(3.239.33.139) 您好!臺灣時間:2021/03/08 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:屈統威
研究生(外文):Tung-Wei Chu
論文名稱:大面積過渡金屬硫化物異質結構成長及原子層蝕刻技術之開發
論文名稱(外文):The Growth of Large-Area Transition Metal Dichalcogenide Hetero-Structures and the Development of the Atomic Layer Etching
指導教授:黃定洧吳肇欣
口試委員:林時彥潘正聖
口試日期:2017-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:90
中文關鍵詞:二維晶體二維晶體異質結構原子層蝕刻上閘極場效電晶體
外文關鍵詞:2D crystals2D crystal hetero-structuresAtomic layer etchingTop-gatedField effect transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們透過預濺鍍過渡金屬再硫化方式成長出大面積的二硫化鉬薄膜,且經由控制濺鍍金屬時間,可以於準確控制10 層以下二硫化鉬薄膜之層數。對於較厚的鉬金屬膜,經硫化後雖可成長出層數大於 10 層之二硫化鉬薄膜,但在薄膜下方則包覆著鉬氧化物。此結果說明了,在硫化的過程中,兩種成長機制將同時發生,其一為平面二硫化鉬薄膜的成長,其二為鉬氧化物因高溫在表面的移動。此外,經過依序濺鍍過渡金屬鉬和鎢且依序硫化的方式,可以成功的製備出二硫化鉬/二硫化鎢二維晶體異質結構薄膜,轉印此二維晶體異質結構薄膜至預成長 300 奈米二氧化矽的矽基板上,透過此方式,即可製作出背閘極場效電晶體,其元件特性更勝於二硫化鉬背閘極場效電晶體。此結果表明了,二維晶體異質結構的堆疊可以克服了單一二維晶體先天上的限制並且仍然保有著二維晶體的優點,為一種具有前瞻性的材料。此外在此論文中,我們亦完成了二硫化鉬與二硫化鎢的的原子層蝕刻,對於二硫化鎢/二硫化鉬異質結構薄膜,透過重複的氧電漿蝕刻並進行再硫化之方式,可以達到上方二硫化鎢之選擇性蝕刻。另外透過重複原子層蝕刻之技術來製備二硫化鎢/二硫化鉬異質結構電晶體,可以使得源/汲電極直接接觸到二硫化鉬通道,此結果表明,二維晶體異質結構的等效選擇性蝕刻可以通過重複原子層蝕刻技術來實現,這是二維晶體異質結構元件製作上極為重要的一步。
In this thesis, we have demonstrated that large-area molybdenum disulfide (MoS2) can be prepared by sulfurizing the pre-deposited transition metal films. Good layer number controllability up to 10 layers of the MoS2 film is also achieved by controlling the sputtering times of the pre-deposited transition metal films. For the sample with thicker Mo films, although MoS2 films with the layer number larger than 10 can be obtained, clusters of multi-layer 2D crystals covering Mo oxides are obtained for the sample. The results suggest that two growth mechanisms of planar MoS2 formation and Mo oxide segregation would take place simultaneously during the sulfurization procedure. After sequential transition metal deposition and sulfurization procedures of Mo and tungsten (W), MoS2/WS2 2D crystal hetero-structures can be established. After transferring the hetero-structure film to a 300 nm SiO2/Si substrate, a bottom-gate transistor with enhanced field-effect mobility is obtained. The results have revealed that the establishment of different hetero-structures is a promising approach to overcome the limit of individual 2D crystals and still maintain their advantage. The atomic layer etchings of MoS2 and WS2 are demonstrated in this paper. By repeated oxygen plasma etchings and a final re-sulfurization procedure, multi-layer WS2 can be selectively etched off from the WS2/MoS2 hetero-structure. A WS2/MoS2 hetero-structure transistor is fabricated with source/drain electrodes contacted directly to the MoS2 channel by using the repeated atomic layer etching technique. The results have revealed that the equivalent selective etching effect for two-dimensional crystal hetero-structures can be achieved by repeating the atomic layer etching procedure, which is an important step for the device fabrication of 2D crystal hetero-structures.
