跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡東銘
研究生(外文):Dong-Ming Tsai
論文名稱:基於親水作用液相層析質譜儀的代謝體研究- 化學計算方法開發與腹膜透析引流液分析
論文名稱(外文):HILIC-LC-MS Based Metabolomics- Chemometric Method Development and Analysis of Peritoneal Dialysis Effluent
指導教授:曾宇鳳郭錦樺郭錦樺引用關係
指導教授(外文):Y.Jane TsengChing-Hua Kuo
口試委員:郭柏齡郭柏秀蔡伊琳
口試委員(外文):Po-Ling KuoPo-Hsiu KuoI-Lin Tsai
口試日期:2017-01-23
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:112
中文關鍵詞:代謝體學液相層析串聯質譜儀親水作用層析柱方法開發腹膜透析腹膜透析引流液
外文關鍵詞:metabolomicsLC-MShydrophilic interaction chromatographyHILICmethod developmentperitoneal dialysisperitoneal effluentperitoneal transport status
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
代謝體學是經由全面性的分析生物體樣品內代謝體的種類與含量,表達出生物系統的表現型,有助於了解個體的差異與疾病的機轉。代謝體學的資料主要是來自核磁共振質譜儀或液相層析串聯質譜儀 (LC-MS) 產生的高通透性大量資料,需靠種種的生物資訊工具來分析。本論文針對代謝體學的研究介紹了資料處理的步驟與多變數分析的應用。
代謝體學所研究的生物體樣品常來自體液如血漿及尿液,而腹膜透析治療尿毒症時產生的腹膜透析引流液也是其中一種。生物體液內含有許多小分子的代謝體,且多半是具有分子極性,在眾多的可分離代謝體的液相層析柱中,親水作用層析柱 (HILIC) 可互補傳統上常用但較傾向於分離非極性分子的碳18逆向 層析柱在分離極性代謝體的不足。經由簡單步驟的電腦算法,我們針對親水性層析柱在四種不同的移動相組成下比較了71種極性標準品得到的檢測資料,以多種演算法經電腦快速比較各個標準品的萃取離子層析圖 (XIC) 出現的波峰訊號開發了適合代謝體學研究的最佳化移動相。也就是從各種移動相下測得的標準品數量與皆有測得的20種標準品的波形對稱值比較後以評分來決定最佳化移動相組成。然後,基於HILIC LC-MS代謝體分析平台我們開發了代謝體參考標準品資料庫。我們選用了571種標準品,層析部分是不同於之前使用的等位流析而改採梯度流析方式進行。而經由 HILIC LC-MS 平台檢測產生出的大量數據我們藉由設計出的自動化化學計量工作流程的步驟,以電腦算法過濾篩選標準品測定資料,達到自動篩選並完成測定出的標準品參考滯留時間的數據庫建立,這資料庫共獲得291個氫化陽離子與241個去氫化陰離子標準品的比對數據。為驗證參考滯留時間的應用性,我們將測得波峰的標準品以高濃度和低濃度添加入 人體血漿並以自動化工作流程偵測在HILIC LC-MS平台下的偵出與量度,結果有很高的偵測率 ,計有286個在正 電壓模式與235個在負電壓模式的血漿內添加的標準品訊號強度以電腦工作流程可測得。結論是以電腦演算代謝體學分析的大量資料可有效比對出血漿內的目標代謝體。
腹膜透析引流液的代謝體學研究目的是分析臨床上不同腹膜透析效率分類組別間的代謝體差異,接受腹膜透析治療之20名病人,從常規檢體中採集腹膜透析引流液,依臨床上腹膜對肌酸酐的通透率(腹膜平衡試驗)分成了高、平均高、平均低與低四組每組5名,收集了留置2小時與4小時的腹膜透析引流液,以HILIC LC-MS收集代謝體的質譜儀資料,再以PITracer的R統計軟體套件比對我們的HILIC LC-MS代謝體的荷質比與滯留時間資料庫找出有出現的代謝體並將波峰資料做表以多變量分析比較四組的差異。經由非監督法的主成分(PCA)分析後我們發現高與低通透率組有群組差異,接著再以偏最小二乘法判别分析 (PLS-DA) 的變量重要性指標 (VIP) 找出高與低通透率兩組間的濃度有統計差異的代謝體,結果發現一種可能與腹膜透析包囊性腹膜硬化症有正相關的代謝體 Hippurate 濃度在高通透組中呈現偏高,另外也發現低通透組的四小時引流液內的前列腺素E2 (PGE2) 濃度反較高通透組高,可能是因為低通透組腹腔內仍有較高濃度的糖分導致腹膜細胞分泌PGE2的現象。其他有濃度差異的代謝體也包括了幾種胺基酸,胺基酸衍生物及醣類,因此最後再以代謝體集富集分析 (MSEA) 找出了兩組別有關醣類與胺基酸等代謝途徑上的統計差異。由於臨床上高通透組的預後一般要比低通透組較差,我們藉由代謝體學的分析提供了相關的代謝體標誌與相關差異的代謝途徑。
Through holistic metabolite profiling and quantitation in biosystems, metabolomics conveys phenotype information and provides understanding difference among living systems and the mechanisms of diseases. Metabolomic datasets come from state-of-art high-throughput chemical analytical instruments such as nuclear magnetic resonance (NMR) or liquid chromatography hyphenated to mass spectrometry. The data size is huge and requires bioinformatic tools to facilitate analysis. We introduced for the study of metabolomics the procedures of data management and pertinent multivariate analysis. Biosamples used in metabolomics study may come from biofluids such as plasma, urine or others, such as peritoneal effluent disposed from peritoneal dialysis.
