|
Bibliography (1)Fiehn, O. (2001) Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks. Comp Funct Genom, 2, 155-168. (2)Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., Berden, J. A., Brindle, K. M., Kell, D. B., Rowland, J. J., Westerhoff, H. V., van Dam, K., and Oliver, S. G. (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol, 19, 45-50. (3)Fiehn, O. (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol, 48, 155-171. (4)Liakopoulos, V., Nikitidou, O., Divani, M., Leivaditis, K., Antoniadi, G., and Dombros, N. V. (2012) The Peritoneal Equilibration Test Should Be Included in Routine Monitoring of Peritoneal Dialysis Patients. Perit Dial Int, 32, 222-223. (5)Nicholson, J. K., Lindon, J. C., and Holmes, E. (1999) ''Metabonomics'': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181-1189. (6)Colet, J.-M. (2015) Metabonomics in the preclinical and environmental toxicity field. Drug Discov Today Tech, 13, 3-10. (7)Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., and Nicholson, J. K. (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc, 2, 2692-2703. (8)Robertson, D. G., Reily, M. D., Sigler, R. E., Wells, D. F., Paterson, D. A., and Braden, T. K. (2000) Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol Sci, 57, 326-337. (9)Bollard, M. E., Holmes, E., Lindon, J. C., Mitchell, S. C., Branstetter, D., Zhang, W., and Nicholson, J. K. (2001) Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution (1)H NMR spectroscopy of urine and pattern recognition. Anal Biochem, 295, 194-202. (10)Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K., Bethell, H. W., Clarke, S., Schofield, P. M., McKilligin, E., and Mosedale, D. E. (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Med, 8, 1439-1445. (11)Nicholson, J. K., Connelly, J., Lindon, J. C., and Holmes, E. (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov, 1, 153-161. (12)Shockcor, J. P., and Holmes, E. (2002) Metabonomic applications in toxicity screening and disease diagnosis. Curr Top Med Chem, 2, 35-51. (13)Lenz, E. M., Bright, J., Wilson, I. D., Morgan, S. R., and Nash, A. F. P. (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J Pharm Biomed Anal, 33, 1103-1115. (14)Chen, M., Su, M., Zhao, L., Jiang, J., Liu, P., Cheng, J., Lai, Y., Liu, Y., and Jia, W. (2006) Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. J Proteome Res 5, 995-1002. (15)Cezar, G. G., Quam, J. A., Smith, A. M., Rosa, G. J., Piekarczyk, M. S., Brown, J. F., Gage, F. H., and Muotri, A. R. (2007) Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev, 16, 869-882. (16)Braaksma, M., Bijlsma, S., Coulier, L., Punt, P. J., and van der Werf, M. J. (2011) Metabolomics as a tool for target identification in strain improvement: the influence of phenotype definition. Microbiology, 157, 147-159. (17)Wang, X., Lv, H., Zhang, G., Sun, W., Zhou, D., Jiao, G., and Yu, Y. (2008) Development and validation of a ultra performance LC-ESI/MS method for analysis of metabolic phenotypes of healthy men in day and night urine samples. J Sep Sci, 31, 2994-3001. (18)Tsugawa, H., Bamba, T., Shinohara, M., Nishiumi, S., Yoshida, M., and Fukusaki, E. (2011) Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis. J Biosci Bioeng, 112, 292-298. (19)Hines, A., Oladiran, G. S., Bignell, J. P., Stentiford, G. D., and Viant, M. R. (2007) Direct sampling of organisms from the field and knowledge of their phenotype: key recommendations for environmental metabolomics. Environ Sci Technol, 41, 3375-3381. (20)Zhang, A., Sun, H., Wang, P., Han, Y., and Wang, X. (2012) Modern analytical techniques in metabolomics analysis. Analyst, 137, 293-300. (21)Viant, M. R., Rosenblum, E. S., and Tieerdema, R. S. (2003) NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol, 37, 4982-4989. (22)Ala-Korpela, M. (2008) Critical evaluation of 1H NMR metabonomics of serum as a methodology for disease risk assessment and diagnostics. Clin Chem Lab Med, 46, 27-42. (23)Chen, C., Gonzalez, F. J., and Idle, J. R. (2007) LC-MS-Based Metabolomics in Drug Metabolism. Drug Metab Rev, 39, 581-597. (24)Dettmer, K., Aronov, P. A., and Hammock, B. D. (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev, 26, 51-78. (25)Iwasaki, Y., Sawada, T., Hatayama, K., Ohyagi, A., Tsukuda, Y., Namekawa, K., Ito, R., Saito, K., and Nakazawa, H. (2012) Separation Technique for the Determination of Highly Polar Metabolites in Biological Samples. Metabolites, 2, 496. (26)Lei, Z., Huhman, D. V., and Sumner, L. W. (2011) Mass Spectrometry Strategies in Metabolomics. J. Biol. Chem., 286, 25435-25442. (27)Yin, P., and Xu, G. (2014) Current state-of-the-art of nontargeted metabolomics based on liquid chromatography–mass spectrometry with special emphasis in clinical applications. J Chromatogr A, 1374, 1-13. (28)Kohler, I., and Giera, M. (2017) Recent advances in liquid‐phase separations for clinical metabolomics. J Sep Sci, 40, 93-108. (29)Boccard, J., Veuthey, J. L., and Rudaz, S. (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci, 33, 290-304. (30)Michels, W. M., Verduijn, M., Parikova, A., Boeschoten, E. W., Struijk, D. G., Dekker, F. W., and Krediet, R. T. (2012) Time Course of Peritoneal Function in Automated and Continuous Peritoneal Dialysis. Perit Dial Int, 32, 605-611. (31)Popovich, R. P., Moncrief, J. W., Nolph, K. D., Ghods, A. J., Twardowski, Z. J., and Pyle, W. K. (1978) Continuous ambulatory peritoneal dialysis. Ann Intern Med, 88, 449-456. (32)Moncrief, J. W. (2017) The Birth and Development of Continuous Ambulatory Peritoneal Dialysis. Contrib Nephrol, 189, 85-90. (33)Cruz, I., Dillard, M. G., and Hosten, A. O. (1973) Clinical experience with chronic intermittent peritoneal dialysis at Freedmen''s hospital. J Natl Med Assoc, 65, 530-536. (34)Twardowski, Z. j., Nolph, K. O., Khanna, R., Prowant, B. F., Ryan, L. P., Moore, H. L., and Nielsen, M. P. (1987) Peritoneal Equilibration Test. Perit Dial Int, 7, 138-148. (35)Cai, X., Zou, L., Dong, J., Zhao, L., Wang, Y., Xu, Q., Xue, X., Zhang, X., and Liang, X. (2009) Analysis of highly polar metabolites in human plasma by ultra-performance hydrophilic interaction liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Anal Chim Acta, 650, 10-15. (36)Alpert, A. J. (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A, 499, 177-196. (37)Hemström, P., and Irgum, K. (2006) Hydrophilic interaction chromatography. J Sep Sci, 29, 1784-1821. (38)Zhang, Q., Yang, F.-Q., Ge, L., Hu, Y.-J., and Xia, Z.-N. (2017) Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis. J Sep Sci, 40, 49-80. (39)Jian, W., Edom, R. W., Xu, Y., and Weng, N. (2010) Recent advances in application of hydrophilic interaction chromatography for quantitative bioanalysis. J Sep Sci, 33, 681-697. (40)Cubbon, S., Antonio, C., Wilson, J., and Thomas-Oates, J. (2010) Metabolomic applications of HILIC–LC–MS. Mass Spectrom Rev, 29, 671-684. (41)Tang, D.