|
[1] Y. Maegami, M. Okano, G. Cong, M. Ohno, and K. Yamada, “Completely CMOS compatible SiN-waveguide-based fiber coupling structure for Si wire waveguides,” Opt. Express 24, 16856–16865 (2016). [2] L. Nguyen, R. Kuroyanagi, T. Tsuchizawa, Y. Ishikawa, K. Yamada, and K. Wada, “Stress tuning of the fundamental absorption edge of pure germanium waveguides,” Opt. Express 23, 18487–18492 (2015). [3] C. Wu, Y. Chiu, C. Chen, Y. Lin, A. Chu, and C. Lee, “Four-wave-mixing in the loss low submicrometer Ta2O5 channel waveguide,” Opt. Lett. 40, 4528–4531 (2015). [4] T. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37, 4269–4271 (2012). [5] X. Xu, T. Yamada, R. Ueda, and A. Otomo, “Dynamics of spontaneous emission from SiN with two-dimensional photonic crystals,” Opt. Lett. 33, 1768–1770 (2008). [6] Y. Lin, C. Wu, W. Chi, Y. Chiu, Y. Hung, A. Chu, and C. Lee, “Self-phase modulation in highly confined submicron Ta2O5 channel waveguides,” Opt. Express 24, 21633– 21641 (2016). [7] C. Tai, J. Wilkinson, N. Perney, M. Caterina Netti, F. Cattaneo, C. Finlayson, and J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12, 5110–5116 (2004). [8] T. Mangeat, L. Escoubas, F. Flory, L. Roussel, M. De Micheli, and P. Coudray, “In- tegrated polarization rotator made of periodic asymmetric buried Ta2O5/silica sol-gel waveguides,” Opt. Express 15, 12436–12442 (2007). [9] Y. Jouane, Y. Chang, D. Zhang, J. Luo, A. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Opt. Express 22, 27725–27732 (2014). [10] Y. Enami, Y. Jouane, J. Luo, and A. Jen, “Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Express 22, 30191–30199 (2014). [11] Y. Enami, Y. Kayaba, J. Luo, and A. Jen, “Mesoporous sol-gel silica cladding for hybrid TiO2/electro-optic polymer waveguide modulators,” Opt. Express 22, 16418– 16423 (2014). [12] B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006). [13] D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4, 511– 517 (2010). [14] D. Liang, G. Roelkens, R. Baets, and J. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010). [15] G. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004). [16] R. Soref, “The past, present, and future of silicon photonics” IEEE J. Sel. Top. Quant. 12, 1678–1687 (2006). [17] M. Lipson, “Guiding, modulating, and emitting light on silicon - challenges and opportunities” J. Lightw. Technol. 23, 4222–4238 (2005). [18] D. Dai and S. He, “Analysis of characteristics of bent rib waveguides” J. Opt. Soc. Am. Opt. Image Sci. 21, 113–121 (2004). [19] T. Ang, S. Lim, S. Lee, C. Png and M. Chin, “How small can a microring resonator be and yet be polarization independent?” Appl. Opt. 48, 2821–2835 (2009). [20] M. Jamal Deen, Silicon Photonics Fundamentals and Devices (Wiley, 2012). [21] S. Chuang, Physics of Optoelectronic Devices (Wiley, 2009). [22] L. Chen and Y. Chen, “Compact, low-loss and low-power 8 × 8 broadband silicon optical switch,” Opt. Express 20, 18977–18985 (2012). [23] J. Campenhout, W. Green, S. Assefa, and Y. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009). [24] X. Jiang, J. Wu, Y. Yang, T. Pan, J. Mao, B. Liu, R. Liu, Y. Zhang, C. Qiu, C. Tremblay, and Y. Su, “Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach−Zehnder interferometer couplers,” Opt. Express 24, 2183–2188 (2016). [25] H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bo- gaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37, 4681–4683 (2012). [26] D. Miller, “Designing linear optical components,” Opt. Photon. News 24, 38–38 (2013). [27] C. Chen, X. Zhu, Y. Liu, K. Wen, M. Chik, T. Baehr-Jones, M. Hochberg and K. Bergman, “Programmable dynamically-controlled silicon photonic switch fabric,” J. Lightw. Technol. 34, 2952–2958 (2016). [28] K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006). [29] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012). [30] A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, “Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,” Opt. Lett. 28, 1567–1569 (2003). [31] T. Wang, Y. Huang, and H. Chen, “Resonant wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photon. Technol. Lett. 17, 582–584 (2005). [32] A. Prescod, B. Dingel, N. Madamopoulos, and R. Madabhushi, “Effect of ring res- onator waveguide loss on SFDR performance of highly linear optical modulators under suboctave operation,” IEEE Photon. Technol. Lett. 22, 1297–1299 (2010). [33] J. Rakshit and J. Roy, “Micro-ring resonator based all-optical reconfigurable logic operations,” Opt. Commun. 