跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅柏翰
研究生(外文):Po-Han Fu
論文名稱:被動矽光波導元件之寬頻響應最佳化設計
論文名稱(外文):Optimization of passive silicon photonic waveguide components over a wide spectral range
指導教授:黃定洧
口試委員:李明昌魏培坤王子建林晃巖
口試日期:2017-01-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:69
中文關鍵詞:寬頻基因演算法最佳化極化非相依矽光子學波導元件
外文關鍵詞:BroadbandGenetic algorithmOptimizationPolarization independentSilicon photonicsWaveguide components
相關次數:
  • 被引用被引用:0
  • 點閱點閱:500
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含二個研究主題,分別在第三章及第四章提及。第三章提供抑制在絕緣層上矽光子平台之垂直槽狀波導環型共振腔之極化相依性之設計方法,意即在考慮波導色散下,使準TE與準TM模態之極化相依性在寬頻帶中達到最小。過去發表的文獻僅能在特定單一波長達到零極化相依性,然而在本論文之設計利用垂直槽狀波導之幾何結構,與過去發表文獻相比能夠增加一個可用設計維度。藉由調變矽波導及溝槽之寬度,可控制準TE 與準TM 模態之等效折射率以及在寬頻帶中之色散行為。因此,我們可以獲得在通訊波段(1510−1590 nm) 中使元件之極化相依性達到最小值之設計參數,能夠讓準TE與準TM模態在環型共振腔中傳播一周後累積幾乎相同之相位,因此能使共振波長差異達到最小值。我們亦針對不同用途提供兩種設計,利用有限元素法分析可得到環型共振腔準TE 與準TM 模態之頻率響應。
第四章討論任意比例寬頻光耦合器之設計方法,而最佳化設計參數可藉由基因演算法求得。在設計流程中,我們將元件幾何離散化成多段小區段,而每一小區段皆由梯形構成,而其中每一截梯形之耦合係數與傳播常數皆為最佳化之變數。因為在此設計中,變數眾多且搜尋範圍廣大,又難以預測因變數變化造成的計算結果,基因演算法可為一種適用之最佳化方式。藉由建立針對耦合係數與傳播常數之對照表,在最佳化過程中關於寬頻帶之頻率響應可利用耦合模態理論求得。此最佳化設計亦可使用較嚴謹之數值方法: 光束封包法以及有限元素法作進一步驗證,其結果與耦合模態理論相當吻合。在波長範圍為1530−1630 nm 中(C 至L 頻帶),對於任意比例之光耦合器皆可達到近乎無波長相依性之頻譜響應。
The dissertation consists of two research topics, which are respectively discussed in Chapters 3 and 4. In Chapter 3, we propose the design of a vertical slot waveguide-based optical ring resonator on the silicon-on-insulator (SOI) platform platform with minimized polarization mode dispersion (PMD) in the presence of waveguide dispersion over a wide spectral range. As compared to previous studies with regard to achieving the zero-birefringence condition (ZBC) at a specific wavelength, one additional degree of freedom is used by implementing vertical slot waveguides. Effective refractive indices, as well as the dispersion curves of quasi-TE and quasi-TM modes, can be determined
by controlling the widths of silicon strips or the slot. Therefore, the minimum PMD over the communication wavelengths can be obtained, which leads to nearly identical accumulated phase in the optical ring resonator for quasi-TE and quasi-TM modes, and thus the resonant wavelength mismatch between the quasi-TE and quasi-TM modes can be minimized in the spectral range from 1510 to 1590 nm. The spectral response of the optical ring resonator is simulated using the finite element method (FEM), with two design configurations presented for different uses.
A design of broadband dual channel directional couplers with arbitrary coupling ratios based on a genetic algorithm (GA) is proposed in Chapter 4. The device is segmented into trapezoidal short sections, and the propagation constant and the coupling coefficient of each section are viewed as variables during the optimization process. Since the problem contains a wide variety of variable combinations, and the solution space is poorly understood, a GA can be a promising candidate for the optimization method in this case. A lookup table of the propagation constants and coupling coefficients for a wide variety of variable combinations is constructed and therefore the spectral response of the system can be analyzed by the coupled mode theory (CMT) during the
optimization process. The optimal design is further verified by using the beam envelope method (BEM) and the FEM. The results indicate a good agreement with the CMT. The spectral response is nearly wavelength-independent over a wide band for λ = 1530−1630 nm (C + L band) for the design of arbitrary target coupling ratios.