-Q., Zou, L., Yin, X.-X., and Ong, C. N. (2016) HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Mass Spectrom Rev, 35, 574-600. (42)Cai, X., and Li, R. (2016) Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS. Sci Rep, 6, 36490. (43)Pesek, J. J., Matyska, M. T., Loo, J. A., Fischer, S. M., and Sana, T. R. (2009) Analysis of hydrophilic metabolites in physiological fluids by HPLC-MS using a silica hydride-based stationary phase. J Sep Sci, 32, 2200-2208. (44)Trivedi, D. K., Jones, H., Shah, A., and Iles, R. K. (2012) Development of Zwitterionic Hydrophilic Liquid Chromatography (ZIC HILIC-MS) metabolomics method for Shotgun analysis of human urine. J Chromat Separation Techniq, 2012. (45)Zhang, T., and Watson, D. G. (2016) Evaluation of the technical variations and the suitability of a hydrophilic interaction liquid chromatography-high resolution mass spectrometry (ZIC-pHILIC-Exactive orbitrap) for clinical urinary metabolomics study. J Chromatogr B, 1022, 199-205. (46)Cubbon, S., Bradbury, T., Wilson, J., and Thomas-Oates, J. (2007) Hydrophilic Interaction Chromatography for Mass Spectrometric Metabonomic Studies of Urine. Anal Chem, 79, 8911-8918. (47)Csaicsich, D., Lichtenauer, A. M., Vychytil, A., Kasper, D. C., Herzog, R., Aufricht, C., and Kratochwill, K. (2015) Feasibility of Metabolomics Analysis of Dialysate Effluents from Patients Undergoing Peritoneal Equilibration Testing. Perit Dial Int, 35, 590-592. (48)Theodoridis, G. A., Gika, H. G., Want, E. J., and Wilson, I. D. (2012) Liquid chromatography–mass spectrometry based global metabolite profiling: A review. Anal Chim Acta, 711, 7-16. (49)Buszewski, B., and Noga, S. (2012) Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal Bioanal Chem, 402, 231-247. (50)Jandera, P. (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta, 692, 1-25. (51)Hao, Z., Xiao, B., and Weng, N. (2008) Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). J Sep Sci, 31, 1449-1464. (52)Contrepois, K., Jiang, L., and Snyder, M. (2015) Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)–Mass Spectrometry. Mol Cell Proteomics, 14, 1684-1695. (53)Zhou, B., Xiao, J. F., Tuli, L., and Ressom, H. W. (2012) LC-MS-based metabolomics. Mol Biosyst, 8, 470-481. (54)Katajamaa, M., and Oresic, M. (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A, 1158, 318-328. (55)Lu, W., Bennett, B. D., and Rabinowitz, J. D. (2008) Analytical strategies for LC–MS-based targeted metabolomics. J Chromatogr B, 871, 236-242. (56)Schellinger, A. P., and Carr, P. W. (2006) Isocratic and gradient elution chromatography: A comparison in terms of speed, retention reproducibility and quantitation. J Chromatogr A, 1109, 253-266. (57)R Core Team. (2014) R: A language and environment for statistical computing., R Foundation for Statistical Computing, Vienna, Austria. (58)Beaton, A. E., and Tukey, J. W. (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics, 16, 147-185. (59)Kim, H., Papila, M., Haftka, R., Mason, W., Watson, L., and Grossman, B. (2000) Detection and correction of poorly converged optimizations by Iteratively Reweighted Least Squares, In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, American Institute of Aeronautics and Astronautics. (60)Holland, P. W., and Welsch, R. E. (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods, 6, 