|
1. Genome, K.C.o.S., Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered, 2009. 100(6): p. 659-74. 2. i, K.C., The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J Hered, 2013. 104(5): p. 595-600. 3. Ekblom, R. and J. Galindo, Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb), 2011. 107(1): p. 1-15. 4. Grabherr, M.G., et al., Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011. 29(7): p. 644-52. 5. Chang, Z., et al., Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol, 2015. 16: p. 30. 6. Robertson, G., et al., De novo assembly and analysis of RNA-seq data. Nat Methods, 2010. 7(11): p. 909-12. 7. Davidson, N.M. and A. Oshlack, Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol, 2014. 15(7): p. 410. 8. Li, B., et al., Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol, 2014. 15(12): p. 553. 9. Smith-Unna, R., et al., TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res, 2016. 26(8): p. 1134-44. 10. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009. 10(1): p. 57-63. 11. Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995. 270(5235): p. 467-70. 12. Urschitz, J., et al., A serial analysis of gene expression in sun-damaged human skin. J Invest Dermatol, 2002. 119(1): p. 3-13. 13. Brenner, S., et al., Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol, 2000. 18(6): p. 630-4. 14. Mortazavi, A., et al., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008. 5(7): p. 621-8. 15. Conesa, A., et al., A survey of best practices for RNA-seq data analysis. Genome Biol, 2016. 17: p. 13. 16. Kim, D., et al., TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 2013. 14(4): p. R36. 17. Dobin, A., et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013. 29(1): p. 15-21. 18. Kim, D., B. Langmead, and S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015. 12(4): p. 357-60. 19. Trapnell, C., et al., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc, 2012. 7(3): p. 562-78. 20. Nicolae, M., et al., Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms Mol Biol, 2011. 6(1): p. 9. 21. Roberts, A. and L. Pachter, Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods, 2013. 10(1): p. 71-3. 22. Li, B. and C.N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011. 12: p. 323. 23. Langmead, B. and S.L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012. 9(4): p. 357-9. 24. Bray, N.L., et al., Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol, 2016. 34(5): p. 525-7. 25. Xie, Y., et al., SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics, 2014. 30(12): p. 1660-6. 26. Pachter, L., Models for transcript quantification from RNA-Seq. arXiv preprint arXiv:1104.3889, 2011. 27. Aken, B.L., et al., Ensembl 2017. Nucleic Acids Res, 2017. 45(D1): p. D635-D642. 28. Liu, D., et al., Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer. Cancer Res, 2014. 74(18): p. 5045-56. 29. Nookaew, I., et al., A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res, 2012. 40(20): p. 10084-97. 30. Griebel, T., et al., Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Res, 2012. 40(20): p. 10073-83. 31. Trapnell, C., et al., Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010. 28(5): p. 511-5. 32. Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114-20. 33. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402. 34. Simpson, J.T., et al., ABySS: a parallel assembler for short read sequence data. Genome Res, 2009. 19(6): p. 1117-23. 35. Anderson, T.W. and D.A. Darling, Asymptotic theory of certain" goodness of fit" criteria based on stochastic processes. The annals of mathematical statistics, 1952: p. 193-212. 36. Levene, H., Robust tests for equality of variances. Contributions to probability and statistics, 1960. 1: p. 278-292. 37. Welch, B.L., The generalization ofstudent''s'' problem when several differentpopulation variances are involved. Biometrika, 1947. 34(1/2): p. 28-35. 38. Ruxton, G.D. and G. Beauchamp, Time for some a priori thinking about post hoc testing. Behavioral Ecology, 2008. 19(3): p. 690-693. 39. Breiman, L., Random forests. Machine learning, 2001. 45(1): p. 5-32. 40. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 2011. 12(Oct): p. 2825-2830. 41. Li, W. and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006. 22(13): p. 1658-9. 42. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009. 25(14): p. 1754-60.
|