口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xiii
1 Introduction 1
1.1 Waveguide components on the silicon-on-insulator (SOI) platform 1
1.1.1 Directional couplers 2
1.1.2 Ring resonators 3
1.2 Research motivation and objectives 5
1.3 Structure of the dissertation 6
2 Theoretical Background 8
2.1 Mode analysis in optical waveguides 8
2.1.1 Slab waveguides 8
2.1.2 Waveguides with arbitrary geometries 10
2.2 Working principle of slot waveguides 11
2.3 Coupled mode theory 14
2.4 Working principle of optical ring resonators 15
2.5 Methods 17
2.5.1 Genetic algorithm (GA) 17
2.5.2 Finite element method (FEM) 19
2.5.3 Beam envelope method (BEM) 20
3 Micro-ring resonator composed of vertical slot waveguides with minimum polarization mode dispersion over a wide spectral range 21
3.1 Introduction 21
3.2 Zero-birefringence condition 23
3.3 Numerical simulations 28
3.4 Summary 33
4 Broadband optical waveguide couplers with arbitrary coupling ratios designed using a genetic algorithm 34
4.1 Introduction 34
4.2 System analysis 36
4.2.1 Waveguide properties 36
4.2.2 CMT in transfer matrix form 40
4.3 Optimization based on GA 41
4.4 Numerical simulations 50
4.5 Fabrication tolerance analysis 52
4.6 Summary 53
5 Conclusion 55
5.1 Summary 55
5.2 Suggestion for future work 56
References 58
List of publications 68
[1] Y. Maegami, M. Okano, G. Cong, M. Ohno, and K. Yamada, “Completely CMOS compatible SiN-waveguide-based fiber coupling structure for Si wire waveguides,” Opt. Express 24, 16856–16865 (2016).
[2] L. Nguyen, R. Kuroyanagi, T. Tsuchizawa, Y. Ishikawa, K. Yamada, and K. Wada, “Stress tuning of the fundamental absorption edge of pure germanium waveguides,” Opt. Express 23, 18487–18492 (2015).
[3] C. Wu, Y. Chiu, C. Chen, Y. Lin, A. Chu, and C. Lee, “Four-wave-mixing in the loss low submicrometer Ta2O5 channel waveguide,” Opt. Lett. 40, 4528–4531 (2015).
[4] T. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37, 4269–4271 (2012).
[5] X. Xu, T. Yamada, R. Ueda, and A. Otomo, “Dynamics of spontaneous emission from SiN with two-dimensional photonic crystals,” Opt. Lett. 33, 1768–1770 (2008).
[6] Y. Lin, C. Wu, W. Chi, Y. Chiu, Y. Hung, A. Chu, and C. Lee, “Self-phase modulation in highly confined submicron Ta2O5 channel waveguides,” Opt. Express 24, 21633– 21641 (2016).
[7] C. Tai, J. Wilkinson, N. Perney, M. Caterina Netti, F. Cattaneo, C. Finlayson, and J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12, 5110–5116 (2004).
[8] T. Mangeat, L. Escoubas, F. Flory, L. Roussel, M. De Micheli, and P. Coudray, “In- tegrated polarization rotator made of periodic asymmetric buried Ta2O5/silica sol-gel waveguides,” Opt. Express 15, 12436–12442 (2007).
[9] Y. Jouane, Y. Chang, D. Zhang, J. Luo, A. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Opt. Express 22, 27725–27732 (2014).
[10] Y. Enami, Y. Jouane, J. Luo, and A. Jen, “Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Express 22, 30191–30199 (2014).
[11] Y. Enami, Y. Kayaba, J. Luo, and A. Jen, “Mesoporous sol-gel silica cladding for hybrid TiO2/electro-optic polymer waveguide modulators,” Opt. Express 22, 16418– 16423 (2014).
[12] B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006).
[13] D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photon. 4, 511– 517 (2010).
[14] D. Liang, G. Roelkens, R. Baets, and J. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[15] G. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004).
[16] R. Soref, “The past, present, and future of silicon photonics” IEEE J. Sel. Top. Quant. 12, 1678–1687 (2006).
[17] M. Lipson, “Guiding, modulating, and emitting light on silicon - challenges and opportunities” J. Lightw. Technol. 23, 4222–4238 (2005).
[18] D. Dai and S. He, “Analysis of characteristics of bent rib waveguides” J. Opt. Soc. Am. Opt. Image Sci. 21, 113–121 (2004).
[19] T. Ang, S. Lim, S. Lee, C. Png and M. Chin, “How small can a microring resonator be and yet be polarization independent?” Appl. Opt. 48, 2821–2835 (2009).
[20] M. Jamal Deen, Silicon Photonics Fundamentals and Devices (Wiley, 2012).
[21] S. Chuang, Physics of Optoelectronic Devices (Wiley, 2009).
[22] L. Chen and Y. Chen, “Compact, low-loss and low-power 8 × 8 broadband silicon optical switch,” Opt. Express 20, 18977–18985 (2012).