813-827. (61)Nielsen, N., Tomasi, G., Frandsen, R., Kristensen, M., Nielsen, J., Giese, H., and Christensen, J. (2010) A pre-processing strategy for liquid chromatography time-of-flight mass spectrometry metabolic fingerprinting data. Metabolomics, 6, 341-352. (62)Windig, W., Phalp, J. M., and Payne, A. W. (1996) A Noise and Background Reduction Method for Component Detection in Liquid Chromatography/Mass Spectrometry. Anal Chem, 68, 3602-3606. (63)Windig, W., and Smith, W. F. (2007) Chemometric analysis of complex hyphenated data: Improvements of the component detection algorithm. J Chromatogr A, 1158, 251-257. (64)t''Kindt, R., Storme, M., Deforce, D., and Van Bocxlaer, J. (2008) Evaluation of hydrophilic interaction chromatography versus reversed‐phase chromatography in a plant metabolomics perspective. J Sep Sci, 31, 1609-1614. (65)Boudah, S., Olivier, M.-F., Aros-Calt, S., Oliveira, L., Fenaille, F., Tabet, J.-C., and Junot, C. (2014) Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J Chromatogr B, 966, 34-47. (66)Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, I. D., Kell, D. B., and Goodacre, R. (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc, 6, 1060-1083. (67)Godzien, J., Alonso-Herranz, V., Barbas, C., and Armitage, E. G. (2015) Controlling the quality of metabolomics data: new strategies to get the best out of the QC sample. Metabolomics, 11, 518-528. (68)Sentkowska, A., Biesaga, M., and Pyrzynska, K. (2016) Application of Hydrophilic Interaction Liquid Chromatography for the Quantification of Flavonoids in Genista tinctoria Extract. J Anal Methods Chem, 2016, 3789348. (69)Bajad, S. U., Lu, W., Kimball, E. H., Yuan, J., Peterson, C., and Rabinowitz, J. D. (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A, 1125, 76-88. (70)Yang, S., Sadilek, M., Synovec, R. E., and Lidstrom, M. E. (2009) Liquid chromatography–tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. J Chromatogr A, 1216, 3280-3289. (71)Konieczna, L., Roszkowska, A., Niedźwiecki, M., and Bączek, T. (2016) Hydrophilic interaction chromatography combined with dispersive liquid–liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J Chromatogr A, 1431, 111-121. (72)Smith, C. A., Want, E. J., O''Maille, G., Abagyan, R., and Siuzdak, G. (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem, 78, 779-787. (73)Pluskal, T., Castillo, S., Villar-Briones, A., and Oresic, M. (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395. (74)Sturm, M., Bertsch, A., Gropl, C., Hildebrandt, A., Hussong, R., Lange, E., Pfeifer, N., Schulz-Trieglaff, O., Zerck, A., Reinert, K., and Kohlbacher, O. (2008) OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics, 9, 163. (75)Brown, M., Wedge, D. C., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L. C., Mamas, M. A., Neyses, L., and Dunn, W. B. (2011) Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 27, 1108-1112. (76)Kramer, A., Stel, V., Zoccali, C., Heaf, J., Ansell, D., Grönhagen-Riska, C., Leivestad, T., Simpson, K., Pálsson, R., Postorino, M., and Jager, K. (2009) An update on renal replacement therapy in Europe: ERA–EDTA Registry data from 1997 to 2006. Nephrol Dial Transplant, 24, 3557-3566. (77)Mehrotra, R., Crabtree, J., and Kathuria, P. (2013) Overview of Peritoneal Dialysis, In Modeling and Control of Dialysis Systems: Volume 2: Biofeedback Systems and Soft Computing Techniques of Dialysis (Azar, T. A., Ed.) pp 1323-1388, Springer