 109
6.4.5. Wound healing in vivo 111
6.5. Conclusion 114
CHAPTER 7. CONCLUSIONS and SCOPE for FUTURE RESEARCH 115
REFERENCES 119
Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6:105-121
Aloni Y, Delmer DP, Benziman M (1982) Achievement of high rates of in vitro synthesis of 1,4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc Natl Acad Sci U S A 79:6448-6452
Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23:1640-1648
Amin MCIM, Abadi AG, Ahmad N, Katas H, Jamal JA (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465-473
Ammon HP, Ege W, Oppermann M, Gopel W, Eisele S (1995) Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin. Anal Chem 67:466-471
Ardila N, Medina N, Arkoun M, Heuzey M-C, Ajji A, Panchal CJ (2016) Chitosan–bacterial nanocellulose nanofibrous structures for potential wound dressing applications. Cellulose 23:3089-3104
Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: Preparation and characterization. Carbohydr Polym 90:413-418
Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res. 14:53-65
Aydın YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065-1075
Azarniya A, Eslahi N, Mahmoudi N, Simchi A (2016) Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites. Compos Part A Appl Sci Manuf 85:113-122
Baah-Dwomoh A, Rolong A, Gatenholm P, Davalos RV (2015) The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering. Appl Microbiol Biotechnol 99:4785-4794
Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141-2149
Bae S, Shoda M (2004) Bacterial cellulose production by fed‐batch fermentation in molasses medium. Biotechnol Progr 20:1366-1371
Bae S, Sugano Y, Shoda M (2004) Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J Biosci Bioeng 97:33-38
Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Elsevier Health Sciences,
Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater 2011:10
Battista OA, Smith PA (1962) Microcrystalline cellulose. lnd. Eng. Chem. 54:20-29
Ben-Hayyim G, Ohad I (1965) Synthesis of cellulose by Acetobacter xylinum: VIII. on the formation and orientation of bacterial cellulose fibrils in the presence of acidic polysaccharides. J Cell Biol 25:191-207
Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci U S A 77:6678-6682
Bergey DH, F.C. Harrison, R.S. Breed, B.W. Hammer and F.M. (1925) Bergey''s Manual of Systematic Bacteriology. 2 edn., Williams & Wilkins
Bhowmick PP, Devegowda D, Ruwandeepika HAD, Fuchs TM, Srikumar S, Karunasagar I, Karunasagar I (2011) gcpA (stm1987) is critical for cellulose production and biofilm formation on polystyrene surface by Salmonella enterica serovar Weltevreden in both high and low nutrient medium. Microb Pathog 50:114-122
Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. Biopolymers online
Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892-2923
Brown AJ (1886) LXII.-Further notes on the chemical action of Bacterium aceti. J Chem Soc 51:638-643
Brown RM (2004) Cellulose structure and biosynthesis: What is in store for the 21st century? J Polym Sci Pol Chem 42:487-495
Brown RM, Jr. (1985) Cellulose microfibril assembly and orientation: recent developments. J Cell Sci Suppl 2:13-32
Brown RM, Jr., Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci U S A 73:4565-4569
Bryant RA, Nix DP (2015) Acute and chronic wounds: current management concepts. Elsevier Health Sciences,
Bungay, Henry R, Serafica, Gonzalo C (1991) Production of microbial cellulose. Us Patent US6071727, 2000/06/06
Bureau TE, Brown RM (1987) In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum. Proc Natl Acad Sci U S A 84:6985-6989
Cacicedo ML, León IE, Gonzalez JS, Porto LM, Alvarez VA, Castro GR (2016) Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surf B Biointerfaces 140:421-429
Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83-91
Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435-447
Castro C et al. (2015) In situ glyoxalization during biosynthesis of bacterial cellulose. Carbohydr Polym 126:32-39
Castro C et al. (2014) In situ production of nanocomposites of poly (vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose 21:1745-1756
Castro C et al. (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033-1037
Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50‐l internal‐loop airlift reactor. Biotechnol Bioeng 68:345-352
Chao Y, Sugano Y, Shoda M (2001) Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor. Appl Microbiol Biotechnol 55:673-679
Chao YP, Sugano Y, Kouda T, Yoshinaga F, Shoda M (1997) Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnol Tech 11:829-832
Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial Cellulose: Fermentative Production and Applications. Food Technol Biotech 47:107-124
Chen HH, Chen LC, Huang HC, Lin SB (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18:1573-1583
Chen M, Kang H, Gong Y, Guo J, Zhang H, Liu R (2015) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. Acs Appl Mater Inter 7:21717-21726
Chen S, Shen W, Yu F, Wang H (2009) Kinetic and thermodynamic studies of adsorption of Cu2+ and Pb2+ onto amidoximated bacterial cellulose. Polym Bull 63:283-297
Cheng HP, Wang PM, Chen JW, Wu WT (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Bioc 35:125-132
Cheng KC, Catchmark J, Demirci A (2009a) Production and application of bacterial cellulose. Trends Biotechnol 5:1-20
Cheng KC, Catchmark J, Demirci A (2009b) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Bio Eng 3:1
Cheng KC, Catchmark J, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12:730-736
Cheng KC, Demirci A, Catchmark J (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445-456
Cheng KC, Catchmark J, Demirci A (2009c) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033-1045
Choi J, Park S, Cheng J, Park M, Hyun J (2012) Amphiphilic comb-like polymer for harvest of conductive nano-cellulose. Colloids Surf B Biointerfaces 89:161-166
Cohen IK, Die-gelmann RF, Lindblad WJ, Hugo NE (1992) Wound healing: biochemical and clinical aspects. Plast Reconstr Surg 90:926
Colvin JR, Leppard GG (1977) The biosynthesis of cellulose by Acetobacter xylinum and Acetobacter acetigenus. Can J Microbiol 23:701-709
Cook KE, Colvin JR (1980) Evidence for a beneficial influence of cellulose production on growth of Acetobacter xylinum in liquid-medium. Curr Microbiol 3:203-205
Coucheron DH (1991) An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production. J Bacteriol 173:5723-5731
Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145-151
Czaja W, Romanovicz D, Malcolm Brown R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403-411
Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1-12
Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447-453
de Souza DJ, Porto LM, Pezzin APT Vacuum dried membranes of poly (l-lactic acid) and bacterial cellulose for biomedical applications. In: BMC Proceedings, 2014. vol 4. BioMed Central, p 1
Deinema MH, Zevenhui.Lp (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Archiv fur Mikrobiologie 78:42-&
Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245-276
Delmer DP, Benziman M, Padan E (1982) Requirement for a membrane potential for cellulose synthesis in intact cells of Acetobacter xylinum. Proc Natl Acad Sci U S A 79:5282-5286
Deslandes Y, Marchessault RH (1983) Cellulose and other natural polymer systems: Biogenesis, structure, and degradation, R. Malcolm Brown, Jr., ed., Plenum, New York, 1982, pp 519
DeWulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis. J Chem Technol Biot 67:376-380
Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8:287-298
El-Hadi A, Schnabel R, Straube E, Muller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665-674
Eming SA, Smola H, Krieg T (2002) Treatment of chronic wounds: state of the art and future concepts Cells, tissues, organs 172:105-117
Evans, Barbara RON, Hugh MJ, Valerie MW, Jonathan (2005) Metallization of bacterial cellulose for electrical and electronic device manufacture. Us Patent US7803477, 2010/09/28
Extremina CI, Fonseca AF, Granja PL, Fonseca AP (2010) Anti-adhesion and antiproliferative cellulose triacetate membrane for prevention of biomaterial-centred infections associated with Staphylococcus epidermidis. Int J Antimicrob Agents 35:164-168
Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091-1098
Faria-Tischer PC, Costa CA, Tozetti I, Dall''Antonia LH, Vidotti M (2016) Structure and effects of gold nanoparticles in bacterial cellulose–polyaniline conductive membranes. RSC Advances 6:9571-9580
Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87:644-649
Field CK, Kerstein MD (1994) Overview of wound healing in a moist environment. Am J Surg 167:S2-S6
Figueiredo AR, Silvestre AJ, Neto CP, Freire CS (2015) In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production. Carbohydr Polym 132:400-408
Fink H, Faxalv L, Molnar GF, Drotz K, Risberg B, Lindahl TL, Sellborn A (2010) Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 6:1125-1130
Fink HP, Purz HJ, Bohn A, Kunze J Investigation of the supramolecular structure of never dried bacterial cellulose. In: Macromolecular Symposia, 1997. vol 1. Wiley Online Library, pp 207-217
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885-896
Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432-1442
