跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昀築
研究生(外文):Yun-Jhu Lee
論文名稱:CMOS-MEMS電容式零偏壓微型陣列超音波換能器開發與生醫成像系統應用
論文名稱(外文):Phased-array Development of CMOS-MEMS Zero Bias Capacitive Micro-machined Ultrasonic Transducers for Biomedical Imaging System
指導教授:田維誠
指導教授(外文):Wei-Cheng Tian
口試日期:2017-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:CMOS MEMSCMUTs超音波換能器零偏壓電荷注入陣列前視型造影
外文關鍵詞:CMOS MEMSCMUTstransducerszero-biascharging effectphased-arrayForward-looking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用TSMC 0.35μm 2P4M CMOS-MEMS製程製作電容式微機電超音波換能器(Capacitive Micromachined Ultrasonic Transducers, CMUTs),並基於先前單元件CMUTs與零偏壓操作的研究成果,開發微型陣列超音波換能器,並將之應用於生醫超音波成像。
本論文將先簡介元件結構的設計、製程過程、良率改善的成果與電荷累積模型的運用。元件結構的部分沿襲過去研究,並在製程流程上調整改進,跟過去製程相比減少一半所需的時間。此外利用電荷累積模型建立CMUTs驗證的步驟,排除因離子汙染或是薄膜特性缺陷造成無法收發訊號的問題,更配合電荷累積模型提升元件的收發性能,在相同量測條件下提升約1.9倍訊號雜訊比,並盡可能將同一晶片不同元件間效能達到一致,也針對CMUTs進行多種性能量測,了解CMUTs訊號穿透深度與訊號衰減的情形,以上測試建立CMUTs陣列超音波換能器完整的性能資訊。
本研究同時著力於陣列超音波換能器的開發,配合國研院晶片中心(Chip Implementation Center, CIC)提供之PCB板製程服務,研究成果包含開發12MHz的CMUTs陣列元件以及與晶片搭配之雙面硬式電路板的設計與封裝,製作出陣列超音波換能器的原型,並成功繪製B-mode影像且進行分析,以期成為傳統商用壓電探頭的替代選項。
In this study, a phased-array of zero-bias CMOS-based Capacitive Micro-machined Ultrasonic Transducers (CMUTs) with high sensitivity is developed. The device is implemented with the TSMC 0.35µm 2P4M CMOS-MEMS process. Based on the previous research at the CMUT cell and zero-bias operation, this thesis presents a successful achievement on the development of 12 MHz phased-array CMUTs and its application in biomedical imaging.
The thesis will first introduce the CMUTs design and the improved post CMOS process of fabrication, which can significantly enhance performance and the yield of CMUTs. The improvement of post CMOS process includes changing previous process steps to speed up fabrication and verifying CMUTs by I-V scan. Besides, the characteristic of CMUTs’ performances based on transmit signal, receive signal, pulse-echo signal, SNR ratio, penetration of depth, and attenuation-time curve were studied and analyzed in this thesis. The performance enhances 90% compared to previous works.
Last but not least, the thesis will present the prototype of CMUTs tube package and its B-mode scanning imagines. These detail analyses provide necessary and vital information for the future application of CMUTs.
第一章 緒論與研究動機 1
1.1電容式超音波換能器介紹 2
1.1.1電容式超音波換能器架構 2
1.1.2 電容式超音波換能器工作原理與操作 2
1.1.3 陣列成像原理 5
1.2 文獻回顧 7
1.2.1 CMUTs元件設計 7
1.2.2 陣列電容式超音波換能器開發 8
1.2.3 電容式超音波換能器電荷累積特性 11
1.2.4 電容式超音波陣列換能器封裝與應用 12
1.3 研究動機 16
第二章 電容式超音波陣列換能器設計與製程改良 17
2.1 CMUTs陣列設計與模擬 17
2.2 後製程改良 20
2.2.1後製程步驟 20
2.2.2良率改善與關鍵步驟 26
2.2.3驗證流程建立 27
2.2.4 CMUTs晶片耐受性 32
2.3 雙面硬式電路板設計與封裝 34
第三章 電容式超音波陣列換能器特性量測與分析 36
3.1 超音波探頭性能測試 36
3.1.1特性量測儀器架設與流程 36
3.1.2 CMUTs傳輸功能測試 39
3.1.3 CMUTs接收功能測試 41
3.1.4 CMUTs自發自收能力測試 42
3.1.5 CMUTs晶片比較 45
3.2 CMUTs訊號穿透能力測試 47
3.3 CMUTs疲勞度測試 50
第四章 電容式超音波陣列換能器應用 51
4.1 電容式超音波陣列換能器B-mode影像繪製 51
4.1.1量測儀器架設 51
4.1.2陣列影像量測結果 53
4.2生醫成像應用 56
4.2.1管狀電容式超音波陣列換能器封裝 56
4.2.2管內量測 59
4.2.3生醫成像量測結果 59
第五章 結論與未來展望 61
5.1結論 61
5.2未來展望 62
5.2.1元件與系統設計的優化 62
5.2.2封裝設計與CMUTs未來應用 63
Reference 65
附錄 72
[1]李百祺, 醫用超音波原理, 2000.