321, 38–46 (2014). [34] A. Parini, G. Bellanca, A. Annoni, F. Morichetti, A. Melloni, M. J. Strain, M. Sorel, M. Gay, C. Pareige, L. Bramerie and M. Thual, “BER evaluation of a passive SOI WDM router,” IEEE Photon. Technol. Lett. 25, 2285–2288 (2013). [35] W. Westerveld, S. Leinders, P. Muilwijk, J. Pozo, T. van den Dool, M. Verweij, M. Yousefi, and H. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2014). [36] E. Lin, W. Tsai, K. Lee, M. Lee, and P. Wei, “Enhancing detection sensitivity of metallic nanostructures by resonant coupling mode and spectral integration analy- sis,” Opt. Express 22, 19621–19632 (2014). [37] W. Headley, G. Reed, S. Howe, A. Liu and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004). [38] Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwich nanowires,” IEEE Photon. Technol. Lett. 19, 1580–1582 (2007). [39] M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu , T. Liow, Q. Lo, O. Vänskä, S. Honkanen and I. Tittonen, “Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators,” Opt. Express 21, 9974–9981 (2013). [40] R. Hunsperger, Integrated Optics - Theory and Technology, 6th ed. (Springer, 2009). [41] E. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969). [42] K. Chiang, “Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory,” J. Lightw. Technol. 9, 62–72 (1991). [43] Lumerical Solutions, Inc., https://www.lumerical.com [44] V. Almeida, Q. Xu, C. Barrios, and M. Lipson, “Guiding and confining light in void structure,” Opt. Lett 29, 18977–18985 (2004). [45] COMSOL Multiphysics®, https://www.comsol.com/. [46] W. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994). [47] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 2nd ed. (Springer-Verlag, 1994). [48] P. Senecal, “Numerical optimization using the GEN4 micro-genetic algorithm code,” 1–18 (2000). [49] N. Kobayashi, T. Sato, and Y. Kokubun, “UV trimming of polarization - independent microring resonator by internal stress and temperature control,” Opt. Express 18, 906–916 (2010). [50] S. Chan, C. Png, S. Lim, G. Reed, and V. Paniccia, “Single-mode and polarization- independent silicon-on-insulator waveguides with small cross section” J. Lightw. Technol. 23, 2103 (2005). [51] J. Xiao, H. Ni, and X. Sun, “Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate sys- tems,” Opt. Lett. 33, 1848–1850 (2008). [52] J. Xiao and X. Sun, “Vector analysis of bending waveguides by using a modified finite-difference method in a local cylindrical coordinate system,” Opt. Express 20, 21583–21597 (2012). [53] R. Byrd, M. Hribar, and J. Nocedal. “An interior point algorithm for large-scale non- linear programming.” SIAM J. Optim. 9, 877–900 (1999). [54] F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni and M. Mar- tinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010). [55] Y. Vlasov and S. McNab, ”Losses in single-mode silicon-on-insulator strip waveg- uides and bends,” Opt. Express 12, 1622–1631 (2004). [56] T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529– 11538 (2011). [57] A.Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Liow, M. Hiltunen, A. Ter- vonen, G. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011). [58] Y. Liu, T. Baehr-Jones, J. Li, A. Pomerene and M. Hochberg, “Efficient Strip to Strip-Loaded Slot Mode Converter in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 23, 1496–1498 (2011). [59] R. Palmer and L. Alloatti and D. Korn and W. Heni and P. Schindler and J. Bolten and M. Karl and M. Waldow and T. Wahlbrink and W. Freude and C. Koos and J. Leuthold, “Low-loss silicon strip-to-slot Mode converters,” IEEE Photon. J. 5, 2200409 (2013). [60] Q. Deng, L. Liu, X. Li, and Z. Zhou, “Strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Lett. 39, 5665–5668 (2014). [61] A. Takagi, K. Jinguji, and M. Kawachi, “Broadband silica-based optical waveguide coupler with asymmetric structure,” Electron. Lett. 26, 132–133, (1990). [62] A. Takagi, K. Jinguji, and M. Kawachi, “Wavelength characteristics of (2 × 2) op- tical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” J. Light. Technol. 