跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李明哲
研究生(外文):Ming-Zer Lee
論文名稱:三重態-三重態消滅藍色有機發光二極體之研究
論文名稱(外文):Research on Triplet-triplet Annihilation Blue Organic Light-emitting Diode
指導教授:李君浩
指導教授(外文):Jiun-Haw Lee
口試委員:王俊凱梁文傑李俊育陳濟中
口試委員(外文):Juen-Kai WangMan-kit Leung
口試日期:2016-11-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:163
中文關鍵詞:有機發光二極體激發複合體三重態-三重態消滅暫態電致放光光激發光
外文關鍵詞:organic light-emitting diodeexciplextriplet-triplet annihilationtransient electroluminescencephotoluminescence
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文研究方向有二:其一為利用三重態三重態消滅上轉換機制來製作低驅動電壓藍色有機發光二極體,其二為加入輔助主體材料以延長之三重態三重態消滅藍色螢光元件之壽命。
我們利用搭配具有推電子以及拉電子能力的有機材料來形成激發複合體,再藉由能量轉移方式到藍色螢光材料進行三重態三重態消滅上轉換來放出藍光。觀察穩態亮度-電壓特性,利用三重態三重態消滅上轉換機制產生的藍光與一般傳統以直接復合方式相較起來在驅動電壓上降低了0.4伏特。另外我們以電激發光驅動元件觀測低電壓下激子暫態行為,發現當電訊號關掉以後,激子暫態放光中沒有瞬時螢光而全部是經由能量轉移形成的延遲螢光,表示此放光都是來自於三重態的貢獻,證明其機制為三重態三重態消滅上轉換藍光。
我們以加入輔助主體材料來達成89.3%延長壽命之藍色三重態-三重態消滅有機發光體。我們利用量測激子擴散長度、單載子電洞元件、單載子電子元件、探測發光區以及將元件以定電流方式持續操作一段時間後去觀察暫態電激放光,及穩態光激發光頻譜強度的變化,來了解在元件中加入輔助主體材料後扮演的角色。
There are two topics in the thesis. The first one is a blue organic light-emitting diode (OLED) with low driving voltage based on triplet triplet annihilation upconversion (TTAUC) mechanism. And the second is the operation lifetime elongation of triplet triplet annihilation (TTA) blue organic light-emitting diode by introducing assistant host material into the emitting layer (EML).
We use donor and acceptor organic materials to generate exciplex which transfers triplets to the blue TTA material to realize light upconversion, called TTAUC. 0.4 V reduction in turn-on voltage was observed in blue TTAUC-OLED, compared to the conventional TTA-OLED with direct recombination in the EML. Besides, transient electroluminescence was used to study exciton dynamics. Only slow decay, coming from the energy transfer of triplets from exciplex emission, was observed during turn-off transient which proved the TTAUC emission mechanism.
89.3 % increase in operation lifetime was achieved in a blue TTA-OLED by introducing 10% assistant host (AH) material in the emitting layer. By observing the exciton diffusion length, hole-only device, electron-only device characteristics, and TrEL and photoluminescence spectra before and after device aging at constant current, we characterized the function of AH in this OLED.