[2] F. L. Lizzi, et. al., “Relationship of ultrasonic spectral parameters to features of tissue microstructure”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. UFFC-33, pp. 319–329, May 1986.
[3] G. Cincotti, et. al, “Frequency decomposition and compounding of ultrasound medical images with wavelet packets”, IEEE Trans. Med. Imag., vol. 20, pp. 764–771, Aug. 2001.
[4] S. W. Smith, et. al., “High-speed ultrasound volumetric imaging system—Part I: Transducer design and beam steering”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. UFFC-38, pp. 100–108, Mar. 1991
[5] O. T. von Ramm, et. al., “Highspeed ultrasound volumetric imaging system—Part II: Parallel processing and image display”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. UFFC-38, pp. 109–115, Mar. 1991.
[6] X. Rottenberg, et. al., "Consistent Analytical Model for Single and Dual Thickness Capacitive Micromachined Ultrasound Transducers (cMUT)."
[7] H. A. C. Tilmans, "Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems", 1997 J. Micromech. Microeng. 7 285
[8] A. S. Ergun, et. al., "Capacitive micromachined ultrasonic transducers: Theory and technology," Journal of aerospace engineering, vol. 16, pp. 76-84, 2003.
[9] O. Oralkan, et. al., "Experimental characterization of collapse-mode CMUT operation," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 53, pp. 1513-1523, 2006.
[10] B. Bayram, et. al., "A new regime for operating capacitive micromachined ultrasonic transducers," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 50, pp. 1184-1190, 2003.
[11] R/D Tech Inc, “Introduction to Phased Array Technology Application” , R/D Tech Inc, Quebec, Canada, 2004
[12] David Duxbury, “Calibration and Control of Advanced Ultrasonic Array Technology”
[13] 田鈺申, CMOS MEMS 低偏壓電容式超音波感測器開發, 2012
[14] O. Oralkan, et al., "Capacitive micromachined ultrasonic transducers: Next-generation arrays for acoustic imaging?," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 49, pp. 1596-1610, 2002.
[15]C. B. Doody, et al., "Modeling and Characterization of CMOS-Fabricated Capacitive Micromachined Ultrasound Transducers," Microelectromechanical Systems, Journal of, vol. 20, pp. 104-118, 2011.
[16] Rehrig, P., et. al., “Micromachined Imaging Transducer”, US Patent # 7622853, 2009.
[17] Jiang, X.N., et. al., “Micromachined Piezoelectric Ultrasound Transducer Arrays”, US Patent # 8008842, 2011.
[18] Jiang, X.N. , et. al., “Fabrication and Characterization of High Frequency Phased Arrays for NDE Imaging”, Proc. SPIE Smart Materials and Structures and NDE, 7649-30 (2010).
[19] B.W. Drinkwater and P.D. Wilcox, “ Ultrasonic Arrays for Non-Destructive Evaluation: A Review”, NDT & E International, 39(7):525-541, 2006
[20] Hideyuki Hasegawa, Chris L. de Korte, “Impact of element pitch on synthetic aperture ultrasound imaging”, J Med Ultrasonics (2016) 43:317–325
[21] A. F. van der Steen, et. al., "IVUS beyond the horizon." EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 2.1 (2006): 132.
[22] C. Tekes, et. al., "Volumetric imaging using single chip integrated CMUT-on-CMOS IVUS array," Conf Proc IEEE Eng Med Biol Soc, vol. 2012, pp. 3195-8, 2012.
[23] G. Gurun, C. Tekes, et. al., "Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on , vol.61, no.2, pp.239,250, February 2014.
