( 您好!臺灣時間:2021/03/07 10:58
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Sy-Han Huang
論文名稱(外文):Synchronized optically and acoustically induced cavitation for sonoporation
指導教授(外文):Pai-Chi Li
外文關鍵詞:acoustic droplets vaporizationoptical droplets vaporizationcavitationsonoporationphotothermal therapyphotoacoustic imaging
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微氣泡超音波對比劑除了能提高影像對比度外也能用來作為藥物釋放的載體,透過超音波誘發微氣泡產生穴蝕效應所製造的聲穿孔效應能有效的將藥物送入目標處。但其應用於腫瘤細胞時的藥物輸送效率受限於微氣泡的大小以及在血液循環時不穩定等要素影響使得奈米液滴態藥物載體逐漸興起。然而奈米液滴需先汽化成微氣泡才能被誘發穴蝕效應,而現階段不論是聲學激發相變液滴汽化法或是光學激發相變液滴汽化法所使用的超音波能量和雷射能量皆對於人體組織有安全上的疑慮,因此本研究提出同時使用雷射與超音波來降低液滴汽化與穴蝕效應閾值。本研究使用1MHz超音波探頭與808nm脈衝雷射來激發實驗室自製的金奈米液滴,藉由於超音波最負聲壓處同步施加脈衝雷射的方式使金奈米液滴汽化並誘發出穴蝕效應來達成聲穿孔效果來提升藥物釋放效率。研究中使用慣性穴蝕效應劑量來量化穴蝕效應,並比較了不同超音波最負聲壓與雷射光通量在聲壓時序變化上對於穴蝕效應的影響。當以慣性穴蝕效應為縱軸,雷射相對超音波施放的延遲時間為橫軸,可以觀察到,慣性穴蝕效應的變化與聲壓變化一致,於最負聲壓下同步施加雷射最容易誘發出穴蝕效應,而此時所使用的超音波負聲壓為-526.1kPa,光通量為12.02mJ/cm2。與先前研究相比,使用連續波雷射搭配超音波應用於光熱治療時,當使用的超音波負聲壓為-526kPa時所需的雷射能量為2W/cm2 並持續5分鐘,顯見使用脈衝雷射並於超音波最負聲壓時施放能大幅降低雷射的能量使用。而將此技術應用於光熱治療中時,除了能降低雷射光通量的使用外,因為使用脈衝雷射緣故,可以透過奈米金桿與金奈米液滴所產生的汽化現象與光聲效應來進行光聲影像以便觀察組織內的金粒子分布來提高光熱治療之效率與安全性。
Microbubble-based ultrasound contrast agents not only can improve image quality but also can serve as drug-delivery vehicles. The sonoporation effect produced by ultrasound-assisted cavitation can effectively enhance the delivery of encapsulated nanoparticles to the target site. However, the delivery efficiency is often limited due to their inability to extravasate and instability in the blood stream. An alternative is to use nanodroplets to replace microbubbles, but the droplets need to be vaporized first before inducing cavitation. The vaporization can be induced either acoustically or optically, in both cases a high energy is required which may raise safety concerns. Thus, it is the main goal of this research to propose and investigate methods for reduced vaporization thresholds with gold nanodroplets by irradiating laser pulses at the rarefaction phase of the acoustic wave. A 1MHz ultrasound transducer and a pulsed wave laser (808nm) were used. By synchronizing the laser pulse and the negative peak pressure of ultrasound, the experimental results indicate that cavitation can be more effectively induced. To quantify the cavitation effect, differential inertial cavitation dose (dICD) is used. It is found that the dICD value changed with the relative timing between the laser pulse and the acoustic wave. Results show that at -526.1kPa negative peak pressure, the laser with a fluence at 12.02mJ/cm2 can successfully induce cavitation. Compared with previous research, where a continuous wave laser was used, a laser intensity of 2W/cm2 for 5 minutes was needed. It is demonstrated that the proposed method can significantly lower the laser exposure energy while effectively inducing the cavitation effect. Also, since a pulsed laser is used, the thermal expansion and vaporization signal from gold nanodroplets can also be used for photoacoustic imaging as a means to monitor the distribution of gold nanoparticles and to facilitate photothermal therapy.