摘要 I
Abstract II
List of Figures VIII
List of Tables XXII
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Introduction to OLED 1
1.3 TTA OLED 2
1.4 Exciplex OLED 5
1.5 Triplet Triplet Annihilation upconversion 7
1.6 Degradation mechanisms of OLED 16
1.7 Transient electroluminescence of OLED 23
1.8 Measurement of exciton diffusion length 27
1.9 Motivation 28
1.10 References 29
Chapter 2 Experiment 33
2.1 Introduction 33
2.2 Device fabrication 33
2.3 Measurement systems 34
2.3.1 Setup of brightness-current density-voltage (BJV) system 34
2.3.2 Spectrum decomposition of dual-band emission 36
2.3.3 Transient electroluminescence (TrEL) setup 36
2.3.4 Steady-state photoluminescence 38
2.3.5 Steady-state photoluminescence degradation measurement 39
2.4 References 42
Chapter 3 Triplet-triplet Annihilation Upconversion Blue Organic 43
3.1 Introduction 43
3.2 Steady state B-J-V characteristics of OLEDs 44
3.2.1 OLEDs based on different HTL-ETL combinations 44
3.2.2 Layer thickness tuning for lowering turn-on voltage of TTAUC OLED 53
3.2.2.1 Optimization of TTAUC device by increasing BPhen thickness 70
3.2.3 Optimization of four devices based on different HTL-EML combinations for lowering turn-on voltage 72
3.3 Transient electroluminescence analysis of OLED 78
3.3.1 TREL of NPB/ADN/BPhen blue TTA OLED with different forward bias, turn-on pulse width and turn-off time interval
78
3.3.2 Effect of reverse bias on NPB/ADN/BPhen blue TTA OLED
83
3.3.3 TREL of m-MTDATA/m-MTDATA:BPhen/BPhen yellow exciplex OLED with different forward bias, turn-on pulse width and turn-off time interval 84
3.3.4 Effect of reverse bias on m-MTDATA/m-MTDATA:BPhen/BPhen yellow exciplex OLED 92
3.3.5 TREL of m-MTDATA/m-MTDATA:ADN/BPhen yellow exciplex OLED with different forward bias, turn-on pulse width and turn-off time interval 96
3.3.6 Effect of reverse bias on m-MTDATA/m-MTDATA:ADN/BPhen yellow exciplex OLED 106
3.3.7 TREL of m-MTDATA/ADN/BPhen TTAUC OLED with different forward bias, turn-on pulse width and turn-off time interval
109
3.3.8 Effect of reverse bias on m-MTDATA/ADN/BPhen TTAUC OLED 115
3.3.9 Effect of reverse bias on m-MTDATA/m-MTDATA: BPhen/BPhen OLED and m-MTDATA/m-MTDATA:ADN/BPhen OLED (thick devices) 117
3.3.9.1 Effect of reverse bias on m-MTDATA/m-MTDATA:BPhen/BPhen OLED (thick devices) 118
3.3.9.2 Effect of reverse bias on m-MTDATA/m-MTDATA:ADN/BPhen OLED (thick thickness) 122
3.3.10 Turn-off dynamics of exciplex emission and blue emission comparison between various devices 126
3.4 References 131
Chapter 4 Elongation of Operation Lifetime for Blue Triplet-triplet Annihilation Organic Light-emitting Diode
133
4.1 Introduction 133
4.2 B-I-V characteristics of blue TTA OLED 133
4.3 Hole-only and electron-only device 135
4.4 Device recombination zone probing 137
4.5 Exciton diffusion length measurement 145
4.6 Turn-off dynamics of TREL with time aging 152
4.7 Photoluminescence degradation measurement 156
4.8 References 161
Chapter 5 Summary 162
[1]C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913, 1987.
[2]S. Kim, H. J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack , D. Han, M. S. Song, S. Kim, S. Mohammadi, I. S. Kee and S. Y. Lee, Adv. Mater. 23, 3511, 2011.
[3]S. Baranovski. Charge Transport in Disordered Solids with Applications in Electronics. John Wiley & Sons, 2006.
[4]H. Sternlicht, G. C. Nieman and G. W. Robinson, J. Chem. Phys. 39, 1610, 1963.
[5]S. M. Bachilo and R. B. Weisman, J. Phys. Chem. 104, 7711, 2000.
[6]D. Yokoyama, Y. Park, B. Kim, S. Kim, Y. J. Pu, J. Kido and J. Park, Appl. Phys. Lett. 99, 123303, 2011.
[7]H. Kuma and C. Hosokawa, Sci. Technol. Adv. Mater. 15, 034201, 2014.
[8]D. Y. Kondakov, Journal of the SID 17/2, 137, 2009.
[9]M. Gordon , W. R. Ware, The Exciplex, 1975.
[10] J. H. Lee, S. H. Cheng, S. J. Yo, H. Shin, J. H. Chang, C. I. Wu, K. T. Wong, and J. J. Kim, Adv. Funct. Mater. 25, 361, 2015.
