|
[1]L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, "Global cancer statistics, 2012," CA: A Cancer Journal for Clinicians, vol. 65, no. 2, pp. 87-108, 2015. [2]C. D. Mathers, D. M. Fat, and J. Boerma, The global burden of disease: 2004 update. World Health Organization, 2008. [3]S. J. Otto, J. Fracheboud, A. L. Verbeek, R. Boer, J. C. I. Y. Reijerink-Verheij, J. D. M. Otten, M. J. M. Broeders, H. J. De Koning, and N. E. T. F. B. Can, "Mammography Screening and Breast Cancer Mortality-Response," (in English), Cancer Epidemiology Biomarkers & Prevention, vol. 21, no. 5, pp. 870-871, May 2012. [4]M. Nothacker, V. Duda, M. Hahn, M. Warm, F. Degenhardt, H. Madjar, S. Weinbrenner, and U.-S. Albert, "Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review," Bmc Cancer, vol. 9, no. 1, p. 335, 2009. [5]T. M. Kolb, J. Lichy, and J. H. Newhouse, "Occult cancer in women with dense breasts: detection with screening US--diagnostic yield and tumor characteristics," Radiology, vol. 207, no. 1, pp. 191-199, 1998. [6]K. M. Kelly, J. Dean, W. S. Comulada, and S. J. Lee, "Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts," (in English), European Radiology, vol. 20, no. 3, pp. 734-742, Mar 2010. [7]W. A. Berg, Z. Zhang, D. Lehrer, R. A. Jong, E. D. Pisano, R. G. Barr, M. Bohm-Velez, M. C. Mahoney, W. P. Evans, L. H. Larsen, M. J. Morton, E. B. Mendelson, D. M. Farria, J. B. Cormack, H. S. Marques, A. Adams, N. M. Yeh, G. Gabrielli, and A. Investigators, "Detection of Breast Cancer With Addition of Annual Screening Ultrasound or a Single Screening MRI to Mammography in Women With Elevated Breast Cancer Risk," (in English), Jama-Journal of the American Medical Association, vol. 307, no. 13, pp. 1394-1404, Apr 4 2012. [8]S. W. Chan, P. S. Cheung, S. Chan, S. S. Lau, T. T. Wong, M. Ma, A. Wong, and Y. C. Law, "Benefit of ultrasonography in the detection of clinically and mammographically occult breast cancer," World journal of surgery, vol. 32, no. 12, pp. 2593-2598, 2008. [9]E. Fleury, J. Fleury, S. Piato, and D. Roveda Jr, "New elastographic classification of breast lesions during and after compression," Diagn Interv Radiol, vol. 15, no. 2, pp. 96-103, 2009. [10]W. Rawat and Z. Wang, "Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review," (in eng), Neural Comput, pp. 1-98, Jun 09 2017. [11]G. Litjens, T. Kooi, B. Ehteshami Bejnordi, A. Arindra Adiyoso Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sanchez, "A Survey on Deep Learning in Medical Image Analysis," ArXiv e-prints, vol. 1702, p. arXiv:1702.05747, 2017. [12]C. M. Lo, Y. P. Chen, Y. C. Chang, C. Lo, C. S. Huang, and R. F. Chang, "Computer-Aided Strain Evaluation for Acoustic Radiation Force Impulse Imaging of Breast Masses," (in English), Ultrasonic Imaging, vol. 36, no. 3, pp. 151-166, Jul 2014. [13]C.-M. Lo, Y.-C. Chang, Y.-W. Yang, C.-S. Huang, and R.-F. Chang, "Quantitative breast mass classification based on the integration of B-mode features and strain features in elastography," Computers in Biology and Medicine, vol. 64, pp. 91-100, 2015. [14]W. K. Moon, S.-C. Chang, J. M. Chang, N. Cho, C.-S. Huang, J.-W. Kuo, and R.-F. Chang, "Classification of Breast Tumors Using Elastographic and B-mode Features: Comparison of Automatic Selection of Representative Slice and Physician-Selected Slice of Images," Ultrasound in medicine & biology, 2013. [15]A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, "Breast disease: clinical application of US elastography for diagnosis," Radiology, vol. 239, no. 2, pp. 341-50, May 2006. [16]N. Nitta, M. Yamakawa, T. Shiina, E. Ueno, M. M. Doyley, and J. C. Bamber, "Tissue elasticity imaging based on combined autocorrelation method and 3-D tissue model," in 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102), 1998, vol. 2, pp. 1447-1450 vol.2. [17]K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," ArXiv e-prints, vol. 1409, Accessed on: September 1, 2014Available: http://adsabs.harvard.edu/abs/2014arXiv1409.1556S [18]S. Liu and W. Deng, "Very deep convolutional neural network based image classification using small training sample size," in 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730-734. [19]J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 2009, pp. 248-255: Ieee. [20]A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural network acoustic models," in Proc. ICML, 2013, vol. 30, no. 1. [21]D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," ArXiv e-prints, vol. 1412, Accessed on: December 1, 2014Available: http://adsabs.harvard.edu/abs/2014arXiv1412.6980K [22]K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, "Return of the Devil in the Details: Delving Deep into Convolutional Nets," ArXiv e-prints, vol. 1405, Accessed on: May 1, 2014Available: http://adsabs.harvard.edu/abs/2014arXiv1405.3531C [23]A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097-1105. [24]K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, "Return of the Devil in the Details: Delving Deep into Convolutional Nets," in ArXiv e-prints vol. 1405, ed, 2014. [25]A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," presented at the Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2012. [26]Y. Min-Chun, M. Woo Kyung, Y. C. Wang, B. Min Sun, H. Chiun-Sheng, C. Jeon-Hor, and C. Ruey-Feng, "Robust Texture Analysis Using Multi-Resolution Gray-Scale Invariant Features for Breast Sonographic Tumor Diagnosis," (in eng), IEEE Trans Med Imaging, vol. 32, no. 12, pp. 2262-73, Dec 2013. [27]W. C. Shen, R. F. Chang, and W. K. Moon, "Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS)," (in English), Ultrasound in Medicine and Biology, vol. 33, no. 11, pp. 1688-1698, Nov 2007. [28]R. M. Haralick, Shanmuga.K, and I. Dinstein, "Textural Features for Image Classification," (in English), Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, no. 6, pp. 610-621, 1973. [29]K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," ArXiv e-prints, vol. 1512, p. arXiv:1512.03385, 2015. [30]F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," ArXiv e-prints, vol. 1610, p. arXiv:1610.02357, 2016.
|