Fujiwara T, Kawabata S, Hamada S (1992) Molecular characterization and expression of the cell-associated glucosyltransferase gene from Streptococcus mutans. Biochem Biophys Res Commun 187:1432-1438
George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87:2031-2037
Glaser L (1958) The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J Biol Chem 232:627-636
Grande CJ, Torres FG, Gomez CM, Bano MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605-1615
Griffin AM, Morris VJ, Gasson MJ (1996) Identification, cloning and sequencing the aceA gene involved in acetan biosynthesis in Acetobacter xylinum. FEMS Microbiol Lett 137:115-121
Gupta A, Low WL, Radecka I, Britland ST, Mohd Amin MCI, Martin C (2016) Characterisation and in vitro antimicrobial activity of biosynthetic silver-loaded bacterial cellulose hydrogels. J Microencaps:1-35
Gutierrez J, Fernandes SC, Mondragon I, Tercjak A (2012a) Conductive photoswitchable vanadium oxide nanopaper based on bacterial cellulose. ChemSusChem 5(12), 2323-2327
Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012b) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377:88-93
Ha J, Shehzad O, Khan S, Lee S, Park J, Khan T, Park J (2008) Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J Chem Eng 25:812-815
Ha JH, Park JK (2012) Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii. Korean J Chem Eng 29:563-566
Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479-3500
Haigler CH (1985) Cellulose Chemistry and its applications. In: Zeronian SH, Nevell TP (eds). Ellis Horwood, England, pp 30-83
Haigler CH, Malcolmbrown R, Benziman M (1980) Calcofluor white st alters the in vivo assembly of cellulose microfibrils. Science 210:903-906
Haigler CH, White AR, Brown RM, Jr., Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94:64-69
Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006a) In vivo biocompatibility of bacterial cellulose J Biomed Mater Res A 76A:431-438
Henneberg W (1906) Bergey’s Manual of Systematic Bacteriology. In: Garrity GM (ed) Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins,
Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345
Hibbert H, Barsha J (1931) Synthetic cellulose and textile fibers from glucose. J Am Chem Soc 53:3907-3907
Ho KLG, Pometto AL, Hinz PN (1997) Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation. Appl Environ Microbiol 63:2533-2542
Hong F, Guo X, Zhang S, Han S-f, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104:503-508
Hornung M, Ludwig M, Gerrard AM, Schmauder HP (2006) Optimizing the production of bacterial cellulose in surface culture: Evaluation of substrate mass transfer influences on the bioreaction (Part 1). Eng Life Sci 6:537-545
Hornung M, Ludwig M, Schmauder HP (2007) Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3). Eng Life Sci 7:35-41
Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453-8457
Hu Y (2011) A Novel Bioabsorbable bacterial cellulose. Ph.D. Dissertation., The Pennsylvania State University
Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11:1727-1734
Hu Y, Catchmark JM (2010b) Influence of 1-methylcyclopropene (1-MCP) on the production of bacterial cellulose biosynthesized by Acetobacter xylinum under the agitated culture. Lett Appl Microbiol 51:109-113
Hu Y, Catchmark JM (2011a) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7:2835-2845
Hu Y, Catchmark JM (2011b) Integration of cellulases into bacterial cellulose: Toward bioabsorbable cellulose composites J Biomed Mater Res B 97B:114-123
Hu Y, Catchmark JM, Vogler EA (2013) Factors impacting the formation of sphere-like bacterial cellulose particles and their biocompatibility for human osteoblast growth. Biomacromolecules 14:3444-3452
Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084-6091
Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88:183-188
Hyoung Park J, Sin Lim M, Rang Woo J, Won Kim J, Min Lee G (2016) The molecular weight and concentration of dextran sulfate affect cell growth and antibody production in CHO cell cultures. Biotechnol Progr
Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10:2714-2717
Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose - a masterpiece of nature''s arts. J Mater Sci 35:261-270
Jahan F, Kumar V, Rawat G, Saxena R (2012) Production of microbial cellulose by a bacterium isolated from fruit. Appl Biochem Biotechnol 167:1157-1171
Jahn CE, Selimi DA, Barak JD, Charkowski AO (2011) The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon. Microbiology 157:2733-2744
Johnson DC, Neogi AN (1989) Sheeted products formed from reticulated microbial cellulose. U.S. Patent No 4,863,565, 1989.
Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101-106
Jung HI et al. (2010) Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour Technol 101:3602-3608
Juntaro J, Ummartyotin S, Sain M, Manuspiya H (2012) Bacterial cellulose reinforced polyurethane-based resin nanocomposite: A study of how ethanol and processing pressure affect physical, mechanical and dielectric properties. Carbohydr Polym 87:2464-2469
Kawano S, Yasutake Y, Tajima K, Satoh Y, Yao M, Tanaka I, Munekata M (2005) Crystallization and preliminary crystallographic analysis of the cellulose biosynthesis-related protein CMCax from Acetobacter xylinum. Acta crystallographica Section F, Structural biology and crystallization communications 61:252-254
Kersters K, Vancanneyt M (2005) Bergey''s manual of systematic bacteriology
Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291-296
Khandelwal M, Windle AH, Hessler N (2016) In situ tunability of bacteria produced cellulose by additives in the culture media. J Mater Sci 51:4839-4844
Kim S, Li H, Oh I, Kee C, Kim M (2012) Effect of viscosity-inducing factors on oxygen transfer in production culture of bacterial cellulose. Korean J Chem Eng 29:792-797
Kim S, Won C, Chu C (1999) Synthesis and characterization of dextran-based hydrogel prepared by photocrosslinking. Carbohydr Polym 40:183-190
Kim Y-J, Kim J-N, Wee Y-J, Park D-H, Ryu H-W (2007) Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol:529-537
Kingkaew J, Jatupaiboon N, Sanchavanakit N, Pavasant P, Phisalaphong M (2010) Biocompatibility and growth of human keratinocytes and fibroblasts on biosynthesized cellulose-chitosan film. J Biomater Sci Polym Ed 21:1009-1021
Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146-155
Kitamura N, and Yamaya, E. (1987). Japanese patent application, 87/168628.
Kiziltas EE, Kiziltas A, Blumentritt M, Gardner DJ (2015) Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydr Polym 129:148-155
Kiziltas EE, Kiziltas A, Rhodes K, Emanetoglu NW, Blumentritt M, Gardner DJ (2016) Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydr Polym 136:1144-1151
Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angewandte Chemie 50:5438-5466
Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Prog Polym Sci 26:1561-1603
Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245-256
Kouda T, Naritomi T, Yano H, Yoshinaga F (1997a) Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture. J Ferment Bioeng 84:124-127
Kouda T, Yano H, Yoshinaga F (1997b) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J Ferment Bioeng 83:371-376
Kouda T, Yano H, Yoshinaga F, Kaminoyama M, Kamiwano M (1996) Characterization of non-Newtonian behavior during mixing of bacterial cellulose in a bioreactor. J Ferment Bioeng 82:382-386
Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing—The HoLiR concept. Biotechnol Bioeng 105:740-747
Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189-195
Kuga S, R. M. Brown J (1988) Silver labeling of the reducing ends of bacterial cellulose. Carbohydr Res 180:345-350
Kuo C-H, Teng H-Y, Lee C-K (2015) Knock-out of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement. Biotechnol Bioproc E 20:18-25
Kwak MH et al. (2015) Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohydr Polym 122:387-398
Laborie M-P, Brown E (2008) Method of in situ bioproduction and composition of bacterial cellulose nanocomposites. Us Patent US7968646, 2011/06/28
Lai SW, Liao KF, Lai HC, Chou CY, Cheng KC, Lai YM (2009) The prevalence of gallbladder stones is higher among patients with chronic kidney disease in Taiwan Medicine 88:46-51
Lamboni L, Li Y, Liu J, Yang G (2016) Silk sericin-functionalized bacterial cellulose as a potential wound-Healing biomaterial. Biomacromolecules 17:3076-3084
Lapuz MM, Gallardo EG, Palo MA ( 1967) The nata organism-cultural requirements, characteristics and identity. Philipp J Sci 96:91-108
Lee H, Zhao X (1999) Effects of mixing conditions on the production of microbial cellulose byAcetobacter xylinum. Biotechnol Bioproc E 4:41-45
Legeza VI et al. (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. B Exp Biol Med 138:311-315
Legnani C et al. (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517:1016-1020