[23] J. Campenhout, W. Green, S. Assefa, and Y. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
[24] X. Jiang, J. Wu, Y. Yang, T. Pan, J. Mao, B. Liu, R. Liu, Y. Zhang, C. Qiu, C. Tremblay, and Y. Su, “Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach−Zehnder interferometer couplers,” Opt. Express 24, 2183–2188 (2016).
[25] H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bo- gaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37, 4681–4683 (2012).
[26] D. Miller, “Designing linear optical components,” Opt. Photon. News 24, 38–38 (2013).
[27] C. Chen, X. Zhu, Y. Liu, K. Wen, M. Chik, T. Baehr-Jones, M. Hochberg and K. Bergman, “Programmable dynamically-controlled silicon photonic switch fabric,” J. Lightw. Technol. 34, 2952–2958 (2016).
[28] K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006).
[29] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[30] A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, “Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,” Opt. Lett. 28, 1567–1569 (2003).
[31] T. Wang, Y. Huang, and H. Chen, “Resonant wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photon. Technol. Lett. 17, 582–584 (2005).
[32] A. Prescod, B. Dingel, N. Madamopoulos, and R. Madabhushi, “Effect of ring res- onator waveguide loss on SFDR performance of highly linear optical modulators under suboctave operation,” IEEE Photon. Technol. Lett. 22, 1297–1299 (2010).
[33] J. Rakshit and J. Roy, “Micro-ring resonator based all-optical reconfigurable logic operations,” Opt. Commun. 321, 38–46 (2014).
[34] A. Parini, G. Bellanca, A. Annoni, F. Morichetti, A. Melloni, M. J. Strain, M. Sorel, M. Gay, C. Pareige, L. Bramerie and M. Thual, “BER evaluation of a passive SOI WDM router,” IEEE Photon. Technol. Lett. 25, 2285–2288 (2013).
[35] W. Westerveld, S. Leinders, P. Muilwijk, J. Pozo, T. van den Dool, M. Verweij, M. Yousefi, and H. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE J. Sel. Topics Quantum Electron. 20, 101–110 (2014).
[36] E. Lin, W. Tsai, K. Lee, M. Lee, and P. Wei, “Enhancing detection sensitivity of metallic nanostructures by resonant coupling mode and spectral integration analy- sis,” Opt. Express 22, 19621–19632 (2014).
[37] W. Headley, G. Reed, S. Howe, A. Liu and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[38] Z. Wang, D. Dai, and S. He, “Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwich nanowires,” IEEE Photon. Technol. Lett. 19, 1580–1582 (2007).
[39] M. Erdmanis, L. Karvonen, A. Säynätjoki, X. Tu , T. Liow, Q. Lo, O. Vänskä, S. Honkanen and I. Tittonen, “Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators,” Opt. Express 21, 9974–9981 (2013).
[40] R. Hunsperger, Integrated Optics - Theory and Technology, 6th ed. (Springer, 2009).
[41] E. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
[42] K. Chiang, “Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory,” J. Lightw. Technol. 9, 62–72 (1991).
[43] Lumerical Solutions, Inc., https://www.lumerical.com
[44] V. Almeida, Q. Xu, C. Barrios, and M. Lipson, “Guiding and confining light in void structure,” Opt. Lett 29, 18977–18985 (2004).
[45] COMSOL Multiphysics®, https://www.comsol.com/.
[46] W. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
[47] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 2nd ed. (Springer-Verlag, 1994).
[48] P. Senecal, “Numerical optimization using the GEN4 micro-genetic algorithm code,” 1–18 (2000).
[49] N. Kobayashi, T. Sato, and Y. Kokubun, “UV trimming of polarization - independent microring resonator by internal stress and temperature control,” Opt. Express 18, 906–916 (2010).
[50] S. Chan, C. Png, S. Lim, G. Reed, and V. Paniccia, “Single-mode and polarization- independent silicon-on-insulator waveguides with small cross section” J. Lightw. Technol. 23, 2103 (2005).
[51] J. Xiao, H. Ni, and X. Sun, “Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate sys- tems,” Opt. Lett. 33, 1848–1850 (2008).
[52] J. Xiao and X. Sun, “Vector analysis of bending waveguides by using a modified finite-difference method in a local cylindrical coordinate system,” Opt. Express 20, 21583–21597 (2012).
[53] R. Byrd, M. Hribar, and J. Nocedal. “An interior point algorithm for large-scale non- linear programming.” SIAM J. Optim. 9, 877–900 (1999).
[54] F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni and M. Mar- tinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[55] Y. Vlasov and S. McNab, ”Losses in single-mode silicon-on-insulator strip waveg- uides and bends,” Opt. Express 12, 1622–1631 (2004).
[56] T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529– 11538 (2011).
[57] A.Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Liow, M. Hiltunen, A. Ter- vonen, G. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
[58] Y. Liu, T. Baehr-Jones, J. Li, A. Pomerene and M. Hochberg, “Efficient Strip to Strip-Loaded Slot Mode Converter in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 23, 1496–1498 (2011).