10, 735–746 (1992). [63] Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. Jaeger, and L. Chrostowski, “Broad- band silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015). [64] H. Yanagawa, S. Nakamura, I. Ohyama, and K. Ueki, “Broad-band high-silica optical waveguide star coupler with asymmetric directional couplers,” J. Lightw. Technol. 8, 1292–1297 (1990). [65] A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica- based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron 28, 848-–855 (1992). [66] K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wave- length circuits composed of cascaded Mach–Zehnder interferometers with point- symmetrical configurations,” J. Lightw. Technol. 14, 2301–2310 (1996). [67] S. Tseng, “Robust coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 39, 6600–6603 (2014). [68] X. Chen, R. Wen, and S. Tseng, “Analysis of optical directional couplers using short- cuts to adiabaticity,” Opt. Express 24, 18322–18331 (2016). [69] A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21, 7033– 7040 (2013). [70] C. R. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar lightwave circuit 2 × 2 coupler to desensitize it to wave- length, polarization, and fabrication changes,” IEEE Photon. Technol. Lett. 17, 1211– 1213 (2005). [71] H. Morino, T. Maruyama and K. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” J. Lightwave Technol. 32, 2188–2192 (2014). [72] S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo- optic Mach-Zehnder switch with bent directional couplers,” Opt. Lett. 41, 836–839 (2016). [73] Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photon. J. 8, 7101408 (2016). [74] L. Sanchis, A. Håkansson, D. Lopez-Zanón, J. Bravo-Abad and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84, 4460– 4462 (2004). [75] A. Håkansson and J. Sánchez-Dehesa, “Inverse designed photonic crystal de- multiplex waveguide coupler,” Opt. Express 13, 5440–5449 (2005). [76] A. Håkansson, P. Sanchis, J. Sánchez-Dehesa and J. Martí, “High-efficiency defect- based photonic-crystal tapers designed by a genetic algorithm,” J. Lightw. Technol. 23, 3881–3888 (2005). [77] D. Correia, J. da Silva and H. Hernandez-Figueroa, “Genetic algorithm and finite- element design of short single-section passive polarization converter,” IEEE Photon. Technol. Lett. 15, 915–917 (2003). [78] F. Bahrami, M. Maisonneuve, M. Meunier, J. Aitchison, and M. Mojahedi, “An im- proved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21, 20863–20872 (2013). [79] A. Liu, R. Wu, and Y. Lin, “A compact design of W-band high-pass waveguide filter using genetic algorithms and full-wave finite element analysis,” IEICE T. Electron. E88-C, 1764–1771 (2005). [80] J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martínez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97, 071115 (2010). [81] Q. Deng, L. Liu, X. Li, and Z. Zhou, “Strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Lett. 39, 5665–5668 (2014). [82] P. Vanbrabant, J. Beeckman, K. Neyts, R. James, and F. Fernandez, “A finite element beam propagation method for simulation of liquid crystal devices,” Opt. Express 17, 10895–10909 (2009). [83] H. Li, “Refractive index of silicon and germanium and its wavelength and tempera- ture derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1993). [84] I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965). [85] T. Ramadan, R. Scarmozzino, and R. Osgood, Jr., “Adiabatic couplers: design rules and optimization,” J. Lightw. Technol. 16, 277–283 (1998). [86] MATLAB Global Optimization Toolbox, Genetic Algorithm Options, http://www.mathworks.com/help/gads/genetic-algorithm-options.html. [87] P. Fu, T. Chiang, N. Cheng, Y. Ma, and D. Huang, “Microring resonator composed of vertical slot waveguides with minimum polarization mode dispersion over a wide spectral range,” Appl. Opt. 55, 3626–3631 (2016).
|