Leitão AF et al. (2016) A novel small‐caliber bacterial cellulose vascular prosthesis: production, characterization, and preliminary in vivo testing. Macromol Biosci 16:139-150
Leitão AF, Silva JP, Dourado F, Gama M (2013) Production and characterization of a new bacterial cellulose/poly (vinyl alcohol) nanocomposite. Materials 6:1956-1966
Li D, Dai K, Tang T (2008) Effects of dextran on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Cytotherapy 10:587-596
Lin FC, Brown RM, Jr., Cooper JB, Delmer DP (1985) Synthesis of fibrils in vitro by a solubilized cellulose synthase from Acetobacter xylinum. Science 230:822-825
Lin SP, Liu CT, Hsu KD, Hung YT, Shih TY, Cheng KC (2016) Production of bacterial cellulose with various additives in a PCS rotating disk bioreactor and its material property analysis. Cellulose 23:367-377
Lin SB, Hsu CP, Chen LC, Chen HH (2009) Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocolloid 23:2195-2203
Lin SP, Cheng KC (2012) Bacterial cellulose production by Gluconacetobacter xylinum in the rotating PCS semi-continuous bioreactor and its materials property analysis. Paper presented at the 2012 Mini Symposium Frontiers in Biotechnology, National Taiwan University, Taipei, Taiwan.,
Lin SP, Hsieh SC, Chen KI, Demirci A, Cheng KC (2013a) Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose:1-10
Lin SP, Loira Calvar I, Catchmark J, Liu JR, Demirci A, Cheng KC (2013b) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191-2219
Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu Sh (2013c) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603-611
Liu X, Souzandeh H, Zheng Y, Xie Y, Zhong WH, Wang C (2017) Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Compos Sci Technol 138:124-133
Lu Z, Zhang Y, Chi Y, Xu N, Yao W, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27:2281-2285
Lucyszyn N, Ono L, Lubambo AF, Woehl MA, Sens CV, de Souza CF, Sierakowski MR (2016) Physicochemical and in vitro biocompatibility of films combining reconstituted bacterial cellulose with arabinogalactan and xyloglucan. Carbohydr Polym
Ludwig B (1989) Bergey''s Manual of Systematic Bacteriology. In: Garrity GM (ed) Bergey''s Manual of Systematic Bacteriology. Williams & Wilkins,
Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43-51
Marrs H, Barton D, Jones R, Ward I, Fisher J, Doyle C (1999) Comparative wear under four different tribological conditions of acetylene enhanced cross-linked ultra high molecular weight polyethylene. J Mater Sci Mater Med 10:333-342
Martin P (1997) Wound healing--aiming for perfect skin regeneration. Science 276:75-81
Martin PM, Maux A, Laterreur V, Mayrand D, Gagné VL, Moulin VJ, Fradette J (2015) Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes. Acta Biomater 22:39-49
Masaoka S, Ohe T, Sakota N (1993) Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 75:18-22
Matama T, Araujo R, Gubitz GM, Casal M, Cavaco-Paulo A (2010) Functionalization of cellulose acetate fibers with engineered cutinases. Biotechnol Prog 26:636-643
Matsutani M, Ito K, Azuma Y, Ogino H, Shirai M, Yakushi T, Matsushita K (2015) Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl Microbiol Biotechnol 99:7229-7240
Meftahi A, Khajavi R, Rashidi A, Sattari M, Yazdanshenas ME, Torabi M (2010) The effects of cotton gauze coating with microbial cellulose. Cellulose 17:199-204
Mendes PN, Rahal SC, Pereira-Junior OC, Fabris VE, Lenharo SL, de Lima-Neto JF, da Cruz Landim-Alvarenga F (2009) In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair. Acta veterinaria Scandinavica 51:12
Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576-583
Mikkelsen D, Gidley MJ, Williams BA (2011) In vitro fermentation of bacterial cellulose composites as model dietary fibers. J Agric Food Chem 59:4025-4032
Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518-523
Moraes PRFdS et al. (2016) Bacterial cellulose/collagen hydrogel for wound healing. Materials Research 19:106-116
Morgan JL, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21:489-496
Morgan JL, Strumillo J, Zimmer J (2012) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493.7431: 181-186.
Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503-506
Nakagaito A, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93-97
Nakai T, Nishiyama Y, Kuga S, Sugano Y, Shoda M (2002) ORF2 gene involves in the construction of high-order structure of bacterial cellulose. Biochem Biophys Res Commun 295:458-462
Nakai T et al. (2012) Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted strain of a cellulose-producing bacterium. J Bacteriol
Naritomi et al. (1997) Process for continuously preparing bacterial cellulose. Japen Patent US6132998, 2000/10/17
Naritomi T, Kouda T, Yano H, Yoshinaga F (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85:598-603
Naritomi T, Kouda T, Yano H, Yoshinaga F, Shigematsu T, Moriumura S, Kida K (2002) Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochem 38:41-47
Nguyen DN, Ton NMN, Le VVM (2009) Optimization of Saccharomyces cerevisiae immobilization in bacterial cellulose by ''adsorption- Incubation'' method. Int Food Res J 16:59-64
Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25:471-478
Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical-properties of sheets prepared from bacterial cellulose .2. Improvement of the mechanical-properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997-3001
Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device. Industry Advanced Materials 20:1849-1852
Ohad I, Danon IO, Hestrin S (1962) Synthesis of cellulose by Acetobacter xylinum. V. Ultrastructure of polymer. J Cell Biol 12:31-46
Oikawa T, Morino T, Ameyama M (1995) Production of cellulose from D-arabitol by Acetobacter-xylinum Ku-1. Biosci, Biotechnol, Biochem 59:1564-1565
Okiyama A, Motoki M, S. Y (1992a) Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocol 6:479-487
Okiyama A, Motoki M, S. Y (1993) Bacterial cellulose Ⅳ. Application to processed foods. Food Hydrocol 6:503-511
Okiyama A, Shirae H, Kano H, S. Y (1992b) Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocol 6:471-477
Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose IV. Application to processed foods. Food Hydrocolloid 6:503-511
Okuda K (2002) Structure and phylogeny of cell coverings. J Plant Res 115:283-288
Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci U S A 110:17856-17861
Park JK, Jung JY, Park YH (2003a) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055-2059
Park JK, Jung JY, Park YH (2003b) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055-2059
Park JK, Khan T, Jung JY (2009) Bacterial cellulose. Handbook of hydrocolloids Cambridge, UK
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10
Peng S, Fan L, Wei C, Bao H, Zhang H, Xu W, Xu J (2016) Polypyrrole/nickel sulfide/bacterial cellulose nanofibrous composite membranes for flexible supercapacitor electrodes. Cellulose 23:2639-2651
Peres MF et al. (2016) Bacterial cellulose membranes as a potential drug delivery system for photodynamic therapy of skin cancer. J. Braz. Chem. Soc. 27:1949-1959
Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277-1286
Pometto III AL, Demirci A, Johnson KE (1997) Immobilization of microorganisms on a support made of synthetic polymer and plant material. U.S. Patent No 5,595,893, 1997.
Portal O, Clark WA, Levinson DJ (2009) Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers. Wounds 21:1-3
Pourramezan G, Roayaei A, Qezelbash Q (2009) Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnol 8:150-154
Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885-1891
Quero F, Nogi M, Yano H, Abdulsalami K, Holmes SM, Sakakini BH, Eichhorn SJ (2010) Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites. Acs Appl Mater Inter 2:321-330
Ramana KV, Batra HV (2015) Occurrence of cellulose-producing Gluconacetobacter spp. in fruit samples and kombucha tea, and production of the biopolymer. Appl Biochem Biotechnol:1-12
Rani MU, Udayasankar K, Appaiah K (2011) Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J Appl Polym Sci 120:2835-2841
Retegi A et al. (2010) Bacterial cellulose films with controlled microstructure-mechanical property relationships. Cellulose 17:661-669
Rezaee A, Godini H, Bakhtou H (2008a) Microbial cellulose as support material for the immobilization of denitrifying bacteria. Environ Eng Manag J 7:589
Rezaee A, Godini H, Dehestani S, Reza Yazdanbakhsh A, Mosavi G, Kazemnejad A (2008b) Biological denitrification by Pseudomonas stutzeri immobilized on microbial cellulose. World J Microbiol Biotechnol 24:2397-2402
Ribeiro M, Morgado P, Miguel S, Coutinho P, Correia I (2013) Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C 33:2958-2966
Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671-1677
Ross P, Aloni Y, Weinhouse C, Michaeli D, Weinberger-Ohana P, Meyer R, Benziman M (1985) An unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett 186:191-196
Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35-58