[59] R. Palmer and L. Alloatti and D. Korn and W. Heni and P. Schindler and J. Bolten and M. Karl and M. Waldow and T. Wahlbrink and W. Freude and C. Koos and J. Leuthold, “Low-loss silicon strip-to-slot Mode converters,” IEEE Photon. J. 5, 2200409 (2013).
[60] Q. Deng, L. Liu, X. Li, and Z. Zhou, “Strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Lett. 39, 5665–5668 (2014).
[61] A. Takagi, K. Jinguji, and M. Kawachi, “Broadband silica-based optical waveguide coupler with asymmetric structure,” Electron. Lett. 26, 132–133, (1990).
[62] A. Takagi, K. Jinguji, and M. Kawachi, “Wavelength characteristics of (2 × 2) op- tical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” J. Light. Technol. 10, 735–746 (1992).
[63] Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. Jaeger, and L. Chrostowski, “Broad- band silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[64] H. Yanagawa, S. Nakamura, I. Ohyama, and K. Ueki, “Broad-band high-silica optical waveguide star coupler with asymmetric directional couplers,” J. Lightw. Technol. 8, 1292–1297 (1990).
[65] A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica- based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum Electron 28, 848-–855 (1992).
[66] K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wave- length circuits composed of cascaded Mach–Zehnder interferometers with point- symmetrical configurations,” J. Lightw. Technol. 14, 2301–2310 (1996).
[67] S. Tseng, “Robust coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 39, 6600–6603 (2014).
[68] X. Chen, R. Wen, and S. Tseng, “Analysis of optical directional couplers using short- cuts to adiabaticity,” Opt. Express 24, 18322–18331 (2016).
[69] A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21, 7033– 7040 (2013).
[70] C. R. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar lightwave circuit 2 × 2 coupler to desensitize it to wave- length, polarization, and fabrication changes,” IEEE Photon. Technol. Lett. 17, 1211– 1213 (2005).
[71] H. Morino, T. Maruyama and K. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” J. Lightwave Technol. 32, 2188–2192 (2014).
[72] S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo- optic Mach-Zehnder switch with bent directional couplers,” Opt. Lett. 41, 836–839 (2016).
[73] Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photon. J. 8, 7101408 (2016).
[74] L. Sanchis, A. Håkansson, D. Lopez-Zanón, J. Bravo-Abad and J. Sánchez-Dehesa, “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett. 84, 4460– 4462 (2004).
[75] A. Håkansson and J. Sánchez-Dehesa, “Inverse designed photonic crystal de- multiplex waveguide coupler,” Opt. Express 13, 5440–5449 (2005).
[76] A. Håkansson, P. Sanchis, J. Sánchez-Dehesa and J. Martí, “High-efficiency defect- based photonic-crystal tapers designed by a genetic algorithm,” J. Lightw. Technol. 23, 3881–3888 (2005).
[77] D. Correia, J. da Silva and H. Hernandez-Figueroa, “Genetic algorithm and finite- element design of short single-section passive polarization converter,” IEEE Photon. Technol. Lett. 15, 915–917 (2003).
[78] F. Bahrami, M. Maisonneuve, M. Meunier, J. Aitchison, and M. Mojahedi, “An im- proved refractive index sensor based on genetic optimization of plasmon waveguide resonance,” Opt. Express 21, 20863–20872 (2013).
[79] A. Liu, R. Wu, and Y. Lin, “A compact design of W-band high-pass waveguide filter using genetic algorithms and full-wave finite element analysis,” IEICE T. Electron. E88-C, 1764–1771 (2005).
[80] J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martínez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97, 071115 (2010).
[81] Q. Deng, L. Liu, X. Li, and Z. Zhou, “Strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Lett. 39, 5665–5668 (2014).
[82] P. Vanbrabant, J. Beeckman, K. Neyts, R. James, and F. Fernandez, “A finite element beam propagation method for simulation of liquid crystal devices,” Opt. Express 17, 10895–10909 (2009).
[83] H. Li, “Refractive index of silicon and germanium and its wavelength and tempera- ture derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1993).
[84] I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
[85] T. Ramadan, R. Scarmozzino, and R. Osgood, Jr., “Adiabatic couplers: design rules and optimization,” J. Lightw. Technol. 16, 277–283 (1998).
[86] MATLAB Global Optimization Toolbox, Genetic Algorithm Options, http://www.mathworks.com/help/gads/genetic-algorithm-options.html.
[87] P. Fu, T. Chiang, N. Cheng, Y. Ma, and D. Huang, “Microring resonator composed of vertical slot waveguides with minimum polarization mode dispersion over a wide spectral range,” Appl. Opt. 55, 3626–3631 (2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