Hydrophilic interaction liquid chromatography (HILIC) hyphenated to mass spectrometry (LC-MS) is widely used in the study of metabolomics, particularly for polar metabolites. However, determining an optimized mobile phase and developing a proper HILIC method tend to be laborious, time-consuming, and experience-dependent tasks. In this study, we developed a chemometric workflow to quickly determine the optimized mobile phase and to objectively construct a HILIC LC-MS reference library database. All chromatograms in the process were baseline corrected, smoothed and noise filtered. A mass chromatographic quality value, an asymmetric factor, and local maxima of the extracted ion chromatogram were calculated to determine the number of peaks and peak retention time. The optimal mobile phase can be quickly determined by selecting the mobile phase that produces the largest number of resolved peaks. Moreover, the workflow enables one to automatically process the repeats and to determine the retention time of large numbers of standards. This method was successfully applied to construct a reference library of 571 metabolites for HILIC LC-MS platform based metabolomics study .
We used metabolomic approach to study peritoneal effluent with HILIC LC-MS platform. The function of peritoneal membrane is critical to uremic patients receiving peritoneal dialysis (PD). Clinically, the result of peritoneal equilibration test (PET) defines peritoneal transport status. Metabolite profiles in peritoneal effluents can imply dialytic efficiency of peritoneal dialysis and elucidate differences among peritoneal transport status. We collected peritoneal effluents from 20 PD patients whose PET were evenly distributed among four peritoneal transport status groups (low, low average, high average and high). We analyze metabolomic differences in PD effluents among PET groups of peritoneal transport status. HILIC LC-MS was implemented for metabolite detection. With data processing, PITracer peak detection algorithm and multivariate analysis we successfully recognized metabolite profiling patterns between PET defined high and low transport groups. The difference can be detected at 2 hour and 4 hour dialysate dwell by PCA and PLS-DA. Using variable important projection (VIP) values from PLS-DA, we found several metabolites significantly differentiated between Low and High transport groups, at 2 and/or at 4 hour dwell. Hippurate concentration was higher in High transport groups which had been suspected a risk metabolites in peritoneal effluent for encapsulating peritoneal sclerosis, a severe peritoneal dialysis complication. Prostaglandin E2, a peritoneal cellular reactive substance to high osmolar dialysate was found in higher concentration to Low transport group. A possible response biomarker indicating the higher osmolar gap from related lower flux of dialysate sugar. To find related metabolic pathways distinguished between Low and High transport group. Metabolic pathways related to amino acid, sugar and fatty acid were found. As the prognosis of peritoneal dialysis is deemed poorer in High transporter than in Low transporter. We provided possible biomarkers and involved metabolic pathways from metabolomics study to peritoneal creatinine equilibration defined clinical transport status. In conclusion, metabolomics study for clinically easily feasible peritoneal dialysis effluents provides promising study for peritoneal membrane pathophysiological changes.