口試委員會審定書 #
誌謝 I
中文摘要 II
Chapter 1 緒論 1
1.1 光熱治療 1
1.2 穴蝕效應與聲穿孔術 2
1.3 超音波對比劑 4
1.4 液滴汽化 5
1.4.1 聲學激發相變液滴汽化 5
1.4.2 光學激發相變液滴汽化 6
1.5 穴蝕效應於光熱治療之應用 6
1.5.1 金奈米粒子 6
1.5.2 連續波雷射誘發穴蝕效應輔助聲穿孔術 7
1.6 研究動機與目的 7
1.7 研究架構 8
Chapter 2 實驗材料與方法 9
2.1 聲學相變液滴汽化原理 9
2.2 脈衝雷射誘發之光學相變液滴汽化原理 10
2.3 超音波結合脈衝雷射誘發穴蝕效應 12
2.4 超音波與脈衝雷射時序調控 12
2.5 光路及仿體設計 15
2.5.1 發散光架構 15
2.5.2 窄光聚焦架構 16
2.5.3 寬光聚焦架構 18
2.5.4 超音波飛行時間量測 19
2.6 光學激發相變液滴汽化偵測 19
2.7 穴蝕效應偵測 21
2.8 超音波換能器聲場強度量測 22
2.9 金奈米液滴製備及大小量測 23
Chapter 3 實驗結果 25
3.1 金奈米液滴製備 25
3.2 發散光架構 27
3.2.1 超音波飛行時間量測 28
3.2.2 光學激發相變液滴汽化結果 29
3.2.3 不同聲壓下施加雷射對金奈米液滴誘發穴蝕效應之影響 31
3.2.4 紅外光熱影像 32
3.3 窄光聚焦架構 34
3.3.1 超音波飛行時間量測 34
3.3.2 光學激發相變液滴汽化結果 35
3.3.3 不同聲壓下施加雷射對金奈米液滴誘發穴蝕效應之影響 37
3.4 寬光聚焦架構 38
3.4.1 超音波飛行時間量測 39
3.4.2 光學激發相變液滴汽化結果 39
3.4.3 不同聲壓下施加雷射對金奈米液滴誘發穴蝕效應之影響 42
3.4.4 雷射能量對金奈米液滴誘發穴蝕效應之影響 42
3.4.5 脈衝重複頻率對金奈米液滴誘發穴蝕效應之影響 45
3.4.6 金奈米液滴濃度對誘發穴蝕效應之影響 47
Chapter 4 分析與討論 49
4.1 雷射光點大小對於誘發穴蝕效應之影響 49
4.2 光學激發相變液滴與聲學激發相變液滴閾值之探討 50
4.3 脈衝雷射與連續波雷射誘發穴蝕效應輸出能量探討 51
Chapter 5 結論與未來工作 52
參考文獻 54
1.McGuire, S., World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr, 2016. 7(2): p. 418-9.
2.Knudson, A.G., Jr., Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A, 1971. 68(4): p. 820-3.
3.Fisher, B., et al., Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med, 2002. 347(16): p. 1233-41.
4.Sekine, I., et al., A literature review of molecular markers predictive of clinical response to cytotoxic chemotherapy in patients with breast cancer. Int J Clin Oncol, 2009. 14(2): p. 112-9.
5.Wang, Y.H., et al., Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. J Biomed Opt, 2012. 17(4): p. 045001.
6.Lapotko, D.O., E. Lukianova, and A.A. Oraevsky, Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Lasers Surg Med, 2006. 38(6): p. 631-42.
7.Chen, Y.S., et al., Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express, 2010. 18(9): p. 8867-78.
8.Song, K.H., et al., Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. Eur J Radiol, 2009. 70(2): p. 227-31.
9.Ju, H., R.A. Roy, and T.W. Murray, Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy. Biomed Opt Express, 2013. 4(1): p. 66-76.
10.Lauterborn, W., et al., Acoustic cavitation, bubble dynamics and sonoluminescence. Ultrason Sonochem, 2007. 14(4): p. 484-91.
11.Turánek, J., et al., Lipid-Based Nanoparticles and Microbubbles – Multifunctional Lipid-Based Biocompatible Particles for in vivo Imaging and Theranostics. 2015.
