跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝祥方
研究生(外文):Hsiang-Fang Hsieh
論文名稱:發展週期性結構表面增強拉曼散射基板及其作為DNA探針之應用
論文名稱(外文):Development of periodically structured SERS substrates and its application as DNA probe carrier.
指導教授:管傑雄管傑雄引用關係
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:48
中文關鍵詞:表面增強拉曼散射拉曼光譜二維週期性結構基板電子束微影DNA探針
外文關鍵詞:Surface Enhanced Raman ScatteringRaman SpectroscopyPeriodically Structured SubstrateElectron-Beam LithographyDNA probe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面增強拉曼散射是改善拉曼散射強度不足的方法之一,而表面增強拉曼散射之所以能改善的原因有二:利用電磁場增強的方法、與利用電荷轉移增強效應。其中電磁場增強的效果比電荷轉移的效果強上許多,因此許多科學家致力於這方面的研究。若要使電磁場增強,則拉曼的基板製備就會是一個很重要的課題。隨著奈米材料製備技術的成熟,各種基板不斷發展,都以增強表面電漿子共振為主,形貌上多屬於球狀、針尖狀。本論文欲以上述電磁場增強為主,製作一種二維週期性結構基板。設計各式二維銀柱子陣列圖形,其具有調變光的振幅與相位的特性,能藉由調整兩個方向的週期以及銀柱子的尺寸,使不同波數區段的拉曼訊號放大。我們以電子束顯微影系統搭配電子槍蒸鍍金屬技術,製作相同高度但不同尺寸的銀柱子和不同週期排列的陣列圖形基板,並將DNA探針片段連結到此一基板上,去量測所能得到的最佳訊號增強,藉由研究其增強的趨勢,再觀察其圖案之陣列組合,探討此種二維柱子陣列的圖形在怎樣的條件下能對應我們想要增強的DNA探針片段之訊號。
Surface Enhanced Raman Scattering (SERS) is one of the methods to improve the signal intensity of Raman Spectrum. The mechanisms that make SERS improve the signal intensity are the electric field enhancement and the carrier transmission enhancement. According to the fact that electric field effect can provide a stronger enhancement than the chemical effect, numerous scientists commence doing a lot of research on the electric field effect of SERS.
If the electric field effect is going to be implemented to enhance the Raman Intensity, solving the problem of the SERS-active substrate is a necessity. As the nano technique matures, various types of SERS-active substrates are fabricated. Nevertheless, most of the substrates, which is designed for the enhancement of surface plasmon effect, are sphere liked, tip liked and metal evaporated. Therefore, this thesis would like to use two-dimensional array as the pattern of our periodically structured SERS substrate.
Arrays can modulate the amplitude and the phase of incident light, as the period of the array and the size of the rod has changed, the signal of different wavenumber could be enhanced. We utilized E-beam lithography system with E-beam evaporation system for the fabrication of precise array pattern. After that, a SERS substrate with different period and silver-rod size are obtained.
Then we manage to coat DNA fragments on it as the analyte since we wanted to use it as the carrier of DNA probe. By studying and observing the trend of different signals we obtained in different designed pattern, we summed up a conclusion that by altering the periods of two dimensions and the rod size we could enhance the signal in the wanted region of the Raman spectrum.
誌謝 I
摘要 III
ABSTRACT IV
目錄 VI
圖目錄 VIII
表目錄 IX
第一章 概論 1
1.1前言 1
1.2研究動機 2
1.3論文架構 3
第二章 理論與文獻回顧 4
2.1 拉曼光譜學原理簡介 4
2.2 表面增強式拉曼散射原理簡介 6
2.3 表面增強式拉曼散射基板 8
2.4 表面電漿子與線性極化電磁波 10
2.5 自組裝單層薄膜介紹 12
2.6 DNA與其表面增強拉曼散射光譜簡介 14
2.7 DNA探針原理簡介 16
第三章 實驗儀器與樣品製備 18
3.1 製程/量測儀器簡介 18
3.1.1 電子束微影系統 (Electron Beam Lithography) 18
3.1.2 掃描式電子顯微鏡(SEM) 21
3.1.3 電子槍蒸鍍系統(E-Gun) 22
3.1.4 反應式離子蝕刻機(Reactive Ion Etching) 23
3.1.5 微拉曼光譜量測系統(µ-Raman) 24
3.2 樣品製備 26
3.2.1 基板製備 26
3.2.2 DNA溶液製備 29
3.2.3 DNA分子塗布於基板 32
第四章 實驗結果與討論 33
4.1 實驗設計 33
4.2 量測分析 34
4.2.1拉曼量測分析與比較-第一部分 34
4.2.2拉曼量測分析與比較-第二部分 36
4.2.3拉曼量測分析與比較-第三部分 38
4.3 量測結果與討論 40
4.3.1不同尺寸的銀柱子基板之拉曼增強與其結構SEM圖 40
4.3.2不同週期的圖案基板之拉曼增強的變化趨勢 41
第五章 結論與未來展望 43
參考文獻 44
[1] M. Fleischmann, P.J. Hendra, A.J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”. Chem. Phys. Lett. 26, 163 (1974)
[2] Procházka, Marek, “Surface-Enhanced Raman Spectroscopy:Bioanalytical, Biomolecular and Medical Applications” Springer International Publishing, 2016
[3] D.Y. Wu, J.F. Li, B. Ren, Z.Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures”, Chem. Soc. Rev. 37, 1025
[4] Y. Wang, N. Lu, W. Wang, L. Liu, L. Feng, Z. Zeng, H. Li, W. Xu, Z. Wu, W. Hu, Y. Lu, L. Chi, “Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays”, Nano Res. 6, 159 (2013)