Contents
致謝 iii
摘要 iv
Abstract vi
Contents x
List of Figures xiii
List of Tables xv
Chapter 1. Overview of Metabolomics 1
1.1 Introduction 1
1.2 Instrument for High-throughput Metabolite Detection 2
1.2.1 Liquid Chromatography Hyphenated to Mass Spectrometry 3
1.3 Chemometric Tools for Metabolomics Studies 5
1.4 Metabolomics Study of Peritoneal Effluent 7
1.4.1 Continuous Ambulatory Peritoneal Dialysis 8
1.4.2 Peritoneal Equilibration Test 9
Chapter 2. A Chemometric Workflow to Rapidly Determine and Develop a HILIC LC-MS Method for Polar Metabolites 12
2.1 Introduction 12
2.2 Materials and Methods 13
2.2.1 Reagents and Materials 13
2.2.2 Sample Preparation 14
2.2.3 Instruments 15
Ultra-high Performance Liquid Chromatography 15
Mass Spectrometry 16
2.2.4 Chemometrics Analysis 17
Data Preprocessing 17
Quality of an XIC 19
Chemometrics Workflow to Build a HILIC LC-MS Reference Library 21
2.3 Results and Discussion 24
2.3.1 Optimization of the Mobile Phase 24
2.3.2 XIC Peak Detection of 571 Standard Analytes 29
2.3.3 Detection of Targeted Analytes in Spiked Plasma Samples 58
2.4 Conclusion 60
Chapter 3. Metabolomics Study of Peritoneal Membrane Transport Status in Uremic Patients on Peritoneal Dialysis 62
3.1 Introduction 62
3.2 Materials and Methods 66
3.2.1 Patients and Peritoneal Effluents Collection 66
Sample Collection During PET 67
3.2.2 Chemicals 67
3.2.3 Instruments 68
3.2.4 Data Analysis 69
3.3 Results and Discussion 71
3.3.1 PET Data and Creatinine Correlation Analysis 71
3.3.2 Significant Putative Metabolites 78
3.3.3 Metabolic Pathways and Enrichment Analysis 82
3.4 Conclusion 88
Bibliography 89
Appendix 111

List of Figures
Figure 1 The role of metabolomics in systems biology. 2
Figure 2 Mechanism of metabolite separation in HILIC column. 4
Figure 3. Components of LC-MS. 5
Figure 4. PCA procedures. 6
Figure 5. Treatment cycle of CAPD. 9
Figure 6. Peritoneal equilibration test. 11
Figure 7. Demonstration of baseline correction using IRLS algorithm. 18
Figure 8. Workflow of mobile phase quality evaluation. 19
Figure 9. Workflow of building reference library. 23
Figure 10. Boxplot of asymmetry factors of the common 20 analytes detected in all four mobile phases (A to D) and the p values to that of mobile phase B. 28
Figure 11. XIC diagrams demonstrating peak features in 3 repeats (r1-3) of four example analytes (column A-D) and their blank contrast (blk). 32
Figure 12. XIC peak detection algorithm for 571 standard analytes under HILIC LC-MS platform. 33
Figure 13. Workflow and peak filtering/detection results for spiked peak detection in the plasma sample 59
Figure 14. Correlation of PD effluent creatinine (Cr) between MS detected peak intensity and concentration using Jaffe method. 74
Figure 15. PCA scores plots show clustering of four different PET groups using their peak table dataset from LC-MS experiments in positive mode (A and B) and negative mode (C and D). 76
Figure 16. PLS-DA scores plot showing clustering of different PET groups using their peak table dataset from LC-MS experiments PD effluents at 2 hour dwell (A) and 4 hour dwell (B). 77
Figure 17a. Summary of pathway analysis at 2 hour dwell, Dots of significant pathways are indicated with their pathway names. 85
Figure 17b. Summary of pathway analysis at 4 hour dwell. 86

List of Tables
Table 1. List of analyte coverage from XIC peak detected in four mobile phase compositions 26
Table 2. Result of peak detection filtering for 571 standard analytes in positive mode. 34
Table 3. Result of peak detection filtering for 571 standard analytes in negative mode 46
Table 4. Peritoneal dialysis patient profiles and groups from PET results 72
Table 5. Putative significant metabolites between Low and High transport groups at two hour dwell 78
Table 6. Putative significant metabolites between Low and High transport groups at four hour dwell 80
Table 7. Involved metabolic pathways and metabolites by MSEA 87
Bibliography
(1)Fiehn, O. (2001) Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks. Comp Funct Genom, 2, 155-168.
(2)Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., Berden, J. A., Brindle, K. M., Kell, D. B., Rowland, J. J., Westerhoff, H. V., van Dam, K., and Oliver, S. G. (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol, 19, 45-50.
(3)Fiehn, O. (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol, 48, 155-171.
(4)Liakopoulos, V., Nikitidou, O., Divani, M., Leivaditis, K., Antoniadi, G., and Dombros, N. V. (2012) The Peritoneal Equilibration Test Should Be Included in Routine Monitoring of Peritoneal Dialysis Patients. Perit Dial Int, 32, 222-223.
(5)Nicholson, J. K., Lindon, J. C., and Holmes, E. (1999) ''Metabonomics'': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181-1189.