[11] A. C. Morteani , A. S. Dhoot , J. S. Kim , C. Silva , N. C. Greenham ,
C. Murphy , E. Moons , S. Cina , J. H. Burroughes , R. H. Friend, Adv. Mater. 15 , 1708, 2003.
[12] T. Zhang, B. Chu, W. Li, Z. Su, Q. M. Peng, B. Zhao, Y. Luo, F. Jin, X. Yan, Y. Gao, H. Wu, F. Zhang, D. Fan, and J. Wang, ACS Appl. Mater. Interfaces. 6, 11907, 2014.
[13] V. Mikhnenko, P. W. M. Blom and T. Q. Nguyen, Energy Environ. Sci., 8, 1867, 2015.
[14] T. N. S. Rachford and F. N. Castellano, Coord. Chem. Rev, 254, 2560, 2010.
[15] T. Miteva, V. Yakutkin, G. Nelles, and S. Baluschev, New J. Phys. 10, 103002, 2008.
[16] W. Zhao and F. N. Castellano, J. Phys. Chem. A. 110, 11440, 2006.
[17] X. Yi, P. Yang, D. Huang, J. Zhao, Dyes and Pigments. 9, 104, 2013.
[18] A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, and F. Meinardi, Phys. Rev. B. 78, 195112 , 2008.
[19] M. Penconi, F. Ortica, F. Elisei, P. L. Gentili, J. Lumin. 135, 265, 2013.
[20] F. Deng, J. Blumhoff, and F. N. Castellano, J. Phys. Chem. A. 117, 4412, 2013.
[21] S. H. Lee, J. R. Lott, Y. C. Simon and C. Weder, J. Mater. Chem. C. 1, 5142, 2013.
[22] Y. C. Simon and C. Weder, J. Mater. Chem. 22, 20817, 2012.
[23] J. H. Kim, F Deng, F. N. Castellano and J. H. Kim, Chem. Mater. 24, 2250, 2012.
[24] T. C. Wu, D. N. Congreve, and M. A. Baldo, Appl. Phys. Lett. 107, 031103, 2015.
[25] M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. V. Voorhis, V. Bulović, M. G. Bawendi and M. A. Baldo, Nature Photon. 10, 31, 2015.
[26] C. Xiang , C. Peng, Y. Chen , and F. So, Small. 11, 5439, 2015.
[27] Q. Chen, W. Jia, L. Chen, D. Yuan, Y. Zou and Z. Xiong, Scientific Reports. 6, 25331, 2016.
[28] C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, Appl. Phys. Lett. 87, 213502, 2005.
[29] M. Schaer, F. Nüesch, D. Berner, W. Leo, L. Zuppiroli, Adv. Funct. Mater. 11, 116, 2001.
[30] M. K. Fung, Z. Q. Gao, C. S. Lee and S. T. Lee, Chem. Phys. Lett. 333, 432, 2001.
[31] H. Y. Shin and M. C. Suh , Mater. Sci. Eng., B. 188, 8, 2014.
[32] T. Ikeda, H. Murata, Y. Kinoshita, J. Shike, Y. Ikeda, M. Kitano, Chem. Phys. Lett. 426, 111, 2006.
[33] S. W. Yin , Z. Shuai and Y. Wang, J. Chem. Inf. Comput. Sci. 43, 970, 2003.
[34] S. Tokito, H. Tanaka, K. Noda, A. Okada, and Y. Taga, Appl. Phys. Lett. 70, 1929, 1997.
[35] C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 66, 1995.
[36] D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, J. Appl. Phys. 93, 2, 2003.
[37] D. Y. Kondakov, J. Appl. Phys. 104, 084520, 2008.
[38] S. W. Culligan, A. C. A. Chen, J. U. Wallace , K. P. Klubek, C. W. Tang, S. H. Chen, Funct. Mater. 16, 1481, 2006.
[39] A. B. Chwang, R. C. Kwong, and J. J. Brown, Appl. Phys. Lett. 80, 725, 2002.
