|
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [2] D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. C. Fujimoto, “Three-dimensional endomicroscophy using optical coherence tomography,” Nature Photonics 1, 709-716 (2007). [3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003). [4] B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “High-speed optical frequency-domain imaging,” Opt. Express 12, 2435-2447 (2004). [5] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006). [6] R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines⁄s,” Opt. Lett. 31, 2975-2977 (2006). [7] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 326-332 (1995). [8] J. S. Schuman, P. K. Tamar, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889-1898 (1996). [9] M. R. Hee, C. A. Puliafito, J.S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J.S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105, 360-370 (1998). [10] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 501-507 (2001). [11] J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Disease, 2nd edn. (Slack Inc., Thorofare, NJ, 2004). [12] B. H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, and J.F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001). [13] S. Jiao, W. Yu, G. Stoica, and L.V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt. 42, 5191-5197 (2003). [14] S. M. Srinivas, J. F. D. Boer, and H. Park, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 207-212 (2004). [15] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human gastrointestinal tissue using optical coherence tomography,” Am. J. Gastroenterol. 92, 1800-1804 (1997). [16] M. V. Sivak, K. Kobayashi, J.A. Izatt, et al., “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest Endosc. 51, 474-479 (2000). [17] A. R. Tumlinson, B. Povazay, L. P. Hariri, et al., “In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope,” J. Biomed. Opt. 11, 064003 (2006). [18] Y. Yang, S. Whiteman, D. Gey van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol. 49, 1247-1255 (2004). [19] N. Hanna, D. Saltzman, D. Mukai, et al., “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac Cardiovasc Surg. 129, 615-622 (2005). [20] M. Tsuboi, A. Hayashi, N. Ikeda, et al., “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 56, 387-394 (2005). [21] S. C. Whiteman, Y. Yang, D. Gey van Pittius, M. Stephens, J. Parmer, and M. A. Spiteri, “Optical coherence tomography: real-time imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes,” Clin. Cancer Res. 12, 813-818 (2006). [22] M. E. Brezinski, G. J. Tearney, N. J. Weissman, et al., “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397-403 (1997). [23] J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128-133 (1999). [24] H. Kitabata, T. Kubo, and T. Akasaka, “Identification of multiple plaque ruptures by optical coherence tomography in a patient with acute myocardial infarction: a three-vessel study,” Heart 94, 544 (2008). [25] B. Wong, R. Jackson, S. Guo S, et al., “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” The Laryngoscope 115, 1904-1911 (2005). [26] X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337-1339 (1995). [27] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119-1121 (1997). [28] J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934-936 (1997). [29] G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537-539 (1999). [30] U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000) [31] J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A 15, 2288-2296 (1998) [32] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700-702 (2010). [33] R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19, 23831-23844 (2010). [34] A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219-229 (1998). [35] G. Hausler and M. W. Lindner, “‘Coherence Radar’ and ‘Spectral Radar’-New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998). [36] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995). [37] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003). [38] M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003). [39] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894(2003). [40] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002). [41] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997). [42] S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998 (2004). [43] J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 1-3 (2005). [44] J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μ m for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006). [45] Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121-6139 (2007). [46] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006). [47] D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376-4393 (2008). [48] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700-702 (2010). [49] C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, and Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14, 034008 (2009). [50] J. H. Baek, T. Krasieva, S. Tang, Y. Ahn, C. S. Kim, D. Vu, Z. Chen, and P. Wilder-Smith, “Optical approach to the salivary pellicle,” J. Biomed. Opt. 14, 044001 (2009). [51] J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477 (2005). [52] H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048-3050 (2005). [53] E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, and M. L. Bugrova, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53, 4995-5009 (2008). [54] M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009). [55] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929-1934 (2007). [56] A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents,” Opt. Express 14, 6724-6738 (2006). [57] G. Majno and I. Joris, “Apoptosis, oncosis, and necrosis. An overview of cell death,” Am. J. Pathol. 146, 3-15 (1995) [58] B. F. Trump, I. K. Berezesky, S. H. Chang, and P. C. Phelps, “The pathways of cell death: oncosis, apoptosis and necrosis,” Toxicol. Pathol. 25, 82-88 (1997). [59] D. R. Green and J. C. Reed, “Mitochondria and apoptosis,” Science 281, 1309-1312 (1998). [60] G. Farhat, V. X. D. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting cell death with optical coherence tomography and envelope statistics,” J. Biomed. Opt. 16, 026017 (2011). [61] G. Farhat, A. Giles, M. C. Kolios and G. J. Czarnota, “Optical coherence tomography spectral analysis for detecting apoptosis in vitro and in vivo,” J. Biomed. Opt. 20, 126001 (2015). [62] F. J. van der Meer, D. J. Faber, M. C. G. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis-and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers in Medical Science 25, 259–267 (2010). [63] D. M. de Bruin, M. Broekgaarden, M. J. C. van Gemert, M. Heger, J. J. de la Rosette, T. G. Van Leeuwen and D. J. Faber, “Assesment of apoptosis induced changes in scattering using optical coherence tomography,” J. Biophoton. 9, 913–923(2016). [64] P. Ossowski, A. Raiter-Smiljanic, A. Szkulmowska, D. Bukowska, M. Wiese, L. Derzsi, A. Eljaszewicz, P. Garstecki, and M. Wojtkowski, “Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup,” Opt. Express 23, 27724-27738 (2015). [65] C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14, 064013 (2009). [66] H. Assadi, V. Demidov, R. Karshafian, A. Douplik, and I. A. Vitkin, “Microvascular contrast enhancement in optical coherence tomography using microbubbles,” J. Biomed. Opt. 21, 076014 (2016). [67] A. Adan, G. Alizada, Y. Kiraz, Y. Baran, A. Nalbant, G. Nel Alizada, Y. Mur Kiraz, “Flow cytometry: basic principles and applications,” Crit. Rev. Biotechnol. 37, 163–176 (2016). [68] C. M. Henry, E. Hollville, S. J. Martin, “Measuring apoptosis by microscopy and flow cytometry,” Methods 61, 90-97(2013).
|