12.Lum, A.F., et al., Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release, 2006. 111(1-2): p. 128-34.
13.Phillips, L.C., et al., Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating. J Acoust Soc Am, 2013. 134(2): p. 1473-82.
14.Zhou, Y., Application of acoustic droplet vaporization in ultrasound therapy. J Ther Ultrasound, 2015. 3: p. 20.
15.Wrenn, S.P., et al., Bursting bubbles and bilayers. Theranostics, 2012. 2(12): p. 1140-59.
16.Sirsi, S. and M. Borden, Microbubble Compositions, Properties and Biomedical Applications. Bubble Sci Eng Technol, 2009. 1(1-2): p. 3-17.
17.Lawrence, M.J. and G.D. Rees, Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 2000. 45(1): p. 89-121.
18.Cui, W., et al., Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography. J Biomed Mater Res B Appl Biomater, 2005. 73(1): p. 171-8.
19.Krasovitski, B., H. Kislev, and E. Kimmel, Modeling photothermal and acoustical induced microbubble generation and growth. Ultrasonics, 2007. 47(1-4): p. 90-101.
20.Oraevsky, A.A., et al., Triggered vaporization of gold nanodroplets for enhanced photothermal therapy. 2015. 9323: p. 93232C.
21.Kripfgans, O.D., et al., Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound in Medicine & Biology, 2000. 26(7): p. 1177-1189.
22.Dove, J.D., et al., Engineering optically triggered droplets for photoacoustic imaging and therapy. Biomed Opt Express, 2014. 5(12): p. 4417-27.
23.Strohm, E., et al., Vaporization of perfluorocarbon droplets using optical irradiation. Biomed Opt Express, 2011. 2(6): p. 1432-42.
24.Strohm, E.M., et al. Optical droplet vaporization (ODV): photoacoustic characterization of perfluorocarbon droplets. in Ultrasonics Symposium (IUS), 2010 IEEE. 2010. IEEE.
25.Pitsillides, C.M., et al., Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophysical Journal, 2003. 84(6): p. 4023-4032.
26.Link, S. and M.A. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B, 1999. 103(40): p. 8410-8426.
27.Wei, C.W., et al., Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results. Opt Lett, 2014. 39(9): p. 2599-602.
28.Fabiilli, M.L., et al., The role of inertial cavitation in acoustic droplet vaporization. 2008: p. 768-771.
29.Gerold, B., et al., Laser-nucleated acoustic cavitation in focused ultrasound. Rev Sci Instrum, 2011. 82(4): p. 044902.
30.Farny, C.H., et al., Nucleating cavitation from laser-illuminated nano-particles. Acoustics Research Letters Online, 2005. 6(3): p. 138-143.
31.McLaughlan, J.R., et al., Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation. Opt Lett, 2010. 35(13): p. 2127-9.
32.Wilson, K., K. Homan, and S. Emelianov, Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun, 2012. 3: p. 618.
33.Xi, P., Optical nanoscopy and novel microscopy techniques. 2015, Boca Raton: CRC Press/Taylor & Francis. xi, 249 pages, 12 unnumbered pages of plates.
34.Lai, C.Y., et al., Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability. Ultrasound Med Biol, 2006. 32(12): p. 1931-41.
35.Zhang, P. and T. Porter, An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation. Ultrasound Med Biol, 2010. 36(11): p. 1856-66.
36.Goubau, G. and F. Schwering, On the guided propagation of electromagnetic wave beams. IRE Transactions on Antennas and Propagation, 1961. 9(3): p. 248-256.
37.Liu, W.W., et al., Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment. Sci Rep, 2016. 6: p. 24753.
38.Weis, S.M. and D.A. Cheresh, Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med, 2011. 17(11): p. 1359-70.
39.Fukumura, D. and R.K. Jain, Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res, 2007. 74(2-3): p. 72-84.
40.Hsu, Y.H., et al., A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip, 2013. 13(15): p. 2990-8.
41.Hsu, Y.H., et al., Full range physiological mass transport control in 3D tissue cultures. Lab Chip, 2013. 13(1): p. 81-9.
42.Arnal, B., et al., Sono-photoacoustic imaging of gold nanoemulsions: Part II. Real time imaging. Photoacoustics, 2015. 3(1): p. 11-9.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