Ross R, Everett NB, Tyler R (1970) Wound healing and collagen formation VI. The origin of the wound fibroblast studied in parabiosis. J Cell Biol 44:645-654
Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89:613-622
Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717-1723
Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Progr 22:1194-1199
Saska S, Barud HS, Gaspar AM, Marchetto R, Ribeiro SJ, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362
Saska S et al. (2012) Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med 23:2253-2266
Saxena IM, Kudlicka K, Okuda K, Brown RM, Jr. (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176:5735-5752
Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/ liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11::123-129
Schumann DA et al. (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877-885
Seo HN, Lee WJ, Hwang TS, Park DH (2009) Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film. J Microbiol Biotechn 19:1019-1027
Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756-760
Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352-355
Shah N, Ha J, Park J (2010) Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol Bioproc E 15:110-118
Shao W et al. (2015) Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym 132:351-358
Shao W, Liu H, Wang S, Wu J, Huang M, Min H, Liu X (2016) Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym 145:114-120
Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82:173-180
Shi Q et al. (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33:6644-6649
Shibazaki H, Kuga S, Onabe F (1994) Japan TAPPI Journal 48:1621-1630
Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459-494
Sneath PHA (1958) International Code of Nomenclature of Bacteria and Viruses. ASM Press, Herndon, VA
Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793-808
Song H-J, Li H, Seo J-H, Kim M-J, Kim S-J (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26:141-146
Standal R, Iversen TG, Coucheron DH, Fjaervik E, Blatny JM, Valla S (1994) A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. J Bacteriol 176:665-672
Stoica-Guzun A, Stroescu M, Jinga S, Jipa I, Dobre T, Dobre L (2012) Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes. Ultrason Sonochem 19:909-915
Stumpf TR, Pértile RA, Rambo CR, Porto LM (2013) Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Mater Sci Eng C 33:4739-4745
Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055-1061
Sukhtezari S, Almasi H, Pirsa S, Zandi M, Pirouzifard M (2017) Development of bacterial cellulose based slow-release active films by incorporation of Scrophularia striata Boiss. Extract. Carbohydr Polym 156:340-350
Sun D, Yang J, Wang X (2010) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2:287-292
Sun G et al. (2011) Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci U S A 108:20976-20981
Sunagawa N et al. (2013) Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum J Biosci Bioeng
Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage Biomaterials 26:419-431
Swissa M, Aloni Y, Weinhouse H, Benizman M (1980) Intermediatry steps in Acetobacter xylinum cellulose synthesis: studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant. J Bacteriol 143:1142-1150
Szczygielski K, Rapiejko P, Wojdas A, Jurkiewicz D (2010) Use of CMC foam sinus dressing in FESS Eur Arch Otorhinolaryngol 267:537-540
Takai M (1994) Bacterial cellulose composites. In: Gilbert RD (ed) Cellulose polymer blends composites. Hanser, Munich, pp 233-240
Tanpichai S et al. (2012) Effective Young''s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13:1340-1349
Tomita Y, Kondo T (2009) Influential factors to enhance the moving rate of Acetobacter xylinum due to its nanofiber secretion on oriented templates. Carbohydr Polym 77:754-759
Ton NMN, Le VVM (2011) Application of immobilized yeast in bacterial cellulose to the repeated batch fermentation in wine-making. Int Food Res J 18:983-987
Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci Biotech Bioch 59:1498-1502
Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N (2014) Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres Carbohydr Polym 104:223-230
Trovatti E, Fernande.s SM, Rubatat L, Freire CR, Silvestre AD, Neto C (2012) Sustainable nanocomposite films based on bacterial cellulose and pullulan. Cellulose 19:729-737
Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Pascoal Neto C, Cruz Pinto JJC, Gandini A (2010) Novel bacterial cellulose–acrylic resin nanocomposites. Compos Sci Technol 70:1148-1153
Tse ML et al. (2010) Observation of symmetrical reflection sidebands in a silica suspended-core fiber. Bragg grating Opt Express 18:17373-17381
Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod. 35:92-97
Unnithan AR et al. (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym 90:1786-1793
Valla S, Ertesvag H, Tonouchi N, Fjaervik E (2009) Microbial production of biopolymers and polymer precursors: Applications and perspectives. Caister Acedemic Press, Norwich