[24] Nikoozadeh. A., Oralkan. O. , et. al., “Forward-Looking Intracardiac Imaging Catheters Using Fully Integrated CMUT Arrays”, Proc. 2010 IEEE Ultrasonics Symposium, San Diego, 2010 pp. 770-773
[25] Toby Xu, Coskun Tekes, et. al.,” Design, Modeling and Characterization of a 35MHz 1-D CMUT Phased Array”, 2013 Joint UFFC, EFTF and PFM Symposium
[26] Amin Nikoozadeh, et. al., “An Integrated Ring CMUT Array for Endoscopic
Ultrasound and Photoacoustic Imaging”, Ultrasonics Symposium (IUS), 2013 IEEE International
[27]林芳伃, CMOS-MEMS電容式微機電系統超音波換能器製作與開發, 2013
[28]林信廷, 互補式金氧半微機電技術零偏壓電容式微型超音波換能器元件理論開發及其應用, 2016
[29] Paul G Yock MDA, Peter J Fitzgerald MD, PhDA, "Intravascular Ultrasound: State of the Art and Future Directions", The American Journal of Cardiology
[30] Jason H. Rogers, MD, “Forward-Looking IVUS in Chronic Total Occlusions”, Cardiac Interventions Today, June/July 2009 P21-24
[31] Ömer Oralkan, et. al.,”CMUT Ring Arrays for Forward-Looking Intravascular Imaging”, 2004 IEEE Ultrasonics Symposium
[32]楊國卿 ,Recent Advance in Clinical Application of Endoscopic Ultrasonography, 2013
[33]William R Brugge, “Aspiring to new levels of achievement: EUS in the therapeutic endoscopy olympics” Endoscopic Ultrasound, 2012
[34]Pancreatic Cysts Diagnosis and Treatment Overview, California Pacific Medical Center, 2009
[35] Joshua G. Knight, “Capacitive Micromachined Ultrasonic Transducers For Forward Looking Intravascular Imaging Aarrays”, 2002 IEEE ULTRASONICS SYMPOSIUM
[36] Mengli Wang, et. al.,” Design and Test of a Monolithic Ultrasound-Image-guided HIFU Device using Annular CMUT Rings”, 2008 IEEE International Ultrasonics Symposium Proceedings
[37]Coskun Tekes, “Improved FL-IVUS Imaging with Low Voltage Single-chip CMUT-on-CMOS Array Using Temporally Coded Excitation”, 2014 IEEE International Ultrasonics Symposium Proceedings
[38]P. K. Tang, et. al., "Design and characterization of the immersion-type capacitive ultrasonic sensors fabricated in a CMOS process," Journal of Micromechanics and Microengineering, vol. 21, p. 025013, 2011.
[39] Bivragh Majeed, et. al., “Parylene N as a Dielectric Material for Through Silicon Vias”, 2008 Electronic Components and Technology Conference
[40] M. A. SPIVACK, “Parylene Thin Films for Radiation Applica”, THE REVIEW OF SCIENTIFIC INSTRUMENTS, VOLUME 41. NUMBER 11 NOVEMBER 1970
[41]W. Sonphao and S. Chaisirikul, "Silicon anisotropic etching of TMAH solution," in Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International Symposium on, 2001, pp. 2049-2052 vol.3.
[42]I. O. Wygant, et. al., "Analytically calculating membrane displacement and the equivalent circuit model of a circular CMUT cell," in Ultrasonics Symposium, 2008. IUS 2008. IEEE, 2008, pp. 2111-2114.
[43] Mohammad Tariq Jan, et. al., “Reliability and Fatigue Analysis in Cantilever-Based MEMS Devices Operating in Harsh Environments”, Journal of Quality and Reliability Engineering, Volume 2014, Article ID 987847.
[44] T. Tsuchiya, et. al., “Fatigue test of single crystal silicon resonator,” in Proceedings of the Technical Digest of the 11th Sensor Symposium, pp. 277–280, Tokyo, Japan, 1998.
[45] T. Ikehara and T. Tsuchiya, “Low-cycle to ultrahigh-cycle fatigue lifetime measurement of single-crystal-silicon specimens using a microresonator test device,” Journal of Microelectromechanical Systems, vol. 21, no. 4, pp. 830–840, 2012.
[46] Otto CM. Principles of echocardiographic image acquisition and Doppler analysis. In: Textbook of Clinical Ecocardiography. 2nd ed. Philadelphia, PA: WB Saunders; 2000:1–29.
[47] Alexander, et. al., "Resolution in ultrasound imaging”, Continuing Education in Anaesthesia, Critical Care & Pain | Volume 11 Number 5 2011
[48] John Scampini, “Maximize the performance of high-signal-to-noise ratio (SNR) ultrasound receivers with an optimized system design”, EDN, November 7, 2013.
[49] Sigrid Berg, et al., ” Co-optimization of CMUT and receive amplifiers to suppress effects of neighbor coupling between CMUT elements” , 2008 IEEE International Ultrasonics Symposium Proceedings
[50] Mantra VLSI, “Flip-chip and wire bonding”, Mantra VLSI, October 2014
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top