Berlin Heidelberg, Berlin, Heidelberg. (78)Gokal, R., and Mallick, N. P. (1999) Peritoneal dialysis. Lancet, 353, 823-828. (79)Al-Natour, M., and Thompson, D. (2016) Peritoneal Dialysis. Semin Intervent Radiol, 33, 3-5. (80)Perl, J., and Bargman, J. M. (2016) Peritoneal dialysis: from bench to bedside and bedside to bench. Am J Physiol Renal Physiol, 311, F999-F1004. (81)Williams, J. D., Craig, K. J., Ruhland, C. v., Topley, N., Williams, G. T., and for the Biopsy Registry Study, G. (2003) The natural course of peritoneal membrane biology during peritoneal dialysis. Kidney Int, 64, S43-S49. (82)Prowant, B. F., Moore, H. L., Twardowski, Z. J., and Khanna, R. (2010) Understanding Discrepancies in Peritoneal Equilibration Test Results. Perit Dial Int, 30, 366-370. (83)Misra, M., and Khanna, R. (2014) The Clinical Interpretation of Peritoneal Equilibration Test. Semin Dial, 27, 598-602. (84)La Milia, V., Virga, G., Amici, G., Bertoli, S., and Cancarini, G. (2013) Functional assessment of the peritoneal membrane. J Nephrol, 26 Suppl 21, 120-139. (85)van Biesen, W., Heimburger, O., Krediet, R., Rippe, B., La Milia, V., Covic, A., Vanholder, R., and dialysis, f. t. E. w. g. o. p. (2010) Evaluation of peritoneal membrane characteristics: clinical advice for prescription management by the ERBP working group. Nephrol Dial Transplant, 25, 2052-2062. (86)Xiong, L., Fan, L., Xu, Q., Zhou, Q., Li, H., Peng, X., Yang, Y., Wang, Y., Yu, X., and Mao, H. (2015) Faster Transport Status and Mortality in Anuric Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. Blood Purif, 40, 160-166. (87)Mehrotra, R., Ravel, V., Streja, E., Kuttykrishnan, S., Adams, S. V., Katz, R., Molnar, M. Z., and Kalantar-Zadeh, K. (2015) Peritoneal Equilibration Test and Patient Outcomes. Clin J Am Soc Nephrol, 10, 1990-2001. (88)Janda, K., Krzanowski, M., Dumnicka, P., Kusnierz-Cabala, B., Miarka, P., and Sulowicz, W. (2014) Peritoneal solute transport rate as an independent risk factor for total and cardiovascular mortality in a population of peritoneal dialysis patients. Adv Perit Dial, 30, 15-20. (89)Blake, P. (1997) What is the problem with high transporters? Perit Dial Int, 17, 317-320. (90)Lopes Barreto, D., and Struijk, D. G. (2015) Peritoneal Effluent Biomarker Discovery in Peritoneal Dialysis: The Omics Era, In Biomarkers in Kidney Disease (Patel, B. V., Ed.) pp 1-16, Springer Netherlands, Dordrecht. (91)Cuccurullo, M., Evangelista, C., Vilasi, A., Simeoni, M., Avella, F., Riccio, E., Memoli, B., Malorni, A., and Capasso, G. (2011) Proteomic analysis of peritoneal fluid of patients treated by peritoneal dialysis: effect of glucose concentration. Nephrol Dial Transplant, 26, 1990-1999. (92)Wang, H.-Y., Tian, Y.-F., Chien, C.-C., Kan, W.-C., Liao, P.-C., Wu, H.-Y., Su, S.-B., and Lin, C.-Y. (2010) Differential proteomic characterization between normal peritoneal fluid and diabetic peritoneal dialysate. Nephrol Dial Transplant, 25, 1955-1963. (93)Sritippayawan, S., Chiangjong, W., Semangoen, T., Aiyasanon, N., Jaetanawanitch, P., Sinchaikul, S., Chen, S. T., Vasuvattakul, S., and Thongboonkerd, V. (2007) Proteomic analysis of peritoneal dialysate fluid in patients with different types of peritoneal membranes. J Proteome Res, 6, 4356-4362. (94)Tang, W., Li, M., Lu, X.-H., Liu, H.