[5] C.V. Raman, K.S. Krishnan, “A new type of secondary radiation”, Nature 121, 501 (1928)
[6] C.V. Raman, K.S. Krishnan, “A new class of spectra due to secondary radiation Part I”, Indian J. Phys. 2, 399 (1928)
[7] [2] Procházka, Marek, “Surface-Enhanced Raman Spectroscopy:Bioanalytical, Biomolecular and Medical Applications” Springer International Publishing, P9,2016
[8] D.J. Jeanmaire, R.P. Van Duyne, “Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”, J. Electroanal. Chem. 84, 1 (1977)
[9] S. Schlücker, “Surface-enhanced Raman spectroscopy: concepts and chemical applications”, Angew.Chem. Int. Ed. 53, 4756 (2014)
[10] A.G. Brolo, D.E. Irish, B.D. Smith, “Applications of surface enhanced Raman scattering to the study of metal-adsorbate intractions”, J. Mol. Struct. 405, 29 (1997)
[11] A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering”, J. Raman Spectrosc. 36, 497 (2005)
[12] M.G. Albrecht, J.A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver surface”, J. Am. Chem. Soc. 99, 5215 (1977)
[13] P.C. Lee, D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols”, J. Phys. Chem. 86, 3391
[14] N. Leopold, B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride”, J. Phys. Chem. B 107, 5723 (2003)
[15] R.F. Aroca, R.A. Alvarez-Puebla, N. Pieczonka, S. Sánchez-Cortés, J.V. García-Ramos, “Surface-enhanced Raman scattering on colloidal nanostructures”, Adv. Colloid Interface Sci.116, 45 (2005)
[16] R.G. Freeman, R.M. Bright, M.B. Hommer, M.J. Natan, “Size selection of colloidal gold aggregates by filtration: effect on surface-enhanced Raman scattering intensities”, J. Raman Spectrosc. 30,733 (1999)
[17] M. Fan, G.F.S. Andrade, A.G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry”, Anal. Chim. Acta693, 7 (2011)
[18] J.K. Daniels, G. Chumanov, “Nanoparticle-Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering”, Journal of Physical Chemistry B 109 (2005) 17936
[19] Li, J.F., Y., F. Huang, Y. Ding, Z. 1. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Z., Ren, 1. Wang, and Z. Q. Tian, “Shell-Isolated NanoparticleEnhanced Raman Spectroscopy”, Nature, 464, 392 (2010).
[20] Y.H. Jang, K. Chung, L.N. Quan, B. Špačková, H. Šípová, S. Moon, W.J. Cho, H.Y. Shin, Y.J. Jang, J.E. Lee, S.T. Kochuveedu, M.J. Yoon, J. Kim, S. Yoon, J.K. Kim, D. Kim, J. Homola, D.H. Kim, “Configuration-controlled Au nanocluster arrays on inverse micelle nano patterns: versatile platforms for SERS and LSPR sensors”, Nanoscale 5, 12261 (2013)
[21] X. Zhang, H. Chen, H. Zhang, “Layer-by-layer assembly: from conventional to unconventional methods”, Chem. Commun. 14, 1395 (2007)
[22] Q. Yu, P. Guan, D. Qin, G. Golden, P.M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays”, Nano Lett. 8, 1923 (2008)
[23] 傅淑娟、郭明澤、林其昌, “表面增強拉曼光譜在生醫檢測之發展”, 化工(第61卷第5期) , 2014
[24]R. W. Wood, Philos. Mag. 4, 396 (1902).
[25] 邱國斌、蔡定平,“金屬表面電漿簡介”, 物理雙月刊(廿八卷二期), 2006年4月
[26] 吳民耀、劉威志,“表面電漿子理論與模擬”, 物理雙月刊(廿八卷二期), 2006年4月
[27] Yu-Tai Tao, “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the Surfaces ofSilver, Copper, and Aluminum”, J . Am. Chem. SOC.1993,115, 4350-4358
[28] Mustafa Culha, David Stokes, Leonardo R. Allain, and Tuan Vo-Dinh, ” Surface-Enhanced Raman Scattering Substrate Based on a Self-Assembled Monolayer for Use in Gene Diagnostics”, Anal. Chem. 2003, 75, 6196-6201
[29] Li-Jia Xu, Z.C. Lei, J. Li, C.Zong, C.J.Yang, B.Ren, “Label-Free Surface-Enhanced Raman Spectroscopy Detection of DNA with Single-Base Single-Base Sensitivity ”, J. Am. Chem. (2015) 5149–5154.
[30] Kai-Qiang Lin, J.Yi, S.Hu, B.J.Liu, J.Y. Liu, X.Wang, B.Ren, ”Size Effect on SERS of Gold Nanorods Demonstrated via Single Nanoparticle Spectroscopy”, J. Phys. Chem. C 2016, 120, 20806−20813
[31] Yoshiaki Nishijima, Jacob B. Khurgin, Lorenzo Rosa, Hideki Fujiwara, Saulius Juodkazis“Tunable Raman Selectivity via Randomization of a Rectangular
Pattern of Nanodisks” ACS Photonics 2014, 1, 1006−1012
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top