(6)Colet, J.-M. (2015) Metabonomics in the preclinical and environmental toxicity field. Drug Discov Today Tech, 13, 3-10.
(7)Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., and Nicholson, J. K. (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc, 2, 2692-2703.
(8)Robertson, D. G., Reily, M. D., Sigler, R. E., Wells, D. F., Paterson, D. A., and Braden, T. K. (2000) Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol Sci, 57, 326-337.
(9)Bollard, M. E., Holmes, E., Lindon, J. C., Mitchell, S. C., Branstetter, D., Zhang, W., and Nicholson, J. K. (2001) Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution (1)H NMR spectroscopy of urine and pattern recognition. Anal Biochem, 295, 194-202.
(10)Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K., Bethell, H. W., Clarke, S., Schofield, P. M., McKilligin, E., and Mosedale, D. E. (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Med, 8, 1439-1445.
(11)Nicholson, J. K., Connelly, J., Lindon, J. C., and Holmes, E. (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov, 1, 153-161.
(12)Shockcor, J. P., and Holmes, E. (2002) Metabonomic applications in toxicity screening and disease diagnosis. Curr Top Med Chem, 2, 35-51.
(13)Lenz, E. M., Bright, J., Wilson, I. D., Morgan, S. R., and Nash, A. F. P. (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J Pharm Biomed Anal, 33, 1103-1115.
(14)Chen, M., Su, M., Zhao, L., Jiang, J., Liu, P., Cheng, J., Lai, Y., Liu, Y., and Jia, W. (2006) Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. J Proteome Res 5, 995-1002.
(15)Cezar, G. G., Quam, J. A., Smith, A. M., Rosa, G. J., Piekarczyk, M. S., Brown, J. F., Gage, F. H., and Muotri, A. R. (2007) Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev, 16, 869-882.
(16)Braaksma, M., Bijlsma, S., Coulier, L., Punt, P. J., and van der Werf, M. J. (2011) Metabolomics as a tool for target identification in strain improvement: the influence of phenotype definition. Microbiology, 157, 147-159.
(17)Wang, X., Lv, H., Zhang, G., Sun, W., Zhou, D., Jiao, G., and Yu, Y. (2008) Development and validation of a ultra performance LC-ESI/MS method for analysis of metabolic phenotypes of healthy men in day and night urine samples. J Sep Sci, 31, 2994-3001.
(18)Tsugawa, H., Bamba, T., Shinohara, M., Nishiumi, S., Yoshida, M., and Fukusaki, E. (2011) Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis. J Biosci Bioeng, 112, 292-298.
(19)Hines, A., Oladiran, G. S., Bignell, J. P., Stentiford, G. D., and Viant, M. R. (2007) Direct sampling of organisms from the field and knowledge of their phenotype: key recommendations for environmental metabolomics. Environ Sci Technol, 41, 3375-3381.
(20)Zhang, A., Sun, H., Wang, P., Han, Y., and Wang, X. (2012) Modern analytical techniques in metabolomics analysis. Analyst, 137, 293-300.
(21)Viant, M. R., Rosenblum, E. S., and Tieerdema, R. S. (2003) NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol, 37, 4982-4989.
(22)Ala-Korpela, M. (2008) Critical evaluation of 1H NMR metabonomics of serum as a methodology for disease risk assessment and diagnostics. Clin Chem Lab Med, 46, 27-42.
(23)Chen, C., Gonzalez, F. J., and Idle, J. R. (2007) LC-MS-Based Metabolomics in Drug Metabolism. Drug Metab Rev, 39, 581-597.
(24)Dettmer, K., Aronov, P. A., and Hammock, B. D. (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev, 26, 51-78.
(25)Iwasaki, Y., Sawada, T., Hatayama, K., Ohyagi, A., Tsukuda, Y., Namekawa, K., Ito, R., Saito, K., and Nakazawa, H. (2012) Separation Technique for the Determination of Highly Polar Metabolites in Biological Samples. Metabolites, 2, 496.
(26)Lei, Z., Huhman, D. V., and Sumner, L. W. (2011) Mass Spectrometry Strategies in Metabolomics. J. Biol. Chem., 286, 25435-25442.
(27)Yin, P., and Xu, G. (2014) Current state-of-the-art of nontargeted metabolomics based on liquid chromatography–mass spectrometry with special emphasis in clinical applications. J Chromatogr A, 1374, 1-13.
(28)Kohler, I., and Giera, M. (2017) Recent advances in liquid‐phase separations for clinical metabolomics. J Sep Sci, 40, 93-108.