Valla S, Kjosbakken J (1981) Isolation and characterization of a new extracellular polysaccharide from a cellulose-negative strain of Acetobacter xylinum. Can J Microbiol 27:599-603
Van Tomme SR, Hennink WE (2007) Biodegradable dextran hydrogels for protein delivery applications Expert Rev Med Devices. 4:147-164
Vitta S, Drillon M, Derory A (2010) Magnetically responsive bacterial cellulose: Synthesis and magnetic studies. J Appl Phys 108:053905-053905-053907
Wan Y, Hong L, Jia S, Huang Y, Zhu Y, Wang Y, Jiang H (2006) Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol 66:1825-1832
Wan YZ, Luo HL, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212-1217
Wang W et al. (2011) Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Talanta 84:71-77
Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture. Cytotechnology 13:107-114
Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187-200
Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533-538
Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835-870
White AR, Brown RM (1981) Enzymatic hydrolysis of cellulose: Visual characterization of the process. Proc Natl Acad Sci U S A 78:1047-1051
White DG, Brown RM, Jr. (1989) Prospects for the commercialization of the biosynthesis of microbial cellulose,. In: Schuerech C (ed) Cellulose and Wood-Chemistry and
Technology. John Wiley & Sons, New York, p 573
Williams WS, Cannon RE (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55:2448-2452
Winter GD (1962) Formation of scab and rate of epithelization of superficial wounds in skin of young domestic pig. Nature 193:293
Winter HT, Cerclier C, Delorme N, Bizot H, Quemener B, Cathala B (2010) Improved colloidal stability of bacterial cellulose nanocrystal suspensions for the elaboration of spin-coated cellulose-based model surfaces. Biomacromolecules 1(11), 3144-3151.
Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa‐Jeffrey A (2004) Prevention of gliotic scar formation by NeuroGelTM allows partial endogenous repair of transected cat spinal cord. J Neurosci Res 75:262-272
Wong HC et al. (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum Proc Natl Acad Sci U S A 87:8130-8134
Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116-121
Wu SC, Li MH (2015) Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J Biosci Bioeng 120:444-449
Wu SC, Lia YK (2008) Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B: Enzym 54:103-108
Yamada Y (2014) Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. nov. Int J Syst Evol Microbiol 64:1670-1672
Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses Iα and Iβ at the early stage of incubation. Cellulose 3:229-242
Yamanaka S, Watanabe K (1994) Applications of bacterial cellulose in cellulosic polymers. in: Gilbert R (ed). Hanser publishers inc, cincinnati, OH.,
Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141-3145
Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74:659-665
Yang G, Xie J, Deng Y, Bian Y, Hong F (2012a) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: A “green” route for antibacterial application. Carbohydr Polym 87:2482-2487
Yang J, Lv X, Chen S, Li Z, Feng C, Wang H, Xu Y (2014) In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21:1823-1835
Yang J, Yu J, Fan J, Sun D, Tang W, Yang X (2011) Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J Hazard Mater 189:377-383
Yang L, Zhang HY, Yang Q, Lu Dn (2012b) Bacterial cellulose–poly (vinyl alcohol) nanocomposite hydrogels prepared by chemical crosslinking. J Appl Polym Sci 126
Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92:2012-2017
Yang Z, Chen S, Hu W, Yin N, Zhang W, Xiang C, Wang H (2012c) Flexible luminescent CdSe/bacterial cellulose nanocomoposite membranes. Carbohydr Polym 88:173-178
Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280-1284
Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci, Biotechnol, Biochem 61:219-224
Yoshino T, Asakura T, Toda K (1996) Cellulose production by Acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81:32-36
Yu HC, Chen LJ, Cheng KC, Li YX, Yeh CH, Cheng JT (2012) Silymarin inhibits cervical cancer cell through an increase of phosphatase and tensin homolog. Phytother Res 26:709-715
Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J (2005) A novel pH-and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials 26:4677-4683
Zhijiang C, Guang Y (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Materials Letters 65:182-184
Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007a) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483-489
Zhou WB, Zhu DW, Tan LF, Liao SJ, Hu ZH, Hamilton D (2007b) Extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). Bioresource Technol 98:226-231
Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452-1463
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top