-W., and Wang, T. (2014) Phospholipids profiling and outcome of peritoneal dialysis patients. Biomarkers, 19, 505-508. (95)Guleria, A., Bajpai, N. K., Rawat, A., Khetrapal, C. L., Prasad, N., and Kumar, D. (2014) Metabolite characterisation in peritoneal dialysis effluent using high-resolution 1H and 1H–13C NMR spectroscopy. Magn Reson Chem, 52, 475-479. (96)Lofaro, D., Di Pietro, M. E., Beneduci, A., Perri, A., Mollica, A., Bevacqua, P., De Luca, G., and Bonofiglio, R. (2016) SP436 Metabolomic Characterisation of Peritoneal Dialysis Effluent Using NMR Spectroscopy. Nephrol Dial Transplant, 31, i237-i237. (97)Rochfort, S. (2005) Metabolomics reviewed: a new "omics" platform technology for systems biology and implications for natural products research. J Nat Prod, 68, 1813-1820. (98)Johnson, C. H., Ivanisevic, J., and Siuzdak, G. (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol, 17, 451-459. (99)Rhee, E. P. a. b., and Thadhani, R. a. (2011) New insights into uremia-induced alterations in metabolic pathways. Curr Opin Nephrol Hypertens, 20, 593-598. (100)Meiss, E., Werner, P., John, C., Scheja, L., Herbach, N., Heeren, J., and Fischer, M. (2016) Metabolite targeting: development of a comprehensive targeted metabolomics platform for the assessment of diabetes and its complications. Metabolomics, 12, 1-15. (101)Xia, J., Psychogios, N., Young, N., and Wishart, D. S. (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res, 37, W652-W660. (102)Xia, J., Sinelnikov, I. V., Han, B., and Wishart, D. S. (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res, 43, W251-W257. (103)Wang, S.-Y., Kuo, C.-H., and Tseng, Y. J. (2015) Ion Trace Detection Algorithm to Extract Pure Ion Chromatograms to Improve Untargeted Peak Detection Quality for Liquid Chromatography/Time-of-Flight Mass Spectrometry-Based Metabolomics Data. Anal Chem, 87, 3048-3055. (104)Yang, B. C., Liu, F. Y., Wang, L. Q., Zou, Y., Wang, F., Deng, W., Wan, X. D., Yang, X., He, M., and Huang, O. P. (2015) Serum metabolic profiling study of endometriosis by using wooden-tip electrospray ionization mass spectrometry. Anal Methods, 7, 6125-6132. (105)Xia, J., and Wishart, D. S. (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26, 2342-2344. (106)Dunn, W. B., Summers, A., Brown, M., Goodacre, R., Lambie, M., Johnson, T., Wilkie, M., Davies, S., Topley, N., and Brenchley, P. (2012) Proof-of-principle study to detect metabolic changes in peritoneal dialysis effluent in patients who develop encapsulating peritoneal sclerosis. Nephrol Dial Transplant, 27, 2502-2510. (107)Yamamoto, R., Otsuka, Y., Nakayama, M., Maruyama, Y., Katoh, N., Ikeda, M., Yamamoto, H., Yokoyama, K., Kawaguchi, Y., and Matsushima, M. (2005) Risk factors for encapsulating peritoneal sclerosis in patients who have experienced peritoneal dialysis treatment. Clin Exp Nephrol, 9, 148-152. (108)Vardhan, A., Zweers, M. M., Gokal, R., and Krediet, R. T. (2003) A solutions portfolio approach in peritoneal dialysis. Kidney Int [Suppl 88], 64, S114-S123. (109)Sitter, T., and Sauter, M. (2005) Impact of glucose in peritoneal dialysis: saint or sinner? Perit Dial Int, 25, 415-425. (110)Schilte, M. N., Celie, J. W. A. M., Wee, P. M. t., Beelen, R. H. J., and van den Born, J. (2009) Factors contributing to peritoneal tissue remodeling in peritoneal dialysis. Perit Dial Int, 29, 605-617. (111)Ditsawanon, P., and Aramwit, P. (2015) Preserving the peritoneal membrane in long-term peritoneal dialysis patients. J Clin Pharm Ther, 40, 508-516.
|