(29)Boccard, J., Veuthey, J. L., and Rudaz, S. (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci, 33, 290-304.
(30)Michels, W. M., Verduijn, M., Parikova, A., Boeschoten, E. W., Struijk, D. G., Dekker, F. W., and Krediet, R. T. (2012) Time Course of Peritoneal Function in Automated and Continuous Peritoneal Dialysis. Perit Dial Int, 32, 605-611.
(31)Popovich, R. P., Moncrief, J. W., Nolph, K. D., Ghods, A. J., Twardowski, Z. J., and Pyle, W. K. (1978) Continuous ambulatory peritoneal dialysis. Ann Intern Med, 88, 449-456.
(32)Moncrief, J. W. (2017) The Birth and Development of Continuous Ambulatory Peritoneal Dialysis. Contrib Nephrol, 189, 85-90.
(33)Cruz, I., Dillard, M. G., and Hosten, A. O. (1973) Clinical experience with chronic intermittent peritoneal dialysis at Freedmen''s hospital. J Natl Med Assoc, 65, 530-536.
(34)Twardowski, Z. j., Nolph, K. O., Khanna, R., Prowant, B. F., Ryan, L. P., Moore, H. L., and Nielsen, M. P. (1987) Peritoneal Equilibration Test. Perit Dial Int, 7, 138-148.
(35)Cai, X., Zou, L., Dong, J., Zhao, L., Wang, Y., Xu, Q., Xue, X., Zhang, X., and Liang, X. (2009) Analysis of highly polar metabolites in human plasma by ultra-performance hydrophilic interaction liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Anal Chim Acta, 650, 10-15.
(36)Alpert, A. J. (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A, 499, 177-196.
(37)Hemström, P., and Irgum, K. (2006) Hydrophilic interaction chromatography. J Sep Sci, 29, 1784-1821.
(38)Zhang, Q., Yang, F.-Q., Ge, L., Hu, Y.-J., and Xia, Z.-N. (2017) Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis. J Sep Sci, 40, 49-80.
(39)Jian, W., Edom, R. W., Xu, Y., and Weng, N. (2010) Recent advances in application of hydrophilic interaction chromatography for quantitative bioanalysis. J Sep Sci, 33, 681-697.
(40)Cubbon, S., Antonio, C., Wilson, J., and Thomas-Oates, J. (2010) Metabolomic applications of HILIC–LC–MS. Mass Spectrom Rev, 29, 671-684.
(41)Tang, D.-Q., Zou, L., Yin, X.-X., and Ong, C. N. (2016) HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Mass Spectrom Rev, 35, 574-600.
(42)Cai, X., and Li, R. (2016) Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS. Sci Rep, 6, 36490.
(43)Pesek, J. J., Matyska, M. T., Loo, J. A., Fischer, S. M., and Sana, T. R. (2009) Analysis of hydrophilic metabolites in physiological fluids by HPLC-MS using a silica hydride-based stationary phase. J Sep Sci, 32, 2200-2208.
(44)Trivedi, D. K., Jones, H., Shah, A., and Iles, R. K. (2012) Development of Zwitterionic Hydrophilic Liquid Chromatography (ZIC HILIC-MS) metabolomics method for Shotgun analysis of human urine. J Chromat Separation Techniq, 2012.
(45)Zhang, T., and Watson, D. G. (2016) Evaluation of the technical variations and the suitability of a hydrophilic interaction liquid chromatography-high resolution mass spectrometry (ZIC-pHILIC-Exactive orbitrap) for clinical urinary metabolomics study. J Chromatogr B, 1022, 199-205.
(46)Cubbon, S., Bradbury, T., Wilson, J., and Thomas-Oates, J. (2007) Hydrophilic Interaction Chromatography for Mass Spectrometric Metabonomic Studies of Urine. Anal Chem, 79, 8911-8918.
(47)Csaicsich, D., Lichtenauer, A. M., Vychytil, A., Kasper, D. C., Herzog, R., Aufricht, C., and Kratochwill, K. (2015) Feasibility of Metabolomics Analysis of Dialysate Effluents from Patients Undergoing Peritoneal Equilibration Testing. Perit Dial Int, 35, 590-592.
(48)Theodoridis, G. A., Gika, H. G., Want, E. J., and Wilson, I. D. (2012) Liquid chromatography–mass spectrometry based global metabolite profiling: A review. Anal Chim Acta, 711, 7-16.
(49)Buszewski, B., and Noga, S. (2012) Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal Bioanal Chem, 402, 231-247.
(50)Jandera, P. (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta, 692, 1-25.