摘要 I
Abstract II
目錄 IV
圖目錄 VII
第一章 緒論 1
1-1 二硫化鉬晶體結構與性質 1
1-2 二硫化鉬之拉曼光譜 2
1-3 二硫化鉬之光激螢光光譜 2
1-4 二硫化鉬薄膜之製備方式 3
1-4-1 機械剝離法 3
1-4-2 電化學分離法 4
1-4-3 化學氣相沉積法 4
1-5 本論文研究方向與大綱 5
第二章 實驗儀器介紹 12
2-1 薄膜成長系統 12
2-1-1 過渡金屬射頻濺鍍系統 12
2-1-2 過渡金屬硫化系統 14
2-2 薄膜分析系統 14
2-2-1 拉曼光譜儀 15
2-2-2 光激發螢光光譜儀 15
2-2-3 X光光電子能譜儀 16
2-2-4 紫外光光電子能譜儀 16
2-2-5 穿透式電子顯微鏡 17
2-3 電晶體製程儀器 17
2-3-1 反應式離子蝕刻系統 RIE (Reactive-Ion Etching) System 17
2-3-2 原子層沉積系統 ALD (Atomic Layer Deposition) System 18
2-3-3 氧電漿蝕刻系統 19
第三章 二硫化鉬和二硫化鉬/二硫化鎢異質結構薄膜成長及特性 26
3-1二硫化鉬薄膜成長 26
3-1-1 基板選擇與前處理 26
3-1-2 鉬金屬沉積 27
3-1-3 鉬金屬硫化 27
3-2 不同濺鍍時間對二硫化鉬薄膜特性 28
3-2-1 透過拉曼光譜分析不同濺鍍金屬時間之二硫化鉬薄膜 28
3-2-2 透過光激螢光光譜分析不同濺鍍金屬時間之二硫化鉬薄膜 29
3-2-3 透過穿透式電子顯微鏡分析不同濺鍍金屬時間二硫化鉬薄膜 29
3-2-4 多層二硫化鉬薄膜元素分析 30
3-2-5 二硫化鉬成長模型探討 30
3-3 二硫化鎢/二硫化鉬異質結構薄膜製備及特性 31
3-3-1 二硫化鎢/二硫化鉬異質結構薄膜樣品製備 31
3-3-2 二硫化鎢/二硫化鉬異質結構薄膜之拉曼光譜分析 31
3-3-3 二硫化鎢/二硫化鉬異質結構薄膜之光激螢光光譜分析 32
3-3-4 二硫化鉬/二硫化鎢異質結構之紫外光光電子能譜儀分析 32
3-3-5 二硫化鉬/二硫化鎢異質結構之穿透式電子顯微鏡分析 33
3-4 小結 33
第四章 二硫化鉬/二硫化鎢異質結構之電晶體特性 46
4-1 背閘極場效電晶體之製備 46
4-1-1 於基板上定義源極與汲極 46
4-1-2 薄膜轉印至源極與汲極基板 47
4-1-3 定義場效電晶體通道 48
4-2 上閘極場效電晶體製備 48
4-2-1 上Alignment Key 49
4-2-2 定義場效電晶體通道 49
4-2-3 定義源極與汲極 50
4-2-4 氧化層沉積 50
4-2-5 定義上閘極 50
4-3 二硫化鉬場效電晶體特性 51
4-3-1 單層二硫化鉬背閘極場效電晶體 51
4-3-2 三層二硫化鉬背閘極場效電晶體 52
4-3-2 三層二硫化鉬上閘極場效電晶體 52
4-4 二硫化鉬/二硫化鎢異質結構場效電晶體特性 54
4-4-1 二硫化鉬/二硫化鎢異質結構背閘極場效電晶體特性 55
4-4-2 二硫化鉬/二硫化鎢異質結構上閘極場效電晶體特性 55
第五章 利用氧電漿對於過渡金屬二硫化物異質結構進行等效選擇性蝕刻及其電晶體元件特性 67
5-1 利用氧電漿進行二硫化鉬之原子層蝕刻 67
5-1-1 二硫化鉬之原子層蝕刻拉曼光譜分析 68
5-1-2 二硫化鉬之原子層蝕刻光激螢光光譜分析 68
5-1-3 二硫化鉬之原子層蝕刻X光電子能譜分析 69
5-1-4 二硫化鉬之原子層蝕刻穿透式電子顯微鏡橫切面分析 70
5-1-5 二硫化鉬原子層蝕刻後之背閘極場效電晶體特性 70
5-2 利用氧電漿進行二硫化鉬/二硫化鎢單異質結構之等效選擇性蝕刻 71
5-2-1單異質結構之選擇性蝕刻拉曼光譜分析 71
5-2-2單異質結構之等效選擇性蝕刻光激螢光光譜分析 72
5-2-3單異質結構之選擇性蝕刻穿透式電子顯微鏡剖面分析 72
5-2-4單異質結構進行等效選擇性蝕刻之兩端點元件 73
第六章 總結 84
參考文獻 86
[1] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, I. V., & Kis, A. (2011). "Single-layer MoS2 transistors." Nature nanotechnology, 6(3), 147-150.
[2] H. L.Zeng and X.D.Cui. (2015). "An optical spectroscopic study on two dimensional group-VI transition metal dichalcogenides." Chemical Society Reviews, vol. 44, pp. 2629-2642.
[3] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., & Wang, F. (2010). "Emerging photoluminescence in monolayer MoS2." Nano letters, 10(4), 1271-1275.
[4] Johari, P., & Shenoy, V. B. (2012). "Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains." ACS nano, 6(6), 5449-5456.
[5] Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., & Ryu, S. (2010). "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano, 4(5), 2695-2700.