[40] J. H. Lee, C. I. Wu, S. W. Liu, C. A. Huang, and Y. Chang, Appl. Phys. Lett. 86, 103506, 2005.
[41] Q. Wang and H. Aziz, ACS Appl. Mater. Interfaces. 5, 8733, 2013.
[42] Z. D. Popovic and H. Aziz, J. Appl. Phys. 98, 013510, 2005.
[43] Y. Luo, and H. Aziz, Adv. Funct. Mater. 20, 1285, 2010.
[44] Q. Wang, Y. Luo, and H. Aziz, J. Appl. Phys. 107, 084506, 2010.
[45] R. C. Powell, and Z. G. Soos, J. Lumin. 11, 1, 1975.
[46] K. J. Bergemann and S. R. Forrest, Appl. Phys. Lett. 99, 243303, 2011.
[47] S. M. Menke, W. A. Luhman and R. J. Holmes, Nat. Mater., 12, 152, 2013.
[48] S. R. Scully and M. D. McGehee, J. Appl. Phys. 100, 034907, 2006.
[49] 楊雅婷,“小分子有機太陽能電池及非平面液晶元件結構之研究” 台大光電所碩士論文 (2013)
[50] 陳柏勳,“藍色磷光有機發光二極體暫態機制與有機薄膜製作於矽基板之研究”台大光電所碩士論文 (2014)
[51] D. Y. Kondakov, J. Appl. Phys. 102, 114504 , 2007.
[52] D. Y. Zhou, H. Z. Siboni, Q. Wang, L. S. Liao, and H. Aziz, J. Phys. Chem. C. 118, 24006, 2014.
[53] W. C. H. Choy, K. N. Hui, H. H. Fong, Y. J. Liang, P. C. Chui, Thin Solid Films. 509, 193, 2006.
[54] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 23, 926, 2011.
[55] D. Yokoyama, Y. Park, B. Kim, S. Kim, Y. J. Pu, J. Kido and J. Park, Appl. Phys. Lett. 99, 123303, 2011.
[56] S. Naka, H. Okada, H. Onnagawa and T. Tsutsui, Appl. Phys. Lett. 76, 197, 2000.
[57] S. C. Tse, S. K. So, M. Y. Yeung, C. F. Lo, S. W. Wen, C. H. Chen, Chem Phys Lett. 422, 354, 2006.
[58] B. Chen, C. S. Lee, S. T. Lee, P. Webb, Y. C. Chan, W. Gambling, H. Tian, W. Zhu, J. Appl. Phys. Part 1, 39, 1190, 2000.
[59] M. Aonuma, T. Oyamada, H. Sasabe, T. Miki, and C. Adachi, Appl. Phys. Lett. 90, 183503, 2007.
[60] J. Shi and C. W. Tang, Appl. Phys. Lett. 80, 3201, 2002.
[61] V. Jankus, C.J. Chiang , F. Dias , and A. P. Monkman, Adv. Mater., 25, 1455, 2013.
[62] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, J. Appl. Phys. 80, 6954, 1996.
[63] 陳冠宇,“有機發光元件光學特性之研究” 台大光電所碩士論文 (2006)
[64] J. H. Lee, K. Y. Chen, C. C. Hsiao, H. C. Chen, C. H. Chang, Y. W. Kiang, and C. C. Yang, IEEE/OSA J. Display Technol. 2, 130, 2006.
[65] Z. D. Popovic, M. I. Khan, A. M. Hor, J. L. Goodman, and J. F. Graham, J. Phys. Chem. B, 106, 8625, 2002.
[66] T. Ye, Z. Chen, J. Chen, D. Ma, Mater. Sci. Eng B. 175, 75, 2010.
[67] P. Chen, Z. Xiong, Q. Peng, J. Bai, S. Zhang, and F. Li, Adv. Optical Mater., 2, 142, 2014. (Supporting information)
[68] C. H. Hsiao, J. H. Lee, and C. A. Tseng, CHEM PHYS LETT. 427, 305, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