(51)Hao, Z., Xiao, B., and Weng, N. (2008) Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). J Sep Sci, 31, 1449-1464.
(52)Contrepois, K., Jiang, L., and Snyder, M. (2015) Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)–Mass Spectrometry. Mol Cell Proteomics, 14, 1684-1695.
(53)Zhou, B., Xiao, J. F., Tuli, L., and Ressom, H. W. (2012) LC-MS-based metabolomics. Mol Biosyst, 8, 470-481.
(54)Katajamaa, M., and Oresic, M. (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A, 1158, 318-328.
(55)Lu, W., Bennett, B. D., and Rabinowitz, J. D. (2008) Analytical strategies for LC–MS-based targeted metabolomics. J Chromatogr B, 871, 236-242.
(56)Schellinger, A. P., and Carr, P. W. (2006) Isocratic and gradient elution chromatography: A comparison in terms of speed, retention reproducibility and quantitation. J Chromatogr A, 1109, 253-266.
(57)R Core Team. (2014) R: A language and environment for statistical computing., R Foundation for Statistical Computing, Vienna, Austria.
(58)Beaton, A. E., and Tukey, J. W. (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics, 16, 147-185.
(59)Kim, H., Papila, M., Haftka, R., Mason, W., Watson, L., and Grossman, B. (2000) Detection and correction of poorly converged optimizations by Iteratively Reweighted Least Squares, In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, American Institute of Aeronautics and Astronautics.
(60)Holland, P. W., and Welsch, R. E. (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods, 6, 813-827.
(61)Nielsen, N., Tomasi, G., Frandsen, R., Kristensen, M., Nielsen, J., Giese, H., and Christensen, J. (2010) A pre-processing strategy for liquid chromatography time-of-flight mass spectrometry metabolic fingerprinting data. Metabolomics, 6, 341-352.
(62)Windig, W., Phalp, J. M., and Payne, A. W. (1996) A Noise and Background Reduction Method for Component Detection in Liquid Chromatography/Mass Spectrometry. Anal Chem, 68, 3602-3606.
(63)Windig, W., and Smith, W. F. (2007) Chemometric analysis of complex hyphenated data: Improvements of the component detection algorithm. J Chromatogr A, 1158, 251-257.
(64)t''Kindt, R., Storme, M., Deforce, D., and Van Bocxlaer, J. (2008) Evaluation of hydrophilic interaction chromatography versus reversed‐phase chromatography in a plant metabolomics perspective. J Sep Sci, 31, 1609-1614.
(65)Boudah, S., Olivier, M.-F., Aros-Calt, S., Oliveira, L., Fenaille, F., Tabet, J.-C., and Junot, C. (2014) Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J Chromatogr B, 966, 34-47.
(66)Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, I. D., Kell, D. B., and Goodacre, R. (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc, 6, 1060-1083.
(67)Godzien, J., Alonso-Herranz, V., Barbas, C., and Armitage, E. G. (2015) Controlling the quality of metabolomics data: new strategies to get the best out of the QC sample. Metabolomics, 11, 518-528.
(68)Sentkowska, A., Biesaga, M., and Pyrzynska, K. (2016) Application of Hydrophilic Interaction Liquid Chromatography for the Quantification of Flavonoids in Genista tinctoria Extract. J Anal Methods Chem, 2016, 3789348.
(69)Bajad, S. U., Lu, W., Kimball, E. H., Yuan, J., Peterson, C., and Rabinowitz, J. D. (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A, 1125, 76-88.
(70)Yang, S., Sadilek, M., Synovec, R. E., and Lidstrom, M. E. (2009) Liquid chromatography–tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. J Chromatogr A, 1216, 3280-3289.
(71)Konieczna, L., Roszkowska, A., Niedźwiecki, M., and Bączek, T. (2016) Hydrophilic interaction chromatography combined with dispersive liquid–liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J Chromatogr A, 1431, 111-121.
(72)Smith, C. A., Want, E. J., O''Maille, G., Abagyan, R., and Siuzdak, G. (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem, 78, 779-787.
(73)Pluskal, T., Castillo, S., Villar-Briones, A., and Oresic, M. (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.
(74)Sturm, M., Bertsch, A., Gropl, C., Hildebrandt, A., Hussong, R., Lange, E., Pfeifer, N., Schulz-Trieglaff, O., Zerck, A., Reinert, K., and Kohlbacher, O. (2008) OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics, 9, 163.
(75)Brown, M., Wedge, D. C., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L. C., Mamas, M. A., Neyses, L., and Dunn, W. B. (2011) Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 27, 1108-1112.