[6] Dhakal, K. P., Duong, D. L., Lee, J., Nam, H., Kim, M., Kan, M., & Kim, J. (2014). "Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2." Nanoscale, 6(21), 13028-13035.
[7] Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., & Chhowalla, M. (2011). "Photoluminescence from chemically exfoliated MoS2." Nano letters, 11(12), 5111-5116.
[8] Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). "Atomically thin MoS2: a new direct-gap semiconductor." Physical Review Letters, 105(13), 136805.
[9] Sundaram, R. S., Engel, M., Lombardo, A., Krupke, R., Ferrari, A. C., Avouris, P., & Steiner, M. (2013). "Electroluminescence in single layer MoS2." Nano letters, 13(4), 1416-1421.
[10]Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., & Kis, A. (2013). "Ultrasensitive photodetectors based on monolayer MoS2." Nature nanotechnology, 8(7), 497-501.
[11] Li, H., Lu, G., Yin, Z., He, Q., Li, H., Zhang, Q., & Zhang, H. (2012). "Optical Identification of Single‐and Few‐Layer MoS2 Sheets." Small, 8(5), 682-686.
[12]Coleman, J. N., Lotya, M., O’Neill, A., Bergin, S. D., King, P. J., Khan, U., & Shvets, I. V. (2011). "Two-dimensional nanosheets produced by liquid exfoliation of layered materials." Science, 331(6017), 568-571.
[13]Smith, R. J., King, P. J., Lotya, M., Wirtz, C., Khan, U., De, S., & Chen, J. (2011). "Large‐scale exfoliation of inorganic layered compounds in aqueous surfactant solutions." Advanced materials, 23(34), 3944-3948.
[14]Yang, J., & Shin, H. S. (2014). "Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction." Journal of Materials Chemistry A, 2(17), 5979-5985.
[15] Jeon, J., Jang, S. K., Jeon, S. M., Yoo, G., Jang, Y. H., Park, J. H., & Lee, S. (2015). "Layer-controlled CVD growth of large-area two-dimensional MoS2 films." Nanoscale, 7(5), 1688-1695.
[16] T. C. Tien, J. L. Chen, M. T. Shien, C. J. Huang, L. N. Tsai, Y. J. Shuin, L. J. Lin. "Energy Analysis of Nano and Organic Semiconductor of Photoelectron Spectroscopy." 工業材料雜誌, 251期 (100-101), 2007.
[17] Kim, H., & Maeng, W. J. (2009). "Applications of atomic layer deposition to nanofabrication and emerging nanodevices. " Thin Solid Films, 517(8), 2563-2580.
[18] Wu, C. R., Chang, X. R., Chang, S. W., Chang, C. E., Wu, C. H., & Lin, S. Y. (2015). "Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high ON/OFF ratio." Journal of Physics D: Applied Physics, 48(43), 435101.
[19] Hong, X., Kim, J., Shi, S. F., Zhang, Y., Jin, C., Sun, Y., ... & Wang, F. (2014). "Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures." Nature nanotechnology, 9(9), 682-686.
[20] Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., ... & Terrones, H. (2014). "Vertical and in-plane heterostructures from WS2/MoS2 monolayers." Nature materials, 13(12), 1135-1142.
[21] Jiao, K., Duan, C., Wu, X., Chen, J., Wang, Y., & Chen, Y. (2015). "The role of MoS2 as an interfacial layer in graphene/silicon solar cells." Physical Chemistry Chemical Physics, 17(12), 8182-8186.
[22] Qin, P., Fang, G., Ke, W., Cheng, F., Zheng, Q., Wan, J., & Zhao, X. (2014). "In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell." Journal of Materials Chemistry A, 2(8), 2742-2756.
[23] Huo, N., Kang, J., Wei, Z., Li, S. S., Li, J., & Wei, S. H. (2014). "Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. " Advanced Functional Materials, 24(44), 7025-7031.
[24] Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., ... & Ruoff, R. S. (2009). "Transfer of large-area graphene films for high-performance transparent conductive electrodes. " Nano letters, 9(12), 4359-4363.
[25] Yu, W. J., Lee, S. Y., Chae, S. H., Perello, D., Han, G. H., Yun, M., & Lee, Y. H. (2011). "Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate." Nano letters, 11(3), 1344-1350.
[26] Sarkar, D., Liu, W., Xie, X., Anselmo, A. C., Mitragotri, S., & Banerjee, K. (2014). "MoS2 field-effect transistor for next-generation label-free biosensors. " ACS nano, 8(4), 3992-4003.
[27] Chen, K. C., Chu, T. W., Wu, C. R., Lee, S. C., & Lin, S. Y. (2017). " Layer number controllability of transition-metal dichalcogenides and the establishment of hetero-structures by using sulfurization of thin transition metal films. " Journal of Physics D: Applied Physics, 50(6), 064001.
[28] Ganta, D., Sinha, S., & Haasch, R. T. (2014). "2-D Material Molybdenum Disulfide Analyzed by XPS. " Surface Science Spectra, 21(1), 19-27.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