(76)Kramer, A., Stel, V., Zoccali, C., Heaf, J., Ansell, D., Grönhagen-Riska, C., Leivestad, T., Simpson, K., Pálsson, R., Postorino, M., and Jager, K. (2009) An update on renal replacement therapy in Europe: ERA–EDTA Registry data from 1997 to 2006. Nephrol Dial Transplant, 24, 3557-3566.
(77)Mehrotra, R., Crabtree, J., and Kathuria, P. (2013) Overview of Peritoneal Dialysis, In Modeling and Control of Dialysis Systems: Volume 2: Biofeedback Systems and Soft Computing Techniques of Dialysis (Azar, T. A., Ed.) pp 1323-1388, Springer Berlin Heidelberg, Berlin, Heidelberg.
(78)Gokal, R., and Mallick, N. P. (1999) Peritoneal dialysis. Lancet, 353, 823-828.
(79)Al-Natour, M., and Thompson, D. (2016) Peritoneal Dialysis. Semin Intervent Radiol, 33, 3-5.
(80)Perl, J., and Bargman, J. M. (2016) Peritoneal dialysis: from bench to bedside and bedside to bench. Am J Physiol Renal Physiol, 311, F999-F1004.
(81)Williams, J. D., Craig, K. J., Ruhland, C. v., Topley, N., Williams, G. T., and for the Biopsy Registry Study, G. (2003) The natural course of peritoneal membrane biology during peritoneal dialysis. Kidney Int, 64, S43-S49.
(82)Prowant, B. F., Moore, H. L., Twardowski, Z. J., and Khanna, R. (2010) Understanding Discrepancies in Peritoneal Equilibration Test Results. Perit Dial Int, 30, 366-370.
(83)Misra, M., and Khanna, R. (2014) The Clinical Interpretation of Peritoneal Equilibration Test. Semin Dial, 27, 598-602.
(84)La Milia, V., Virga, G., Amici, G., Bertoli, S., and Cancarini, G. (2013) Functional assessment of the peritoneal membrane. J Nephrol, 26 Suppl 21, 120-139.
(85)van Biesen, W., Heimburger, O., Krediet, R., Rippe, B., La Milia, V., Covic, A., Vanholder, R., and dialysis, f. t. E. w. g. o. p. (2010) Evaluation of peritoneal membrane characteristics: clinical advice for prescription management by the ERBP working group. Nephrol Dial Transplant, 25, 2052-2062.
(86)Xiong, L., Fan, L., Xu, Q., Zhou, Q., Li, H., Peng, X., Yang, Y., Wang, Y., Yu, X., and Mao, H. (2015) Faster Transport Status and Mortality in Anuric Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. Blood Purif, 40, 160-166.
(87)Mehrotra, R., Ravel, V., Streja, E., Kuttykrishnan, S., Adams, S. V., Katz, R., Molnar, M. Z., and Kalantar-Zadeh, K. (2015) Peritoneal Equilibration Test and Patient Outcomes. Clin J Am Soc Nephrol, 10, 1990-2001.
(88)Janda, K., Krzanowski, M., Dumnicka, P., Kusnierz-Cabala, B., Miarka, P., and Sulowicz, W. (2014) Peritoneal solute transport rate as an independent risk factor for total and cardiovascular mortality in a population of peritoneal dialysis patients. Adv Perit Dial, 30, 15-20.
(89)Blake, P. (1997) What is the problem with high transporters? Perit Dial Int, 17, 317-320.
(90)Lopes Barreto, D., and Struijk, D. G. (2015) Peritoneal Effluent Biomarker Discovery in Peritoneal Dialysis: The Omics Era, In Biomarkers in Kidney Disease (Patel, B. V., Ed.) pp 1-16, Springer Netherlands, Dordrecht.
(91)Cuccurullo, M., Evangelista, C., Vilasi, A., Simeoni, M., Avella, F., Riccio, E., Memoli, B., Malorni, A., and Capasso, G. (2011) Proteomic analysis of peritoneal fluid of patients treated by peritoneal dialysis: effect of glucose concentration. Nephrol Dial Transplant, 26, 1990-1999.
(92)Wang, H.-Y., Tian, Y.-F., Chien, C.-C., Kan, W.-C., Liao, P.-C., Wu, H.-Y., Su, S.-B., and Lin, C.-Y. (2010) Differential proteomic characterization between normal peritoneal fluid and diabetic peritoneal dialysate. Nephrol Dial Transplant, 25, 1955-1963.
(93)Sritippayawan, S., Chiangjong, W., Semangoen, T., Aiyasanon, N., Jaetanawanitch, P., Sinchaikul, S., Chen, S. T., Vasuvattakul, S., and Thongboonkerd, V. (2007) Proteomic analysis of peritoneal dialysate fluid in patients with different types of peritoneal membranes. J Proteome Res, 6, 4356-4362.
(94)Tang, W., Li, M., Lu, X.-H., Liu, H.-W., and Wang, T. (2014) Phospholipids profiling and outcome of peritoneal dialysis patients. Biomarkers, 19, 505-508.
(95)Guleria, A., Bajpai, N. K., Rawat, A., Khetrapal, C. L., Prasad, N., and Kumar, D. (2014) Metabolite characterisation in peritoneal dialysis effluent using high-resolution 1H and 1H–13C NMR spectroscopy. Magn Reson Chem, 52, 475-479.
(96)Lofaro, D., Di Pietro, M. E., Beneduci, A., Perri, A., Mollica, A., Bevacqua, P., De Luca, G., and Bonofiglio, R. (2016) SP436 Metabolomic Characterisation of Peritoneal Dialysis Effluent Using NMR Spectroscopy. Nephrol Dial Transplant, 31, i237-i237.
(97)Rochfort, S. (2005) Metabolomics reviewed: a new "omics" platform technology for systems biology and implications for natural products research. J Nat Prod, 68, 1813-1820.
(98)Johnson, C. H., Ivanisevic, J., and Siuzdak, G. (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol, 17, 451-459.
(99)Rhee, E. P. a. b., and Thadhani, R. a. (2011) New insights into uremia-induced alterations in metabolic pathways. Curr Opin Nephrol Hypertens, 20, 593-598.
(100)Meiss, E., Werner, P., John, C., Scheja, L., Herbach, N., Heeren, J., and Fischer, M. (2016) Metabolite targeting: development of a comprehensive targeted metabolomics platform for the assessment of diabetes and its complications. Metabolomics, 12, 1-15.
(101)Xia, J., Psychogios, N., Young, N., and Wishart, D. S. (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res, 37, W652-W660.
(102)Xia, J., Sinelnikov, I. V., Han, B., and Wishart, D. S. (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res, 43, W251-W257.
(103)Wang, S.-Y., Kuo, C.-H., and Tseng, Y. J. (2015) Ion Trace Detection Algorithm to Extract Pure Ion Chromatograms to Improve Untargeted Peak Detection Quality for Liquid Chromatography/Time-of-Flight Mass Spectrometry-Based Metabolomics Data. Anal Chem, 87, 3048-3055.
(104)Yang, B. C., Liu, F. Y., Wang, L. Q., Zou, Y., Wang, F., Deng, W., Wan, X. D., Yang, X., He, M., and Huang, O. P. (2015) Serum metabolic profiling study of endometriosis by using wooden-tip electrospray ionization mass spectrometry. Anal Methods, 7, 6125-6132.
(105)Xia, J., and Wishart, D. S. (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26, 2342-2344.
(106)Dunn, W. B., Summers, A., Brown, M., Goodacre, R., Lambie, M., Johnson, T., Wilkie, M., Davies, S., Topley, N., and Brenchley, P. (2012) Proof-of-principle study to detect metabolic changes in peritoneal dialysis effluent in patients who develop encapsulating peritoneal sclerosis. Nephrol Dial Transplant, 27, 2502-2510.
(107)Yamamoto, R., Otsuka, Y., Nakayama, M., Maruyama, Y., Katoh, N., Ikeda, M., Yamamoto, H., Yokoyama, K., Kawaguchi, Y., and Matsushima, M. (2005) Risk factors for encapsulating peritoneal sclerosis in patients who have experienced peritoneal dialysis treatment. Clin Exp Nephrol, 9, 148-152.
(108)Vardhan, A., Zweers, M. M., Gokal, R., and Krediet, R. T. (2003) A solutions portfolio approach in peritoneal dialysis. Kidney Int [Suppl 88], 64, S114-S123.
(109)Sitter, T., and Sauter, M. (2005) Impact of glucose in peritoneal dialysis: saint or sinner? Perit Dial Int, 25, 415-425.
(110)Schilte, M. N., Celie, J. W. A. M., Wee, P. M. t., Beelen, R. H. J., and van den Born, J. (2009) Factors contributing to peritoneal tissue remodeling in peritoneal dialysis. Perit Dial Int, 29, 605-617.
(111)Ditsawanon, P., and Aramwit, P. (2015) Preserving the peritoneal membrane in long-term peritoneal dialysis patients. J Clin Pharm Ther, 40, 508-516.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top